1
|
Perkins NR, Monk J, Wong RHX, Barrett NS. Temporal variability in temperate mesophotic ecosystems revealed with over a decade of monitoring with an autonomous underwater vehicle. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107179. [PMID: 40306043 DOI: 10.1016/j.marenvres.2025.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Rocky reef temperate mesophotic ecosystems (TMEs) are increasingly recognised for their spatial extent and high biodiversity. Platforms such as autonomous underwater vehicles (AUVs) allow large-scale collection of benthic imagery, facilitating descriptions of TMEs, but these efforts currently remain geographically restricted. Furthermore, descriptions of temporal changes in TMEs are extremely rare and typically limited to a single site with few repeated surveys, leaving critical gaps in our understanding of ecosystem variability. Here, we report on temporal changes in abundance and size structure of sessile biota across TMEs in three Australian Marine Parks (AMPs) across decadal time scales, using AUV-collected benthic imagery, enhanced with AI tools for estimating biota size. Our results challenge the common assumption of TME stability, revealing significant fluctuations in key biota over 2-13-year periods. At the phyla-level, cnidaria exhibited threefold changes and bryozoa fivefold changes at individual sites over ∼5 years. Some individual morphospecies also showed more than twofold change over ∼5 years. We found that higher-level taxonomic/morphological groupings could track changes in dominant taxa, but often masked significant trends at the morphospecies level. Size structure data offer important insights into the population dynamics that abundance or cover data alone could not capture, particularly in terms of recruitment events and size shifts. Our findings highlight that mesophotic ecosystems are dynamic and underscore the need for ongoing monitoring to better understand the temporal changes within TMEs and to inform the development of effective indicators. Coupling image-based surveys with physical data collection such as temperature data should be a priority in future monitoring to better link biotic changes to environmental drivers.
Collapse
Affiliation(s)
- Nicholas R Perkins
- Institute for Marine and Antarctic Studies, University of Tasmania, Australia.
| | - Jacquomo Monk
- Institute for Marine and Antarctic Studies, University of Tasmania, Australia
| | - Rachel H X Wong
- Institute for Marine and Antarctic Studies, University of Tasmania, Australia
| | - Neville S Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Australia
| |
Collapse
|
2
|
Pulido Mantas T, Roveta C, Calcinai B, Campanini C, Coppari M, Falco P, Di Camillo CG, Garrabou J, Lee MC, Memmola F, Cerrano C. Mesophotic zone as buffer for biodiversity protection: A promising opportunity to enhance MPA effectiveness. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106676. [PMID: 39142217 DOI: 10.1016/j.marenvres.2024.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Coastal areas conservation strategies often left deeper habitats, such as mesophotic ones, unprotected and exposed to anthropogenic activities. In this context, an approach for including the mesophotic zone inside protection plans is proposed, considering 27 Italian Marine Protected Areas (MPAs) as a model. MPAs were classified considering their bathymetries, exposure to marine heat waves (MHWs), mass mortality events (MMEs) and, using a local ecological knowledge (LEK) approach, the estimated resilience of certain sessile species after MMEs. Only 8 MPAs contained considerable mesophotic areas, with stronger MHWs mainly occurring in shallower MPAs, and MMEs mostly affecting coralligenous assemblages. Even with only a 10% response rate, the LEK approach provided useful information on the resilience of certain species, allowing us to suggest that the presence of nearby mesophotic areas can help shallower habitats facing climate change, thus making the "deep refugia" hypothesis, usually related to tropical habitats, applicable also for the Mediterranean Sea.
Collapse
Affiliation(s)
- Torcuato Pulido Mantas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Camilla Roveta
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| | - Barbara Calcinai
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Claudia Campanini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Martina Coppari
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Pierpaolo Falco
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Cristina Gioia Di Camillo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Joaquim Garrabou
- Institute of Marine Sciences-CSIC (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Man Chun Lee
- Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Francesco Memmola
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Carlo Cerrano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy; Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, Via Francesco Caracciolo s.n.c., 80122 Napoli, Italy; Fano Marine Center, Viale Adriatico 1/N, 61032 Fano, Italy
| |
Collapse
|
3
|
Wörheide G, Francis WR, Deister F, Krebs S, Erpenbeck D, Vargas S. The genomes of the aquarium sponges Tethya wilhelma and Tethya minuta (Porifera: Demospongiae). F1000Res 2024; 13:679. [PMID: 39193510 PMCID: PMC11347921 DOI: 10.12688/f1000research.150836.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Sponges (Phylum Porifera) are aquatic sessile metazoans found worldwide in marine and freshwater environments. They are significant in the animal tree of life as one of the earliest-branching metazoan lineages and as filter feeders play crucial ecological roles, particularly in coral reefs, but are susceptible to the effects of climate change. In the face of the current biodiversity crisis, genomic data is crucial for species conservation efforts and predicting their evolutionary potential in response to environmental changes. However, there is a limited availability of culturable sponge species with annotated high-quality genomes to further comprehensive insights into animal evolution, function, and their response to the ongoing global change. Despite the publication of a few high-quality annotated sponge genomes, there remains a gap in resources for culturable sponge species. To address this gap, we provide high quality draft genomes of the two congeneric aquarium species Tethya wilhelma and Tethya minuta, small ball-shaped demosponges that are easily maintained long-term in ex situ culture. As such, they offer promising opportunities as laboratory models to contribute to advancing our understanding of sponge biology and provide valuable resources for studying animal evolution, function, and responses to environmental challenges.
Collapse
Affiliation(s)
- Gert Wörheide
- Bayerische Staatssammlung für Paläontologie und Geologie, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Munich, Bavaria, 80333, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Warren R. Francis
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Fabian Deister
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Erpenbeck
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Sergio Vargas
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| |
Collapse
|
4
|
Bell JJ, Micaroni V, Strano F, Ryan KG, Mitchell K, Mitchell P, Wilkinson S, Thomas T, Batchiar R, Smith RO. Marine heatwave-driven mass mortality and microbial community reorganisation in an ecologically important temperate sponge. GLOBAL CHANGE BIOLOGY 2024; 30:e17417. [PMID: 39105285 DOI: 10.1111/gcb.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 08/07/2024]
Abstract
Marine heatwaves (MHWs) are increasing in frequency, duration and intensity, disrupting global marine ecosystems. While most reported impacts have been in tropical areas, New Zealand experienced its strongest and longest MHW in 2022, profoundly affecting marine sponges. Sponges are vital to rocky benthic marine communities, with their abundance influencing ecosystem functioning. This study examines the impact of this MHW on the photosynthetic sponge Cymbastella lamellata in Fiordland, New Zealand. We describe the extent, physiological responses, mortality, microbial community changes and ecological impact of this MHW on C. lamellata. The Fiordland MHW reached a maximum temperature of 4.4°C above average, lasting for 259 days. Bleaching occurred in >90% of the C. lamellata Fiordland population. The population size exceeded 66 million from 5 to 25 m, making this the largest bleaching event of its kind ever recorded. We identified the photosynthetic symbiont as a diatom, and bleached sponges had reduced photosynthetic efficiency. Post-MHW surveys in 2023 found that over 50% of sponges at sampling sites had died but that the remaining sponges had mostly recovered from earlier bleaching. Using a simulated MHW experiment, we found that temperature stress was a driver of necrosis rather than bleaching, despite necrosis only rarely being observed in the field (<2% of sponges). This suggests that bleaching may not be the cause of the mortality directly. We also identified a microbial community shift in surviving sponges, which we propose represents a microbial-mediated adaptive response to MHWs. We also found that C. lamellata are key contributors of dissolved organic carbon to the water column, with their loss likely impacting ecosystem function. We demonstrate the potential for MHWs to disrupt key marine phyla in temperate regions, highlighting how susceptible temperate sponges globally might be to MHWs.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Ken G Ryan
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ramadian Batchiar
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Robert O Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Posadas N, Conaco C. Gene networks governing the response of a calcareous sponge to future ocean conditions reveal lineage-specific XBP1 regulation of the unfolded protein response. Ecol Evol 2024; 14:e11652. [PMID: 38952658 PMCID: PMC11214833 DOI: 10.1002/ece3.11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Marine sponges are predicted to be winners in the future ocean due to their exemplary adaptive capacity. However, while many sponge groups exhibit tolerance to a wide range of environmental insults, calcifying sponges may be more susceptible to thermo-acidic stress. To describe the gene regulatory networks that govern the stress response of the calcareous sponge, Leucetta chagosensis (class Calcarea, order Clathrinida), individuals were subjected to warming and acidification conditions based on the climate models for 2100. Transcriptome analysis and gene co-expression network reconstruction revealed that the unfolded protein response (UPR) was activated under thermo-acidic stress. Among the upregulated genes were two lineage-specific homologs of X-box binding protein 1 (XBP1), a transcription factor that activates the UPR. Alternative dimerization between these XBP1 gene products suggests a clathrinid-specific mechanism to reversibly sequester the transcription factor into an inactive form, enabling the rapid regulation of pathways linked to the UPR in clathrinid calcareous sponges. Our findings support the idea that transcription factor duplication events may refine evolutionarily conserved molecular pathways and contribute to ecological success.
Collapse
Affiliation(s)
- Niño Posadas
- Marine Science Institute, University of the Philippines DilimanQuezon CityPhilippines
- Present address:
Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayIreland
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines DilimanQuezon CityPhilippines
| |
Collapse
|
6
|
Bell JJ, Strano F, Broadribb M, Wood G, Harris B, Resende AC, Novak E, Micaroni V. Sponge functional roles in a changing world. ADVANCES IN MARINE BIOLOGY 2023; 95:27-89. [PMID: 37923539 DOI: 10.1016/bs.amb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Sponges are ecologically important benthic organisms with many important functional roles. However, despite increasing global interest in the functions that sponges perform, there has been limited focus on how such functions will be impacted by different anthropogenic stressors. In this review, we describe the progress that has been made in our understanding of the functional roles of sponges over the last 15 years and consider the impacts of anthropogenic stressors on these roles. We split sponge functional roles into interactions with the water column and associations with other organisms. We found evidence for an increasing focus on functional roles among sponge-focused research articles, with our understanding of sponge-mediated nutrient cycling increasing substantially in recent years. From the information available, many anthropogenic stressors have the potential to negatively impact sponge pumping, and therefore have the potential to cause ecosystem level impacts. While our understanding of the importance of sponges has increased in the last 15 years, much more experimental work is required to fully understand how sponges will contribute to reef ecosystem function in future changing oceans.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Manon Broadribb
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gabriela Wood
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Ben Harris
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Anna Carolina Resende
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Emma Novak
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|