1
|
Ibor OR, Khan EA, Arkuwe A. A bioanalytical approach for assessing the effects of soil extracts from solid waste dumpsite in Calabar (Nigeria) on lipid and estrogenic signaling of fish Poeciliopsis lucida hepatocellular carcinoma-1 cells in vitro and in vivo African catfish ( Clarias gariepinus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:774-789. [PMID: 37504673 DOI: 10.1080/15287394.2023.2240839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In applying bioanalytical approaches, the aim of this study was to determine the toxicity of contaminants derived from a solid waste dumpsite in Calabar (Nigeria), by investigating the alterations of lipid and estrogen signaling pathways in Poeciliopsis lucida hepatocellular carcinoma-1 (PLHC-1) cells and compared to in vivo African catfish (Clarias gariepinus), using polar, nonpolar and elutriate extraction methods. Cells were exposed for 48 hr period to different concentrations of the contaminant extracts. The PLHC-1 cells were evaluated for lipid responses as follows adipoRed assay, retinoid x receptor (rxr), peroxisome proliferator-activated receptor isoforms (ppar-α and γ), estrogen receptor (er-α) and vitellogenin (vtg) transcripts. The lipid signaling activation was also assessed in vivo using C. gariepinus, where hepatic levels of ppar-α were determined at both transcript and functional proteins levels. Data showed variable-, extract type and concentration-specific elevations in mRNA and protein levels for lipidomic and estrogenic effects. These effects were either biphasic at low and high concentrations, depending upon extract type, or concentration-dependent elevations. In general, these toxicological responses may be attributed to soil organic and inorganic contaminants burden previously derived from the dumpsite. Thus, our data demonstrate a unique lipid and endocrine-disruptive chemical (EDC) effects of each soil extract, suggesting multiple and complex contaminant interactions in the environment and biota. Analysis of numerous soil- or sediment-bound contaminants have numerous limitations and cost implications for developing countries. Our approach provides a bioanalytical protocol and endpoints for measuring the metabolic and EDC effects of complex environmental matrices for ecotoxicological assessment and monitoring.
Collapse
Affiliation(s)
- Oju Richard Ibor
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Essa Ahsan Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Augustine Arkuwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Ibor OR, Khan EA, Arukwe A. Toxicity assessment of Lemna solid waste dumpsite (Calabar, Nigeria) using different extraction methods and toxicological responses of PLHC-1 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103554. [PMID: 33290873 DOI: 10.1016/j.etap.2020.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
In the present study, we have investigated the effects of three (elutriate, polar and non-polar) different soil extraction methods from the Lemna solid waste dumpsite (Calabar, Nigeria) on the biotransformation, antioxidant and cellular defense responses of PLHC-1 cell line. Following a 48 h exposure period to different concentrations of each extract, the PLHC-1 cells were evaluated for enzymatic activities - glutathione peroxidase (Gpx), glutathione reductase (Gr), glutathione S-transferase (Gst), 7-ethoxy-, pentoxy-, and benzyloxyresorufin O-deethylase (EROD, PROD and BROD) and mRNA expressions for catalase (cat), gpx, gst, cyp1a, cyp3a, mammalian target of rapamycin (mtor), nuclear factor erythroid 2-related factor 2 (nrf2) and Kelch-like erythroid cell-derived protein (keap-1). Overall, our results showed parameter-, extract- and concentration-specific increases in transcripts and functional product levels for biotransformation, antioxidant and cellular defense/cytoprotective responses, compared with control. These responses were mostly characterized by a biphasic pattern of effects by either, increasing at low concentration, and thereafter decrease, as the concentration increases or vice versa, depending on the extract type. These observations paralleled soil contaminants (organics and inorganics) burden from the dumpsite. Principal component analysis (PCA) showed that cells treated with the non-polar extract produced more pronounced effects on the measured toxicological responses, compared with the polar and elutriate extracts. Thus, our data highlight peculiar risks to cells exposed to each soil extract, indicating complex and multiple chemical interactions with diverse functional groups that contaminants may have in mixture scenarios. Given the limitations and cost implications of contaminants analysis for the numerous soil- or sediment-bound compounds, we propose that this approach represents an analytical benchmark and endpoints for assessing the risk of complex environmental matrices such as soil and sediments, for ecotoxicological monitoring programs.
Collapse
Affiliation(s)
- Oju R Ibor
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway; Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Essa A Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway.
| |
Collapse
|
3
|
Germain J, Raveton M, Binet MN, Mouhamadou B. Screening and metabolic potential of fungal strains isolated from contaminated soil and sediment in the polychlorinated biphenyl degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111703. [PMID: 33396034 DOI: 10.1016/j.ecoenv.2020.111703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent pollutants deleterious for environment and very dangerous for human kind. As the bioremediation of PCB polluted sites by model white-rot fungi is still unsatisfactory, the use of efficient native strains which have the natural capacity to develop on polluted sites may constitute a relevant alternative strategy. In this study, we isolated 12 fungal strains from PCB contaminated soil and sediment, improved the screening method to obtain the most efficient ones in biodegradation and detoxification of PCBs and characterized potential underlying enzymatic activities. Four strains Penicillium chrysogenum, P. citreosulfuratum, P. canescens and Aspergillus jensenii, showed remarkable biodegradation capacities, greater than 70%. The remaining PCB-toxicity of their culture, including that of Trametes versicolor and Acremonium sclerotigenum, which present interesting ecological and metabolic properties, was studied. Only P. canescens was able to significantly reduce the toxicity related to PCBs and their metabolites. The enzymatic activities induced by PCBs were different according to the strains, namely laccases in T. versicolor and peroxidases in Ac. sclerotigenum. Our promising results show that the use of native fungal strains can constitute an effective strategy in the depollution of PCB polluted sites.
Collapse
Affiliation(s)
- J Germain
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058 Grenoble Cedex 9, France
| | - M Raveton
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058 Grenoble Cedex 9, France
| | - M N Binet
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058 Grenoble Cedex 9, France
| | - B Mouhamadou
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058 Grenoble Cedex 9, France.
| |
Collapse
|
4
|
Congener-specific determination of hydroxylated polychlorinated biphenyls by polar-embedded reversed-phase liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1626:461353. [PMID: 32797833 DOI: 10.1016/j.chroma.2020.461353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
This paper reports the development of an LC-ESI-MS2 method for the sensitive determination of hydroxylated polychlorinated biphenyls (OH-PCBs) in human serum samples. Congener-specific separation was achieved by using a polar-embedded stationary phase, previously optimized for the working group, which provided better separation of isobaric compounds than the common octadecylsilane phases. MS fragmentation patterns and energies showed differences among OH-PCB congeners, mainly depending on the position of OH-group and the number of chlorine atoms in the molecule, although the most intense transitions were always those corresponding to the neutral loss of an HCl group from the quasi-molecular ion cluster. The method allowed the determination of OH-PCBs with good linearity (dynamic linear range of four orders of magnitude with R2 higher than 0.995) and precision (relative standard deviations of absolute areas lower than 10%), and with better sensitivity than other similar methods previously described in the literature. Matrix effect has been evaluated and reduced to less than 10% by the addition of isotopically labeled standards and a 10-fold dilution of the final sample extract. The low iLODs provided by the developed method (from 1.2 to 5.4 fg µL-1 for all the OH-PCBs studied, except 4'-OHCB108, whose iLOD was 61 fg µL-1) allows dilution without losses of detected peaks. Finally, the applicability of the method has been demonstrated by analyzing human serum samples belonging to an interlaboratory exercise.
Collapse
|
5
|
Viganò L, Casatta N, Farkas A, Mascolo G, Roscioli C, Stefani F, Vitelli M, Olivo F, Clerici L, Robles P, Dellavedova P. Embryo/larval toxicity and transcriptional effects in zebrafish (Danio rerio) exposed to endocrine active riverbed sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10729-10747. [PMID: 31942721 DOI: 10.1007/s11356-019-07417-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Sediment toxicity plays a fundamental role in the health of inland fish communities; however, the assessment of the hazard potential of contaminated sediments is not a common objective in environmental diagnostics or remediation. This study examined the potential of transcriptional endpoints investigated in zebrafish (Danio rerio) exposed to riverbed sediments in ecotoxicity testing. Embryo-larval 10-day tests were conducted on sediment samples collected from five sites (one upstream and four downstream of the city of Milan) along a polluted tributary of the Po River, the Lambro River. Sediment chemistry showed a progressive downstream deterioration in river quality, so that the final sampling site showed up to eight times higher concentrations of, for example, triclosan, galaxolide, PAH, PCB, BPA, Ni, and Pb, compared with the uppermost site. The embryo/larval tests showed widespread toxicity although the middle river sections evidenced worse effects, as evidenced by delayed embryo development, hatching rate, larval survival, and growth. At the mRNA transcript level, the genes encoding biotransformation enzymes (cyp1a, gst, ugt) showed increasing upregulations after exposure to sediment from further downstream sites. The genes involved in antioxidant responses (sod, gpx) suggested that more critical conditions may be present at downstream sites, but even upstream of Milan there seemed to be some level of oxidative stress. Indirect evidences of potential apoptotic activity (bcl2/bax < 1) in turn suggested the possibility of genotoxic effects. The genes encoding for estrogen receptors (erα, erβ1, erβ2) showed exposure to (xeno)estrogens with a progressive increase after exposure to sediments from downstream sites, paralleled by a corresponding downregulation of the ar gene, likely related to antiandrogenic compounds. Multiple levels of thyroid disruption were also evident particularly in downstream zebrafish, as for thyroid growth (nkx2.1), hormone synthesis and transport (tg, ttr, d2), and signal transduction (trα, trβ). The inhibition of the igf2 gene reasonably reflected larval growth inhibitions. Although none of the sediment chemicals could singly explain fish responses, principal component analysis suggested a good correlation between gene transcripts and the overall trend of contamination. Thus, the combined impacts from known and unknown covarying chemicals were proposed as the most probable explanation of fish responses. In summary, transcriptional endpoints applied to zebrafish embryo/larval test can provide sensitive, comprehensive, and timeliness information which may greatly enable the assessment of the hazard potential of sediments to fish, complementing morphological endpoints and being potentially predictive of longer studies.
Collapse
Affiliation(s)
- Luigi Viganò
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Nadia Casatta
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Anna Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3, P.O. Box 35, Tihany, H-8237, Hungary
| | - Giuseppe Mascolo
- CNR - National Research Council of Italy, IRSA - Water Research Institute, Via De Blasio 5, 70132, Bari, Italy
| | - Claudio Roscioli
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Fabrizio Stefani
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Matteo Vitelli
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Fabio Olivo
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Laura Clerici
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pasquale Robles
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pierluisa Dellavedova
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| |
Collapse
|
6
|
Yang K, Li Z, Lv Y, Yu C, Wang P, Su X, Wu L, He Y. Graphene and AuNPs based electrochemical aptasensor for ultrasensitive detection of hydroxylated polychlorinated biphenyl. Anal Chim Acta 2018; 1041:94-101. [DOI: 10.1016/j.aca.2018.08.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 01/31/2023]
|
7
|
Petersen K, Hultman MT, Bytingsvik J, Harju M, Evenset A, Tollefsen KE. Characterizing cytotoxic and estrogenic activity of Arctic char tissue extracts in primary Arctic char hepatocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1017-1030. [PMID: 28862540 DOI: 10.1080/15287394.2017.1357277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Contaminants from various anthropogenic activities are detected in the Arctic due to long-range atmospheric transport, ocean currents, and living organisms such as migrating fish or seabirds. Although levels of persistent organic pollutants (POPs) in Arctic fish are generally low, local hot spots of contamination were found in freshwater systems such as Lake Ellasjøen at Bjørnøya (Bear Island, Norway). Higher concentrations of organic halogenated compounds (OHC), and higher levels of cytochrome P450 and DNA-double strand breaks were reported in Arctic char (Salvelinus alpinus) from this lake compared to fish from other lakes on Bjørnøya. Although several of the measured contaminants are potential endocrine disrupters, few studies have investigated potential endocrine disruptive effects of the contaminant cocktail in this fish population. The aim of this study was to compare acutely toxic and estrogenic potency of the cocktail of pollutants as evidenced by cytotoxic and/or estrogenic effects in vitro using extracts of Arctic char livers from contaminated Lake Ellasjøen with those from less contaminated Lake Laksvatn at Bjørnøya. This was performed by in situ sampling and contaminant extraction from liver tissue, followed by chemical analysis and in vitro testing of the following contaminated tissue extracts: F1-nonpolar OHC, F2-polar pesticides and metabolites of OHC, and F3-polar OHC. Contaminant levels were highest in extracts from Ellasjøen fish. The F2 and F3 extracts from Lake Laksvatn and Lake Ellasjøen fish reduced in vitro cell viability at a concentration ratio of 0.03-1 relative to tissue concentration in Arctic char. Only the F3 liver extract from Ellasjøen fish increased in vitro vitellogenin protein expression. Although compounds such as estrogenic OH-PCBs were quantified in Ellasjøen F3 extracts, it remains to be determined which compounds were inducing estrogenic effects.
Collapse
Affiliation(s)
- Karina Petersen
- a Section of Ecotoxicology , Norwegian Institute for Water Research (NIVA) , Oslo , Norway
| | - Maria T Hultman
- a Section of Ecotoxicology , Norwegian Institute for Water Research (NIVA) , Oslo , Norway
| | - Jenny Bytingsvik
- c Department of Arctic R&D , Akvaplan-niva, Fram Centre , Tromsø , Norway
| | - Mikael Harju
- b Environmental Chemistry Department , Norwegian Institute for Air Research (NILU) , Tromsø , Norway
| | - Anita Evenset
- c Department of Arctic R&D , Akvaplan-niva, Fram Centre , Tromsø , Norway
- d Department of Arctic and Marine Biology , UiT the Arctic University of Norway , Tromsø , Norway
| | - Knut Erik Tollefsen
- a Section of Ecotoxicology , Norwegian Institute for Water Research (NIVA) , Oslo , Norway
| |
Collapse
|
8
|
Petersen K, Hultman MT, Tollefsen KE. Primary hepatocytes from Arctic char (Salvelinus alpinus) as a relevant Arctic in vitro model for screening contaminants and environmental extracts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:141-152. [PMID: 28411469 DOI: 10.1016/j.aquatox.2017.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Contaminants find their way to the Arctic through long-range atmospheric transport, transport via ocean currents, and through increased anthropogenic activity. Some of the typical pollutants reaching the Arctic (PAHs, PCBs) are known to induce cytochrome P450 1a (CYP1A) protein expression and ethoxyresorufin-O-deethylase (EROD) activity through the aryl hydrocarbon receptor (AhR). In addition, some endocrine disrupting chemicals (EDCs) such as estrogen mimics (xenoestrogens) have been documented in Arctic areas and they may interfere with natural sexual development and reproduction. In vitro assays that are capable of detecting effects of such pollutants, covering multiple endpoints, are generally based on mammalian or temperate species and there are currently no well-characterized cell-based in vitro assays for effect assessment from Arctic fish species. The present study aimed to develop a high-throughput and multi-endpoint in vitro assay from Arctic char (Salvelinus alpinus) to provide a non-animal (alternative) testing method for an ecologically relevant Arctic species. A method for isolation and exposure of primary hepatocytes from Arctic char for studying the toxic effects and mode of action (MoA) of pollutants was applied and validated. The multi-versatility of the bioassay was assessed by classical biomarker responses such as cell viability (membrane integrity and metabolic activity), phase I detoxification (CYP1A protein expression, EROD activity) and estrogen receptor (ER) mediated vitellogenin (Vtg) protein expression using a selection of model compounds, environmental pollutants and an environmental extract containing a complex mixture of pollutants. Primary hepatocytes from Arctic char were successfully isolated and culture conditions optimized to identify the most optimal assay conditions for covering multiple endpoints. The hepatocytes responded with concentration-dependent responses to all of the model compounds, most of the environmental pollutants and the environmental sample tested. The bioassay response and sensitivity of the hepatocytes from Arctic char differed slightly from closely related salmonid species, thus highlighting the need for developing in vitro assays relevant for Arctic species. The present multi-endpoint in vitro assay offer a highly versatile tool to screen potential effects of pollutants and complex samples relevant for Arctic exposure scenarios.
Collapse
Affiliation(s)
- Karina Petersen
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway.
| | - Maria T Hultman
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
9
|
Agus HH, Sümer S, Erkoç F. Toxicity and molecular effects of di-n-butyl phthalate (DBP) on CYP1A, SOD, and GPx in Cyprinus carpio (common carp). ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:423. [PMID: 26065888 DOI: 10.1007/s10661-015-4622-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Di-n-butyl phthalate (DBP), a widely used plasticizer in the plastic industry, affects regulation of the endocrine system and causes toxicity in animals. In the present study, we evaluated a series of ecotoxicological stress biomarkers in the common carp (Cyprinus carpio) as an experimental model to test for alterations in gene expression at a sublethal concentration of 1 mg/L DBP for 4, 24, and 96 h. In gills, an immediate increase in CYP1A messenger RNA (mRNA) levels was observed within the first 4 h and persisted for 96 h. Protein levels were nearly consistent with mRNA levels. However, a time-dependent inhibition was observed in CYP1A levels in the liver within 96 h. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels increased gradually in liver with exposure time to a maximum level of 11-fold. Varied responses of different tissues were likely due to xenobiotic metabolism of DBP. In conclusion, evaluating the tissue-specific alterations of CYP1A, SOD, and GPx levels can be used as specific and effective biomarkers for ecotoxicological monitoring of DBP pollution. We strongly recommend using molecular tools to ecotoxicologists for aquatic monitoring of newly emerging pollutants.
Collapse
Affiliation(s)
- Hizlan H Agus
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey,
| | | | | |
Collapse
|
10
|
Bello UM, Madekurozwa MC, Groenewald HB, Aire TA, Arukwe A. The effects on steroidogenesis and histopathology of adult male Japanese quails (Coturnix coturnix japonica) testis following pre-pubertal exposure to di(n-butyl) phthalate (DBP). Comp Biochem Physiol C Toxicol Pharmacol 2014; 166:24-33. [PMID: 24983780 DOI: 10.1016/j.cbpc.2014.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 01/14/2023]
Abstract
In the present study, we have investigated the effects of 30-day dietary (pre-pubertal) exposure to different doses (0 (control), 1, 10, 50, 200 and 400 mg/kg bodyweight/day) of di(n-butyl) phthalate (DBP) on Leydig cells of adult male Japanese quails by quantifying the transcript levels for P450 side-chain cleavage (p450scc), P450c17 (CYP17), and 3β- and 17β-hydroxysteroid dehydrogenase (hsd) using quantitative (real-time) polymerase chain reaction (qRT-PCR). In addition, the plasma testosterone levels were analysed using radioimmunoassay (RIA) and testis was examined for evidence of gross pathology and histopathology. Our data showed that pre-pubertal exposure to DBP produced alterations in testicular architecture as evident by poorly developed or mis-shaped testis, and altered spermatogenesis due to tubular degeneration and atrophy of seminiferous tubules especially in the high DBP dose (200 and 400 mg/kg) treated groups. In addition, DBP altered several key enzymes involved in testicular steroidogenesis pathways in an apparent dose-dependent manner. For example, biphasic effects of DBP were observed for P450scc and 3β-hsd mRNA, that were generally increasing at low dose 10 mg/kg, and thereafter, an apparent dose-dependent decrease between 50 and 400mg/kg. The steroidogenic acute regulatory (StAR) protein was at the lowest detectable limits and therefore not quantifiable. These effects did not parallel the non-significant changes observed for plasma testosterone levels. The present data is consistent with previous reports showing that DBP modulates Leydig cell steroidogenesis in several species, with a potential negative effect on reproduction in those avian species that are vulnerable to endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Umar M Bello
- Department of Anatomy and Physiology, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa; Department of Veterinary Anatomy, Ahmadu Bello University, Zaria, Nigeria
| | - Mary-Catherine Madekurozwa
- Department of Anatomy and Physiology, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Herman B Groenewald
- Department of Anatomy and Physiology, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Tom A Aire
- Department of Anatomy and Physiology, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, True Blue, St George's, Grenada
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway.
| |
Collapse
|
11
|
Organochlorine pesticides and antioxidant enzymes are inversely correlated with liver enzyme gene expression in Cyprinus carpio. Toxicol Lett 2014; 230:198-207. [DOI: 10.1016/j.toxlet.2014.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/06/2014] [Accepted: 02/17/2014] [Indexed: 01/12/2023]
|
12
|
Quinete N, Schettgen T, Bertram J, Kraus T. Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11951-11972. [PMID: 24943885 DOI: 10.1007/s11356-014-3136-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
In recent years, attention has been directed to chemicals with possible endocrine-disrupting properties. Polychlorinated biphenyls (PCBs) and their metabolites belong to one group of environmental contaminants that have been shown to interact with the endocrine system in mammals, including humans. Although recent developments have been made in terms of determination of PCB metabolites in blood samples, still limited number of studies have been able to elucidate their profiles and toxicological and health effects in humans. This review aims to evaluate and compare the levels of hydroxylated PCBs (OH-PCBs) and methyl sulfone PCBs (MeSO2-PCBs) in blood and their relationship to parent compounds and also address the potential risks and adverse health effects in humans. Levels of OH-PCBs varied between 0.0002 and 1.6 ng g(-1) w/w in human serum/plasma from the selected literature, correlating well with ∑PCBs. In contrast, ∑OH-PCB/∑PCB ratio in animals did not show a significant correlation, which might suggest that the bioaccumulation plays an even more important role in the concentration of OH-PCBs compared to PCB metabolism. Highest levels of MeSO2-PCBs were reported in marine mammals with high selectivity retention in the liver. Health effects of PCB metabolites included carcinogenicity, reproductive impairment, and developmental neurotoxicity, being more efficiently transferred to the brain and across the placenta from mother to fetus in comparison to the parent PCBs. Based on the lack of knowledge on the occurrence and distribution of lower chlorinated OH-PCBs in humans, further studies to identify and assess the risks associated to human exposure are essential.
Collapse
Affiliation(s)
- Natalia Quinete
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany,
| | | | | | | |
Collapse
|
13
|
Regoli F, Giuliani ME. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. MARINE ENVIRONMENTAL RESEARCH 2014; 93:106-17. [PMID: 23942183 DOI: 10.1016/j.marenvres.2013.07.006] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 05/04/2023]
Abstract
The antioxidant system of marine organisms consists of low molecular weight scavengers and antioxidant enzymes which interact in a sophisticated network. Environmental pollutants can unbalance this system through closely related mechanisms, indirect relationships and cascade effects acting from pre-transcriptional to catalytic levels. Chemically-mediated pathways have the potential to greatly enhance intracellular formation of reactive oxygen species (ROS); at the same time, excessive levels of oxyradicals down-regulate xenobiotics metabolism, with important environmental implications for organisms exposed to chemical mixtures. Interactions between different classes of chemicals, generation of ROS and onset of oxidative stress conditions are partly modulated by changes in levels and functions of redox-sensitive signaling proteins and transcription factors. The Nrf2-Keap1 pathway still remains largely unexplored in marine organisms, despite the elevated degree of identity and similarity with homolog transcripts and proteins from different species. Recent evidences on transcriptional up-regulation of this system are consistent with the capability to provide a prolonged expression of ARE-regulated cytoprotective genes, and to efficiently switch off this mechanism when oxidative pressure decreases. Although gene expression and catalytic activities of antioxidants are often measured as alternative biomarkers in monitoring biological effects of contaminants, conflicting results between molecular and biochemical responses are quite frequent. The links between effects occurring at various intracellular levels can be masked by non-genomic processes affecting mRNA stability and protein turnover, different timing for transcriptional and translational mechanisms, metabolic capability of tissues, post-transcriptional modifications of proteins, bi-phasic responses of antioxidant enzymes and interactions occurring in chemical mixtures. In this respect, caution should be taken in monitoring studies where mRNA levels of antioxidants could represent a snapshot of cell activity at a given time, not an effective endpoint of environmental pollutants.
Collapse
Affiliation(s)
- Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Ranieri Monte d'Ago, Ancona 60100, Italy.
| | - Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Ranieri Monte d'Ago, Ancona 60100, Italy
| |
Collapse
|
14
|
Cao F, Li X, Ye L, Xie Y, Wang X, Shi W, Qian X, Zhu Y, Yu H. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on the aryl hydrocarbon receptor agonistic activity of hydroxylated polychlorinated biphenyls. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:626-635. [PMID: 23850706 DOI: 10.1016/j.etap.2013.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 06/02/2023]
Abstract
The binding interactions between hydroxylated polychlorinated biphenyls (HO-PCBs) and the aryl hydrocarbon receptor (AhR) are suspected of causing toxic effects. To understand the binding mode between HO-PCBs and AhR, and to explore the structural characteristics that influence the AhR agonistic activities of HO-PCBs, the combination of molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular dynamics (MD) simulations was performed. Using molecular docking, the HO-PCBs were docked into the binding pocket of AhR, which was generated by homology modeling. Comparative molecular similarity index analysis (CoMSIA) models were subsequently developed from three different alignment rules. The optimum 3D-QSAR model showed good predictive ability (q(2)=0.583, R(2)=0.913) and good mechanism interpretability. The statistical reliability of the CoMSIA model was also validated. In addition, molecular docking and MD simulations were applied to explore the binding modes between the ligands and AhR. The results obtained from this study may lead to a better understanding of the interaction mechanism between HO-PCBs and AhR.
Collapse
Affiliation(s)
- Fu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Li Ye
- Suzhou NeuPharma Co., Ltd., Suzhou 215123, China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xiangping Qian
- Suzhou NeuPharma Co., Ltd., Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | | | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Castro-Puyana M, Herrero L, González MJ, Gómara B. Rapid and simultaneous determination of polychlorinated biphenyls and their main metabolites (hydroxylated and methyl sulfonyl) by gas chromatography coupled to mass spectrometry: comparison of different ionisation modes. Anal Chim Acta 2013; 787:148-54. [PMID: 23830433 DOI: 10.1016/j.aca.2013.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/23/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Instrumental methods based on gas chromatography coupled to mass spectrometry (GC-MS) have been developed and compared using two different MS ionisation modes, electron impact (EI) and electron capture negative ionisation (ECNI), for the fast, quantitative and simultaneous determination of polychlorinated biphenyls (PCBs) and their main metabolites (hydroxylated PCBs, OH-PCBs, and methyl sulfone PCBs, MeSO2-PCBs). Parameters affecting chromatographic separation and MS detection were evaluated in order to achieve the highest selectivity and sensitivity for both operation modes. The analytical characteristics of the developed methods were studied and compared in terms of linear range, limits of detection (LODs), limits of quantification (LOQs), and instrumental precision (repeatability and intermediate precision). Both ionisation methods showed similar precision, being relative standard deviations (RSD, %) lower than 9% and 14% for repeatability and intermediate precision, respectively. However, better LODs (from 0.01 to 0.14 pg injected for the three families of congeners studied) were achieved using ECNI-MS as ionisation mode. The suitability of the developed method was demonstrated through their application to fish liver oil samples.
Collapse
Affiliation(s)
- M Castro-Puyana
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Souza MS, Hallgren P, Balseiro E, Hansson LA. Low concentrations, potential ecological consequences: synthetic estrogens alter life-history and demographic structures of aquatic invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:237-243. [PMID: 23584603 DOI: 10.1016/j.envpol.2013.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/12/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
Contraceptive drugs are nowadays found in aquatic environments around the globe. Particularly, 17α-ethinylestradiol (EE2) may act even at low concentrations, such as those recorded in natural ecosystems. We evaluated the physiological effects of EE2 on cyclopoids and calanoids, common copepods in both marine and freshwater communities. We used three EE2 concentrations and assessed its impact on activity of different physiological endpoints: Acetylcholinesterase (neurotransmission), Glutathione S-transferase (detoxifying system), and Caspase-3 (apoptosis). While EE2 exerts, distinctive effect on detoxifying and apoptotic systems, no effect on AChE was observed at environmental doses. Our results show that EE2 exposure affects differently copepod physiology endpoints, altering moulting process, adult recruitment in calanoids and calanoid to cyclopoid ratio. The ecological consequences of this underlying physiological process may affect since life history to population and community structures, and this represent a new aspects of this xenobiotic in natural systems.
Collapse
Affiliation(s)
- María Sol Souza
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina.
| | | | | | | |
Collapse
|
17
|
Lu Z, Kania-Korwel I, Lehmler HJ, Wong CS. Stereoselective formation of mono- and dihydroxylated polychlorinated biphenyls by rat cytochrome P450 2B1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12184-92. [PMID: 24060104 PMCID: PMC3870094 DOI: 10.1021/es402838f] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Changes in atropisomer composition of chiral polychlorinated biphenyls (PCBs) and their mono- and dihydroxylated metabolites (OH- and diOH-PCBs) via rat cytochrome P450 2B1 (CYP2B1) mediated biotransformation were investigated in vitro. Rat CYP2B1 could stereoselectively biotransform chiral PCBs to generate meta-OH-PCBs as the major metabolites after 60 min incubations. Nonracemic enantiomer fractions (EFs: concentration ratios of the (+)-atropisomer or the first-eluting atropisomer over the total concentrations of two atropisomers) of 5-OH-PCBs, were 0.17, 0.20, 0.85, 0.77, and 0.41 for incubations with PCBs 91, 95, 132, 136, and 149, respectively. CYP-mediated stereoselective formation of diOH-PCBs from OH-PCBs was observed for the first time. After 60 min stereoselective biotransformation, the EFs of both 4-OH-PCB 95 and 5-OH-PCB 95 changed from racemic (i.e., 0.50) to 0.62 and 0.46, respectively. These transformations generated statistically nonracemic 4,5-diOH-PCB 95, with EFs of 0.53 and 0.58 for 4-OH-PCB 95 and 5-OH-PCB 95 incubations, respectively. Biotransformation of PCBs 91 and 136 also generated 4,5-diOH-PCB 91 and 4,5-diOH-PCB 136, respectively. These in vitro results were consistent with that observed for stereoselective PCB biotransformation by rat liver microsomes and in vivo. Biotransformation interference between two atropisomers of PCB 136 was investigated for the first time in this study. The biotransformation process of (-)-PCB 136 was significantly disrupted by the presence of (+)-PCB 136 but not the other way around. Thus, stereoselective metabolism of chiral PCBs and OH-PCBs by CYPs is a major mechanism for atropisomer composition change of PCBs and their metabolites in the environment, with the degree of composition change dependent, at least in part, on stereoselective interference of atropisomers with each other at the enzyme level.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Izabela Kania-Korwel
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242,United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242,United States
- Corresponding authors: Lehmler--Phone: +1-319-335-4310; Fax: +1-319-335-4290; Wong--Phone: +1-204-786-9335; Fax: +1-204-775-2114;
| | - Charles S. Wong
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Environmental Studies and Sciences and Department of Chemistry, Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
- Corresponding authors: Lehmler--Phone: +1-319-335-4310; Fax: +1-319-335-4290; Wong--Phone: +1-204-786-9335; Fax: +1-204-775-2114;
| |
Collapse
|
18
|
Gómara B, Athanasiadou M, Quintanilla-López JE, González MJ, Bergman A. Polychlorinated biphenyls and their hydroxylated metabolites in placenta from Madrid mothers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:139-147. [PMID: 21698361 DOI: 10.1007/s11356-011-0545-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/07/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Concentrations and congener profiles of polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) in placenta samples from a Madrid population (Spain) are reported. Structure dependent retentions of OH-PCBs are known to occur in both humans and wildlife, making it of interest to assess placental transfer of both parent compounds and their metabolites to the developing foetus. RESULTS The ΣPCB concentrations found in placenta samples were in the range 943-4,331 pg/g fresh weight (f.w.), and their hydroxylated metabolites showed a 20-time lower concentration level (53-261 pg/g f.w.). The PCB profiles were surprisingly dominated by CB-52 and CB-101 accounting for more than 44% of the total PCB concentration. This is indicating a source of exposure that is not yet identified. The OH-PCB profiles were dominated by 4-OH-CB187 and 4-OH-CB146, representing >50% of the ΣOH-PCB concentration of the placenta samples. Statistical analysis of the data revealed strong correlations between the PCB congeners, among some OH-PCBs, and between OH-PCB metabolites with a meta- and para- substitution pattern. Both PCB and OH-PCB concentrations presented homogeneous distribution, what allowed the establishment of a partial least squares model that correlated the concentrations of OH-PCB with those of PCBs in placenta samples. In addition, causal correlations were observed between the concentrations of OH-PCBs and those of their corresponding PCB precursors.
Collapse
Affiliation(s)
- Belén Gómara
- Environmental Chemistry Unit, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Regoli F, Giuliani ME, Benedetti M, Arukwe A. Molecular and biochemical biomarkers in environmental monitoring: a comparison of biotransformation and antioxidant defense systems in multiple tissues. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:56-66. [PMID: 22099345 DOI: 10.1016/j.aquatox.2011.06.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
The cytochrome P450 pathway and antioxidant responses are known for their responsiveness to environmental pollutants and are frequently used as biomarkers at the transcriptional, translational and catalytic levels. Although molecular responses are often assumed to reflect similar changes in enzyme function, several factors can influence intracellular effects, including mRNA stability and protein turnover, signal sensing and transduction, post-translational modifications of proteins, and multiple mode of action of chemicals in complex mixtures. The aim of this study was to use experimental data for a general discussion on the importance of mechanisms modulating transcriptional and catalytic responses of these pathways, and the resulting implications for environmental monitoring. The European eel Anguilla anguilla was selected as fish model to compare the effects of polluted sediments on gene expression and functional levels of cytochrome P450, glutathione S-transferases, UDP-glucoronosyl transferases, catalase, glutathione peroxidases, superoxide dismutase, glutathione, glutathione reductase, glucose 6-phosphate dehydrogenase and γ-glutamylcysteine ligase in the liver and gills. The overall results confirmed significant changes in gene transcription related to biotransformation and oxyradical metabolism, but also supported the evidence of a frequent dissociation between mRNA expression and protein activity. More similar trends of variations and exposure-dependent relationships was observed in the liver for transcriptional and catalytic responses of those pathways closely regulated by specific interactions between substrate, transcription factors, gene and metabolizing protein (i.e. phase I and phase II). On the other hand, the lower metabolism and the cellular machinery of gill cells may prevent elevated transcriptional responsiveness to be translated to an adequate functional response of a protein. Relationships between transcriptional and catalytic effects were often inconsistent for antioxidant responses confirming the complexity of interactions between exposure to chemical pollutants and regulation of oxidative stress responses. Oxidative stress responses may not necessarily be associated with transcriptional variations of genes, but rather with post-translational modifications of proteins. These mechanisms are just beginning to be revealed in marine organisms, but their characterization will be fundamental for better understanding of the implications of variations in gene expressions according to system, tissue, intensity and duration of exposure.
Collapse
Affiliation(s)
- Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | |
Collapse
|
20
|
Characterization and optimization by experimental design of a liquid chromatographic method for the separation of hydroxylated polychlorinated biphenyls on a polar-embedded stationary phase. J Chromatogr A 2010; 1217:7231-41. [DOI: 10.1016/j.chroma.2010.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022]
|
21
|
Gasnier C, Benachour N, Clair E, Travert C, Langlois F, Laurant C, Decroix-Laporte C, Séralini GE. Dig1 protects against cell death provoked by glyphosate-based herbicides in human liver cell lines. J Occup Med Toxicol 2010; 5:29. [PMID: 20979644 PMCID: PMC2987375 DOI: 10.1186/1745-6673-5-29] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/27/2010] [Indexed: 11/10/2022] Open
Abstract
Background Worldwide used pesticides containing different adjuvants like Roundup formulations, which are glyphosate-based herbicides, can provoke some in vivo toxicity and in human cells. These pesticides are commonly found in the environment, surface waters and as food residues of Roundup tolerant genetically modified plants. In order to know their effects on cells from liver, a major detoxification organ, we have studied their mechanism of action and possible protection by precise medicinal plant extracts called Dig1. Methods The cytotoxicity pathways of four formulations of glyphosate-based herbicides were studied using human hepatic cell lines HepG2 and Hep3B, known models to study xenobiotic effects. We monitored mitochondrial succinate dehydrogenase activity and caspases 3/7 for cell mortality and protection by Dig1, as well as cytochromes P450 1A1, 1A2, 3A4 and 2C9 and glutathione-S-transferase to approach the mechanism of actions. Results All the four Roundup formulations provoke liver cell death, with adjuvants having stronger effects than glyphosate alone. Hep3B are 3-5 times more sensitive over 48 h. Caspases 3/7 are greatly activated in HepG2 by Roundup at non-cytotoxic levels, and some apoptosis induction by Roundup is possible together with necrosis. CYP3A4 is specifically enhanced by Roundup at doses 400 times less than used in agriculture (2%). CYP1A2 is increased to a lesser extent together with glutathione-S-transferase (GST) down-regulation. Dig 1, non cytotoxic and not inducing caspases by itself, is able to prevent Roundup-induced cell death in a time-dependant manner with an important efficiency of up to 89%, within 48 h. In addition, we evidenced that it prevents Caspases 3/7 activation and CYP3A4 enhancement, and not GST reduction, but in turn it slightly inhibited CYP2C9 when added before Roundup. Conclusion Roundup is able to provoke intracellular disruption in hepatic cell lines at different levels, but a mixture of medicinal plant extracts Dig1 can protect to some extent human cell lines against this pollutants. All this system constitutes a tool for studying liver intoxication and detoxification.
Collapse
Affiliation(s)
- Céline Gasnier
- Laboratory of Biochemistry EA2608, Institute of Biology, University of Caen, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Browne E, Kelley M, Zhou GD, He LY, McDonald T, Wang S, Duncan B, Meador J, Donnelly K, Gallagher E. In situ biomonitoring of juvenile Chinook salmon (Onchorhynchus tshawytscha) using biomarkers of chemical exposures and effects in a partially remediated urbanized waterway of the Puget Sound, WA. ENVIRONMENTAL RESEARCH 2010; 110:675-83. [PMID: 20619832 PMCID: PMC3321373 DOI: 10.1016/j.envres.2010.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 06/04/2010] [Accepted: 06/15/2010] [Indexed: 05/09/2023]
Abstract
In situ biomonitoring has been used to assess the effects of pollution on aquatic species in heavily polluted waterways. In the current study, we used in situ biomonitoring in conjunction with molecular biomarker analysis to determine the effects of pollutant exposure in salmon caged in the Duwamish waterway, a Pacific Northwest Superfund site that has been subject to remediation. The Duwamish waterway is an important migratory route for Pacific salmon and has received historic inputs of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Juvenile pre-smolt Chinook salmon (Oncorhynchus tshawytscha) caged for 8 days in the three contaminated sites in close proximity within the Duwamish were analyzed for steady state hepatic mRNA expression of 7 exposure biomarker genes encompassing several gene families and known to be responsive to pollutants, including cytochrome P4501A (CYP1A) and CYP2K1, glutathione S-transferase pi class (GST-pi), microsomal GST (mGST), glutamylcysteine ligase catalytic subunit (GCLC), UDP-glucuronyltransferase family 1 (UDPGT), and type 2 deiodinase (type 2 DI, or D2). Quantitation of gene expression was accomplished by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in assays developed specifically for Chinook salmon genes. Gill PAH-DNA adducts were assessed as a chemical effects biomarker using (32)P-postlabeling. The biomarkers in the field-caged fish were analyzed with respect to caged animals maintained at the hatchery receiving flow-through water. Chemical analysis of sediment samples from three field sampling sites revealed relatively high concentrations of total PAHs in one site (site B2, 6711ng/g dry weight) and somewhat lower concentrations of PAHs in two adjacent sites (sites B3 and B4, 1482 and 1987ng/g, respectively). In contrast, waterborne PAHs at all of the sampling sites were relatively low (<1ng/L). Sediment PCBs at the sites ranged from a low of 421ng/g at site B3 to 1160ng/g at site B4, and there were no detectable waterborne PCBs at any of the sites (detection limit=10ng/L). There were no significant differences (p<0.05) in biomarker gene expression in the Duwamish-caged fish relative to controls, although there was a pattern of gene expression suppression at site B3, the most heavily PAH-enriched site. The lack of a marked perturbation of mRNA biomarkers was consistent with relatively low levels of gill PAH-DNA adduct levels that did not differ among caged reference and field fish, and which were also consistent with relatively low waterborne concentrations of chemicals. The results of our study suggest a low bioavailability of sediment pollutants in caged juvenile Chinook potentially reflecting low waterborne exposures occurring at contaminated sites within the Duwamish waterway that have undergone partial remediation.
Collapse
Affiliation(s)
- Eva Browne
- Department of Environmental and Occupational Health Sciences, University of Washington Seattle WA 98105-6099
| | - Matthew Kelley
- Department of Environmental and Occupational Health, Texas A & M Health Science Center, College Station TX 77843-1266
| | - Guo-Dong Zhou
- Department of Environmental and Occupational Health, Texas A & M Health Science Center, College Station TX 77843-1266
| | - Ling Yu He
- Department of Environmental and Occupational Health, Texas A & M Health Science Center, College Station TX 77843-1266
| | - Thomas McDonald
- Department of Environmental and Occupational Health, Texas A & M Health Science Center, College Station TX 77843-1266
| | - Shirley Wang
- Department of Environmental and Occupational Health, Texas A & M Health Science Center, College Station TX 77843-1266
| | - Bruce Duncan
- US Environmental Protection Agency, Region 10, 1200 Sixth Avenue, Seattle, WA 98101
| | - James Meador
- Ecotoxicology Division, National Marine Fisheries Service, Seattle, Washington, 98105
| | - Kirby Donnelly
- Department of Environmental and Occupational Health, Texas A & M Health Science Center, College Station TX 77843-1266
| | - Evan Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington Seattle WA 98105-6099
- Address correspondence to: Department of Environmental and Occupational Health Sciences 4225 Roosevelt Way Northeast, Suite 100 Seattle, Washington, 98105 – 6099 Telephone: 206 616 4739 Fax: 206 685 4696
| |
Collapse
|
23
|
Zhai G, Lehmler HJ, Schnoor JL. Identification of hydroxylated metabolites of 3,3',4,4'-tetrachlorobiphenyl and metabolic pathway in whole poplar plants. CHEMOSPHERE 2010; 81:523-8. [PMID: 20708213 PMCID: PMC2943055 DOI: 10.1016/j.chemosphere.2010.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 06/18/2010] [Accepted: 07/18/2010] [Indexed: 05/02/2023]
Abstract
Polychlorinated biphenyls (PCBs) can be metabolized to hydroxylated polychlorinated biphenyls (OH-PCBs) as reported in a number of animal studies. However, there are few studies on OH-PCBs in vivo in whole plants. In order to explore the formation of OH-PCBs in whole plants in detail, poplars (Populus deltoides×nigra, DN34) were exposed to 3,3',4,4'-tetrachlorobiphenyl (CB77) in hydroponic solution. Poplars are widely used in phytoremediation applications and the complete genome has been sequenced. In this research, a HPLC-MS method was developed to directly determine the hydroxylated metabolites of CB77 (OH-CB77s), avoiding the experimental errors introduced by derivatization pretreatments required by gas chromatography-based methods. Three potential hydroxylated metabolites of CB77, including 6-hydroxy-3,3',4,4'-tetrachlorobiphenyl (6OH-CB77), 5-hydroxy-3,3',4,4'-tetrachlorobiphenyl (5OH-CB77) and 4'-hydroxy-3,3',4,5'-tetrachlorobiphenyl (4'OH-CB79), were determined in poplar tissues. The major product, 6OH-CB77, was detected in the roots, bottom bark, bottom wood, middle bark and middle wood for the whole poplar plants, but the minor product, 5OH-CB77, was detected only in the poplar roots. The concentration of 6OH-CB77 was about 10 times greater than that of 5OH-CB77 in the roots. However, the major mammalian metabolite, 4'OH-CB79 was not detected in any of the samples. The results suggest that the hydroxylated metabolic pathway of CB77 is via an epoxide intermediate in poplar.
Collapse
Affiliation(s)
- Guangshu Zhai
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, 52242, USA
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, 52242, USA
- Corresponding author: Tel: +1 319 335 5649; Fax: +1 319 335 5660
| |
Collapse
|
24
|
Braathen M, Mortensen AS, Sandvik M, Skåre JU, Arukwe A. Estrogenic effects of selected hydroxy polychlorinated biphenyl congeners in primary culture of Atlantic Salmon (Salmo salar) hepatocytes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:111-122. [PMID: 18414928 DOI: 10.1007/s00244-008-9163-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/03/2008] [Indexed: 05/26/2023]
Abstract
Many persistent organic pollutants are known to have endocrine-disrupting effects in several aquatic and terrestrial species. In this regard, hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) represent serious health and environmental concern because they are shown to act agonistic or antagonistic at hormone receptors (HRs) or to cause hormone-receptor-mediated responses. In the present study, salmon primary hepatocytes were used to study alterations in an estrogen signaling pathway resulting from exposure to four hydroxylated (4OH-CB 107, 4OH-CB146, 4OH-CB187, and 3OH-CB138) metabolites of PCB at different concentrations using quantitative real-time polymerase chain reaction. The effects of the PCB metabolites were compared to the mRNA expression in 17alpha-ethynylestradiol (EE2)-treated cells. Concentration-specific increase of vitellogenin (Vtg) mRNA transcription after exposure to OH-PCBs was observed. Decreased mRNA transcription was observed for zona radiata protein (Zr-protein) and cytochrome P450 side-chain cleavage (P450scc) enzyme. For estrogen receptor beta (ERbeta), the mRNA expression pattern was OH-PCB-metabolite congener-specific. A novel aspect of this study is that OH-PCBs produced effects on hepatic steroidogenic pathways by targeting the StAR protein and P450scc genes. Given that endocrine toxicology research mainly has focused on estrogenicity involving direct ER-mediated effects and that steroidogenic enzyme and proteins are highly tissue- and cell-type-specific and controlled by different promoters and second-messenger pathways, the present findings provide potential new targets for interaction with xenobiotics such as hydroxylated congeners of certain chemicals. The quantitative expression patterns of hepatic and extrahepatic steroidogenic genes and proteins after exposure to environmental contaminants are the subject of systematic investigations in our laboratory.
Collapse
|
25
|
Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem Toxicol 2008; 46:813-41. [DOI: 10.1016/j.fct.2007.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/25/2007] [Accepted: 12/03/2007] [Indexed: 01/16/2023]
|
26
|
Rempel MA, Schlenk D. Effects of Environmental Estrogens and Antiandrogens on Endocrine Function, Gene Regulation, and Health in Fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:207-52. [DOI: 10.1016/s1937-6448(08)00605-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|