1
|
Singh R, Ryu J, Hyoung Lee W, Kang JH, Park S, Kim K. Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. Crit Rev Biotechnol 2025; 45:413-433. [PMID: 38973015 DOI: 10.1080/07388551.2024.2354709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/03/2024] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central FL, Orlando, FL, USA
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sanghwa Park
- Bacteria Research Team, Freshwater Bacteria Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, South Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| |
Collapse
|
2
|
Ma Z, Meliana C, Munawaroh HSH, Karaman C, Karimi-Maleh H, Low SS, Show PL. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. CHEMOSPHERE 2022; 306:135515. [PMID: 35772520 DOI: 10.1016/j.chemosphere.2022.135515] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial biosensor which integrates different types of microorganisms, such as bacteria, microalgae, fungi, and virus have become suitable technologies to address limitations of conventional analytical methods. The main applications of biosensors include the detection of environmental pollutants, pathogenic bacteria and compounds related to illness, and food quality. Each type of microorganisms possesses advantages and disadvantages with different mechanisms to detect the analytes of interest. Furthermore, there is an increasing trend in genetic modifications for the development of microbial biosensors due to potential for high-throughput analysis and portability. Many review articles have discussed the applications of microbial biosensor, but many of them focusing only about bacterial-based biosensor although other microbes also possess many advantages. Additionally, reviews on the applications of all microbes as biosensor especially viral and microbial fuel cell biosensors are also still limited. Therefore, this review summarizes all the current applications of bacterial-, microalgal-, fungal-, viral-based biosensor in regard to environmental, food, and medical-related applications. The underlying mechanism of each microbes to detect the analytes are also discussed. Additionally, microbial fuel cell biosensors which have great potential in the future are also discussed. Although many advantageous microbial-based biosensors have been discovered, other areas such as forensic detection, early detection of bacteria or virus species that can lead to pandemics, and others still need further investigation. With that said, microbial-based biosensors have promising potential for vast applications where the biosensing performance of various microorganisms are presented in this review along with future perspectives to resolve problems related on microbial biosensors.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Catarina Meliana
- Department of Food Science and Nutrition, Faculty of Life Science, Indonesia International Institute of Life Sciences, Jakarta, 13210, Indonesia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Wasito H, Fatoni A, Hermawan D, Susilowati SS. Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:205-209. [PMID: 30529914 DOI: 10.1016/j.ecoenv.2018.11.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The use of biosensors by using microorganisms such as bacteria have short life cycles and provide other advantages. One colorimetric biosensor technique that has been developed is the use of a biosensor utilizing the incorporation of Prussian blue formation reactions mediated by E. coli bioreactors with ferricyanide. Immobilization is a method that allows the bacteria can be used for long-term without reducing its ability as bioreceptor. This study aimed to develop a novel and rapid immobilized bacterial biosensor for the detection of toxic compound in water and to evaluate their analytical performances. Immobilization of E. coli performed by trapping method using alginate material support. The bacterial suspension was mixed with sodium alginate (1:1 v/v), and the mixture was continuously dropped in CaCl2 solution to be a form of beads. The beads were used as bioreceptor to detect toxicants regarding cadmium, arsenic, mercury, chromium and lead solutions with Prussian blue as a colorimetric indicator. The linearity and sensitivity of detection of beads to the toxicants were tested, the stability of repeated use and storage were evaluated as well. The results showed that E. coli could be immobilized using alginate with response value was correlated with toxic concentration. The developed biosensor was more stable when used repeatedly and could be stored in a long time. The immobilization of E. coli in calcium alginate bead was successfully performed as a biosensor system for monitoring acute toxicity in water.
Collapse
Affiliation(s)
- Hendri Wasito
- Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto 53123, Indonesia; Biosensory Technology Division, Center for Maritime Biosciences Studies, Jenderal Soedirman University, Purwokerto 53123, Indonesia.
| | - Amin Fatoni
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Jenderal Soedirman University, Purwokerto 53123, Indonesia; Biosensory Technology Division, Center for Maritime Biosciences Studies, Jenderal Soedirman University, Purwokerto 53123, Indonesia
| | - Dadan Hermawan
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Jenderal Soedirman University, Purwokerto 53123, Indonesia
| | - Sri Sutji Susilowati
- Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto 53123, Indonesia
| |
Collapse
|
4
|
Bilal M, Iqbal HM. Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2019. [DOI: 10.1016/j.psep.2019.01.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Ray S, Panjikar S, Anand R. Design of Protein-Based Biosensors for Selective Detection of Benzene Groups of Pollutants. ACS Sens 2018; 3:1632-1638. [PMID: 30084640 DOI: 10.1021/acssensors.8b00190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzene and its derivatives form a class of priority pollutants whose exposure poses grave risk to human health. Since benzene lacks active functional groups, devising specific sensors for its direct detection from a milieu of aromatics has remained a daunting task. Here, we report three engineered protein-based biosensors that exclusively and specifically detect benzene and its derivatives up to a detection limit of 0.3 ppm. Further, the biosensor design has been engineered to create templates that possess the ability to specifically discriminate between alkyl substituted benzene derivatives; such as toluene, m-xylene, and mesitylene. Interference tests with simulated wastewater samples reveal that the engineered biosensors can selectively detect a specific benzene compound in water samples containing a milieu of high concentrations of commonly occurring pollutants. This work demonstrates the potential of structure guided protein engineering as a competent strategy toward design of selective biosensors for direct detection of benzene group of pollutants from real time environmental samples.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra India
| | - Santosh Panjikar
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
- Australian Synchrotron, Victoria 3168, Australia
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra India
- Wadhwani Research Center for Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
6
|
Nakamura H. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development. Anal Bioanal Chem 2018; 410:3967-3989. [PMID: 29736704 DOI: 10.1007/s00216-018-1080-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.
Collapse
Affiliation(s)
- Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
7
|
Cheng F, Gong Q, Yu H, Stephanopoulos G. High-titer biosynthesis of hyaluronic acid by recombinantCorynebacterium glutamicum. Biotechnol J 2016; 11:574-84. [DOI: 10.1002/biot.201500404] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/09/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Fangyu Cheng
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University; Beijing China
| | - Qianying Gong
- College of Life Science and Technology, Beijing University of Chemical Technology; Beijing China
| | - Huimin Yu
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University; Beijing China
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge MA USA
| |
Collapse
|
8
|
Lim JW, Ha D, Lee J, Lee SK, Kim T. Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 2015; 3:61. [PMID: 26029689 PMCID: PMC4426784 DOI: 10.3389/fbioe.2015.00061] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 01/28/2023] Open
Abstract
A microbial biosensor is an analytical device with a biologically integrated transducer that generates a measurable signal indicating the analyte concentration. This method is ideally suited for the analysis of extracellular chemicals and the environment, and for metabolic sensory regulation. Although microbial biosensors show promise for application in various detection fields, some limitations still remain such as poor selectivity, low sensitivity, and impractical portability. To overcome such limitations, microbial biosensors have been integrated with many recently developed micro/nanotechnologies and applied to a wide range of detection purposes. This review article discusses micro/nanotechnologies that have been integrated with microbial biosensors and summarizes recent advances and the applications achieved through such novel integration. Future perspectives on the combination of micro/nanotechnologies and microbial biosensors will be discussed, and the necessary developments and improvements will be strategically deliberated.
Collapse
Affiliation(s)
- Ji Won Lim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Dogyeong Ha
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jongwan Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Sung Kuk Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Taesung Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
9
|
Justino CI, Freitas AC, Pereira R, Duarte AC, Rocha Santos TA. Recent developments in recognition elements for chemical sensors and biosensors. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Rocaboy-Faquet E, Noguer T, Romdhane S, Bertrand C, Dayan FE, Barthelmebs L. Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Appl Microbiol Biotechnol 2014; 98:7243-52. [PMID: 24816780 DOI: 10.1007/s00253-014-5793-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of a range of synthetic β-triketone herbicides that are currently used commercially. Their mode of action is based on an irreversible inhibition of HPPD. Therefore, this inhibitory capacity was used to develop a whole-cell colorimetric bioassay with a recombinant Escherichia coli expressing a plant HPPD for the herbicide analysis of β-triketones. The principle of the bioassay is based on the ability of the recombinant E. coli clone to produce a soluble melanin-like pigment, from tyrosine catabolism through p-hydroxyphenylpyruvate and homogentisate. The addition of sulcotrione, a HPPD inhibitor, decreased the pigment production. With the aim to optimize the assay, the E. coli recombinant clone was immobilized in sol-gel or agarose matrix in a 96-well microplate format. The limit of detection for mesotrione, tembotrione, sulcotrione, and leptospermone was 0.069, 0.051, 0.038, and 20 μM, respectively, allowing to validate the whole-cell colorimetric bioassay as a simple and cost-effective alternative tool for laboratory use. The bioassay results from sulcotrione-spiked soil samples were confirmed with high-performance liquid chromatography.
Collapse
Affiliation(s)
- Emilie Rocaboy-Faquet
- Institut de Modélisation et d'Analyse en Géo-Environnement et Santé, Université Perpignan Via Domitia, EA 4218, 66860, Perpignan, France
| | | | | | | | | | | |
Collapse
|