1
|
Liu S, Liu X, Shi Y, Zhuang S, Chen Q. RETRACTED: The adaptive mechanism of halophilic Brachybacterium muris in response to salt stress and its mitigation of copper toxicity in hydroponic plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120124. [PMID: 36089137 DOI: 10.1016/j.envpol.2022.120124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors who have indicated that there are significant errors with the scientific data upon which this study is based. Specifically, the authors have subsequently discovered that the 16S rDNA sequencing of Brachybacterium muris may not be reliable because of the limited identification methods from a few years ago. The authors are now repeating their experiments to reconfirm their data. The Authors take full responsibility for these errors and offer their sincere apologies.
Collapse
Affiliation(s)
- Siyu Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiayu Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ying Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 310000, China.
| |
Collapse
|
2
|
Chen L, Cheng Q, Zhang X, Zhu M, Hartley W, Zhu F. Novel Plant Growth-Promoting Bacteria Isolated from Bauxite Residue: The Application for Revegetation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:3-12. [PMID: 35067726 DOI: 10.1007/s00128-021-03433-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Microbial inoculation with appropriate inorganic-organic amendments is a promising strategy for ecological rehabilitation at bauxite residue disposal areas. Nevertheless, research on screening suitable plant growth-promoting bacteria with tolerance to highly sodic-alkalinity is very limited in the literature. In this study, novel plant growth-promoting bacteria isolated from bauxite residue were used to investigate their potential for revegetation. Under high saline-alkalinity stress, inoculation of Z18 and Z28 increased the activity of antioxidative enzymes, whilst improving chlorophyll and carotenoid contents in ryegrass. Inoculation of the selected strains greatly reduced damage to organelles in ryegrass as observed by transmission electron microscopy. Based on 90-day soil incubation, inoculated strains improved physicochemical properties of bauxite residue and improved plant growth. These findings suggest that Z18 and Z28 may be selected as potential strains for vegetation establishment, aiding microbial remediation at bauxite disposal areas.
Collapse
Affiliation(s)
- Li Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Qingyu Cheng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xianchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Mingxing Zhu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - William Hartley
- Agriculture and Environment Department, Harper Adams University, Newport, TF10 8NB, Shropshire, UK
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| |
Collapse
|
3
|
Solá MZS, Prado C, Rosa M, Aráoz MVC, Benimeli CS, Polti MA, Alvarez A. Assessment of the Streptomyces-plant system to mitigate the impact of Cr(VI) and lindane in experimental soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51217-51231. [PMID: 33982258 DOI: 10.1007/s11356-021-14295-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Phytoremediation techniques have been proposed as ecological methods to clean up contaminated sites. This study is aimed to evaluate the effect of the Streptomyces sp. Waksman & Henrici and Zea mays L. plant system on the dissipation of Cr(VI) and/or lindane from a co-contaminated soil, being 2 mg kg-1 of lindane and 150 mg kg-1 of chromium used. Lindane dissipation was improved in the presence of plant-microorganism association; however, Cr(VI) removal was higher when plants or the microorganism were separately. In co-contaminated systems, chromium content in plant tissues was lower than metal content in plants grown only with Cr(VI), suggesting that lindane could interfere with metal accumulation in the plant. The high malondialdehyde (MDA) concentration detected in non-inoculated plants grown with chromium could be consequence of high metal concentration in plant tissues. Interestingly, plants inoculated with Streptomyces sp. Z38 growing with Cr(VI) showed decrease in MDA concentration, indicating that the bacterium could activate defense mechanisms in the plant. Also, inoculated plants showed the highest value of superoxide dismutase activity. Lettuce plants used as bioindicators grew better in biologically treated soils compared with lettuce grown on non-treated soil. The results presented in this work provide the basis that will allow the optimization of future trials on a larger scale.
Collapse
Affiliation(s)
- María Zoleica Simón Solá
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Carolina Prado
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, Miguel Lillo 205, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Mariana Rosa
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, Miguel Lillo 205, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - María Victoria Coll Aráoz
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
4
|
Yue Z, Chen Y, Chen C, Ma K, Tian E, Wang Y, Liu H, Sun Z. Endophytic Bacillus altitudinis WR10 alleviates Cu toxicity in wheat by augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124272. [PMID: 33097348 DOI: 10.1016/j.jhazmat.2020.124272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Soil copper (Cu) pollution severely stunts crops growth and limits sustainable agri-food production. Many microbes are widely used for remediation of polluted soil, including Cu pollution. In this study, the potential of an endophytic Bacillus altitudinis WR10 to protect wheat from Cu stress and the molecular mechanisms were investigated using hydroponic model. The Cu resistance assay showed B. altitudinis WR10 can resist up to 2 mM Cu and remove about 74% Cu in medium after 24 h of fermentation. Co-culture study demonstrated WR10 increased roots length and dry weight in wheat seedlings under 50 μM Cu. These results indicated that WR10 was a Cu-resistant strain and reduced Cu toxicity in wheat. Transcriptome data and biochemical tests of wheat roots indicated that WR10 alleviated Cu toxicity through enhancing peroxidases (PODs) gene expression and activity to remove excess hydrogen peroxide (H2O2) and down-regulating glutathione S-transferases (GSTs) to increase glutathione (GSH) level. Moreover, enrichment and pathway analysis indicated WR10 regulated the expression of genes involved in phenylpropanoid biosynthesis, which may improve phenolic acids accumulation for protecting plant cells from Cu toxicity. Overall, this study revealed that B. altitudinis WR10 alleviated Cu toxicity in wheat via augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yanjuan Chen
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Can Chen
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Keshi Ma
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Erli Tian
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Ying Wang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Hongzhan Liu
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhongke Sun
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
5
|
Zeng X, Pang L, Chen Y, Kong X, Chen J, Tian X. Bacteria Sphingobium yanoikuyae Sy310 enhances accumulation capacity and tolerance of cadmium in Salix matsudana Koidz roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19764-19773. [PMID: 32222921 DOI: 10.1007/s11356-020-08474-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/16/2020] [Indexed: 05/22/2023]
Abstract
Phytoremediation assisted by plant growth-promoting bacteria (PGPB) is considered an effective strategy for cadmium (Cd) removal in contaminated sites. This study uses a hydroponic experiment to investigate how Sphingobium yanoikuyae Sy310 affects Cd accumulation capacity and tolerance of Salix matsudana Koidz (S. matsudana) roots. The results showed that Cd induced growth change and physiological response on S. matsudana roots, displaying with reduced root length, increased antioxidant enzyme activities, and most importantly, enhanced cell wall polysaccharide contents. The Sy310 inoculation enhanced Cd accumulation in roots and alleviated the Cd toxic effects by regulating root growth, antioxidant enzyme system, and cell wall polysaccharide remodeling. Under Cd stress, Sy310 significantly induced increased root length and biomass, as well as higher root IAA level and Cd retention in cell walls. The Sy310 inoculation enhanced root pectin and hemicellulose 1 content, and pectin methylesterase activity, indicating that more amount of -COOH and -OH in cell walls for binding Cd. With Sy310-regulated extensive Cd regional sequestration in root cell walls and enhanced catalase activity, the root H2O2 and malondialdehyde content decreased, which contributes to improve Cd tolerance of S. matsudana roots. Furthermore, the Sy310 inoculation did not affect root cell wall structure and oxidative stress in the absence of Cd, representing a well-symbiotic relationship between Sy310 and S. matsudana. Therefore, Sy310 plays an important role in expediting the phytoremediation process of Cd with S. matsudana and has practical application potential.
Collapse
Affiliation(s)
- Xiaoyi Zeng
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Lu Pang
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Yunru Chen
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Xiangshi Kong
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Junxiu Chen
- School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
6
|
Rizvi A, Zaidi A, Ameen F, Ahmed B, AlKahtani MDF, Khan MS. Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Adv 2020; 10:38379-38403. [PMID: 35693041 PMCID: PMC9121104 DOI: 10.1039/d0ra05610c] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
Among many soil problems, heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. Due to these problems, soil biologists/agronomists in recent times have also raised concerns over heavy metal pollution, which indeed are unpleasantly affecting agro-ecosystems and crop production. The toxic heavy metals once deposited beyond certain permissible limits, obnoxiously affect the density, composition and physiological activities of microbiota, dynamics and fertility of soil leading eventually to reduction in wheat production and via food chain, human and animal health. Therefore, the metal induced phytotoxicity problems warrant urgent and immediate attention so that the physiological activities of microbes, nutrient pool of soils and concurrently the production of wheat are preserved and maintained in a constantly deteriorating environment. To mitigate the magnitude of metal induced changes, certain microorganisms have been identified, especially those belonging to the plant growth promoting rhizobacteria (PGPR) group endowed with the distinctive property of heavy metal tolerance and exhibiting unique plant growth promoting potentials. When applied, such metal-tolerant PGPR have shown variable positive impact on wheat production, even in soils contaminated with metals, by supplying macro and micro nutrients and secreting active biomolecules like EPS, melanins and metallothionein (MTs). Despite some reports here and there, the phytotoxicity of metals to wheat and how wheat production in metal-stressed soil can be enhanced is poorly explained. Thus, an attempt is made in this review to better understand the mechanistic basis of metal toxicity to wheat, and how such phytotoxicity can be mitigated by incorporating microbiological remediation strategies in wheat cultivation practices. The information provided here is likely to benefit wheat growers and consequently optimize wheat production inexpensively under stressed soils. Among many soil problems, heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety.![]()
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Almas Zaidi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Fuad Ameen
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Bilal Ahmed
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Muneera D. F. AlKahtani
- Department of Biology
- College of Science
- Princess Nourah Bint Abdulrahman University
- Riyadh
- Saudi Arabia
| | - Mohd. Saghir Khan
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
7
|
Anam GB, Reddy MS, Ahn YH. Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:462-469. [PMID: 30695746 DOI: 10.1016/j.scitotenv.2019.01.279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Red mud (RM) is a highly alkaline, saline and sodic solid by-product released by alumina industries, which pose an economical and environmental problem and establishment of vegetation on these sites is a big challenge. In the present study, a fungus RM-28 exhibiting high tolerance to alkaline (pH 12), saline/sodic (NaCl 4%) was isolated from RM flooded rhizosphere soil of bermudagrass and tested its ability to reduce RM toxicity and promote the growth of sorghum-sudangrass seedlings. This fungus also exhibited high tolerance to heavy metal(loid)s (HMs) and desirable plant growth-promoting traits. This fungus was identified as Trichoderma asperellum based on its internal transcribed spacer (ITS) of rDNA and translation elongation factor-1α (TEF 1α) gene analysis. This fungus was effective in reducing the pH and solubilizing tricalcium phosphate under high alkaline and saline conditions in vitro. Further, RM-28 inoculation significantly lowered the pH and EC of the red mud from 11.8 to 8.2 and 2.23 to 1.42, respectively. Inoculation of RM-28 significantly improved the growth, chlorophyll content and reduced the oxidative stress of sorghum-sudangrass seedlings grown in red mud leachate. These observations suggest that T. asperellum RM-28 serves as potential source for the establishment of vegetation on red mud/red mud contaminated soils.
Collapse
Affiliation(s)
- Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
8
|
Rizvi A, Ahmed B, Zaidi A, Khan MS. Heavy metal mediated phytotoxic impact on winter wheat: oxidative stress and microbial management of toxicity by Bacillus subtilis BM2. RSC Adv 2019; 9:6125-6142. [PMID: 35517307 PMCID: PMC9060871 DOI: 10.1039/c9ra00333a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
Heavy metals are toxic environmental contaminants, which severely affect microbial composition and functions and, concurrently, crop production. Due to these issues, the present study focussed on the selection of metal tolerant microbes endowed with metal detoxification abilities and their role in the management and remediation of metal contaminated soils. The metal tolerant bacterium BM2, identified as Bacillus subtilis by 16SrRNA gene sequencing, survived well under metal pressure and tolerated 1600 and 2000 μg mL-1 of Ni and Pb, respectively. The inhibitory impact of metals on wheat increased consistently with a progressive increase in metal concentration. Deposition of Ni and Pb within root and leaf and oxidative stress were validated by SEM, EDX and CLSM. The overall growth parameters of wheat grown under metal stress were improved following B. subtilis BM2 colonization. As an example, B. subtilis with 195 mg Pb kg-1 enhanced the length and dry biomass of shoots by 14% and 23%, respectively, over the control. Also, strain BM2 improved the grain yield significantly by 49% at 870 mg Ni kg-1 and by 50% at 585 mg Pb kg-1 compared to uninoculated plants. Moreover, B. subtilis BM2 relieved the metal stress on wheat and caused a significant drop in proline and malondialdehyde content and the activities of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR). This study, therefore, provided solutions to the metal toxicity problems faced by winter wheat and clearly suggests that the metal detoxification potential of B. subtilis BM2 could be greatly useful in the management of metal polluted soils.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Bilal Ahmed
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Almas Zaidi
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| |
Collapse
|
9
|
Rizvi A, Khan MS. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:9-20. [PMID: 29605647 DOI: 10.1016/j.ecoenv.2018.03.063] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/12/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Heavy metals are one of the major abiotic stresses that adversely affect the quantity and nutritive value of maize. Microbial management involving the use of plant growth promoting rhizobacteria (PGPR) is a promising inexpensive strategy for metal clean up from polluted soils. Considering these, metal tolerant plant growth promoting nitrogen fixing rhizobacterial strain CAZ3 identified by 16SrRNA gene sequence analysis as Azotobacter chroococcum was recovered from metal polluted chilli rhizosphere. When exposed to varying levels of metals, A. chroococcum survived up to 1400 and 2000 µg mL-1 of Cu and Pb, respectively and expressed numerous plant growth promoting activities even under metal stress. Strain CAZ3 secreted 65.5 and 60.8 µg mL-1 IAA at 400 µg mL-1 each of Cu and Pb, respectively and produced siderophores, ammonia and ACC deaminase under metal pressure. The melanin extracted from A. chroococcum revealed metal chelating ability under EDX. Following application, strain CAZ3 enhanced growth and yield of maize grown both in the presence of Cu and Pb. The dry biomass of roots of inoculated plants grown with 2007 mg Cu kg-1 and 585 mg Pb kg-1 was increased by 28% and 20%, respectively. At 585 mg Pb kg-1, the bioinoculant also increased the kernel attributes. At 2007 mg Cu kg-1 strain CAZ3 enhanced the number, yield and protein of kernels by 10%, 45% and 6%, respectively. Interestingly, strain CAZ3 significantly reduced the levels of proline, malondialdehyde and antioxidant enzymes in foliage. The roots of inoculated plants accumulated greatest amounts of metals compared to other organs. In kernels, the concentration of Pb was more as compared to Cu. The metal concentrations in roots, shoots and kernels, however, declined following CAZ3 inoculation. Copper and lead had substantial distortive impact on root and leaf morphology while cell death were visible under CLSM and SEM. Conclusively, A. chroococcum CAZ3 could be a most suitable and promising option to increase maize production in metal polluted soils despite the soils being contaminated with heavy metals.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
10
|
Lopes R, Tsui S, Gonçalves PJRO, de Queiroz MV. A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J Microbiol Biotechnol 2018; 34:94. [PMID: 29900507 DOI: 10.1007/s11274-018-2479-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
One of the major challenges of agriculture currently is to obtain higher crop yield. Environmental conditions, cultivar quality, and plant diseases greatly affect plant productivity. On the other hand, several endophytic Bacillus species have emerged as a complementary, efficient, and safe alternative to current crop management practices. The ability of Bacillus species to form spores, which resist adverse conditions, is an advantage of the genus for use in formulations. Endophytic Bacillus species provide plants with a wide range of benefits, including protection against phytopathogenic microorganisms, insects, and nematodes, eliciting resistance, and promoting plant growth, without causing damage to the environment. Bacillus thuringiensis, B. subtilis, B. amyloliquefaciens, B. velezensis, B. cereus, B. pumilus, and B. licheniformis are the most studied Bacillus species for application in agriculture, although other species within the genus have also shown great potential. Due to the increasing number of whole-genome sequenced endophytic Bacillus spp. strains, various bioactive compounds have been predicted. These data reveal endophytic Bacillus species as an underexploited source of novel molecules of biotechnological interest. In this review, we discuss how endophytic Bacillus species are a valuable multifunctional toolbox to be integrated with crop management practices for achieving higher crop yield.
Collapse
Affiliation(s)
- Ralf Lopes
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 1374 Professor Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Sarina Tsui
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 1374 Professor Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Priscila J R O Gonçalves
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 1374 Professor Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Marisa Vieira de Queiroz
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture, Universidade Federal de Viçosa, P. H. Rolfs Avenue, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
11
|
Radhakrishnan R, Hashem A, Abd_Allah EF. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front Physiol 2017; 8:667. [PMID: 28932199 PMCID: PMC5592640 DOI: 10.3389/fphys.2017.00667] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and the activation of the antioxidant and defense systems. Bacillus association stimulates plant immunity against stresses by altering stress-responsive genes, proteins, phytohormones and related metabolites. This review describes the beneficial effect of Bacillus spp. on crop plants, which improves plant productivity under unfavorable climatic conditions, and the current understanding of the mitigation mechanism of Bacillus spp. in stress-tolerant and/or stress-resistant plants.
Collapse
Affiliation(s)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research InstituteGiza, Egypt
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
12
|
Diverse molecular resistance mechanisms of Bacillus megaterium during metal removal present in a spent catalyst. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Wu M, Xu Y, Ding W, Li Y, Xu H. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin. Appl Microbiol Biotechnol 2016; 100:7249-61. [DOI: 10.1007/s00253-016-7551-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
|
14
|
Singh N, Marwa N, Mishra SK, Mishra J, Verma PC, Rathaur S, Singh N. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 125:25-34. [PMID: 26650422 DOI: 10.1016/j.ecoenv.2015.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 05/27/2023]
Abstract
Arsenic (As), a toxic metalloid adversely affects plant growth in polluted areas. In the present study, we investigated the possibility of improving phytostablization of arsenic through application of new isolated strain Brevundimonas diminuta (NBRI012) in rice plant [Oryza sativa (L.) Var. Sarju 52] at two different concentrations [10ppm (low toxic) and 50ppm (high toxic)] of As. The plant growth promoting traits of bacterial strains revealed the inherent ability of siderophores, phosphate solubilisation, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production which may be associated with increased biomass, chlorophyll and MDA content of rice and thereby promoting plant growth. The study also revealed the As accumulation property of NBRI012 strain which could play an important role in As removal from contaminated soil. Furthermore, NBRI012 inoculation significantly restored the hampered root epidermal and cortical cell growth of rice plant and root hair elimination. Altogether our study highlights the multifarious role of B. diminuta in mediating stress tolerance and modulating translocation of As in edible part of rice plant.
Collapse
Affiliation(s)
- Namrata Singh
- Eco-auditing group, CSIR-National Botanical Research Institute, Lucknow, India.
| | - Naina Marwa
- Eco-auditing group, CSIR-National Botanical Research Institute, Lucknow, India
| | - Shashank K Mishra
- Plant Microbe Interaction Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Jyoti Mishra
- Plant Molecular Biology and Genetic Engineering Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Praveen C Verma
- Plant Molecular Biology and Genetic Engineering Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Sushma Rathaur
- Department of Biochemistry, Banaras Hindu University, Varanasi, India
| | - Nandita Singh
- Eco-auditing group, CSIR-National Botanical Research Institute, Lucknow, India.
| |
Collapse
|
15
|
Islam F, Yasmeen T, Ali Q, Mubin M, Ali S, Arif MS, Hussain S, Riaz M, Abbas F. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:220-233. [PMID: 26387695 DOI: 10.1007/s11356-015-5354-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C i , g s , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.
Collapse
Affiliation(s)
- Faisal Islam
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
16
|
Wang L, Fan XW, Pan JL, Huang ZB, Li YZ. Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth. PLANTA 2015; 242:1391-403. [PMID: 26253178 PMCID: PMC4605970 DOI: 10.1007/s00425-015-2376-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/17/2015] [Indexed: 05/18/2023]
Abstract
Effects of a low aluminum (Al) dose were characterized. The Al supplement inhibited root growth but enhanced leaf growth in maize lines with different Al sensitivities. High levels of Al are phytotoxic especially in acidic soils. The beneficial effects of low Al levels have been reported in some plant species, but not in maize. Maize is relatively more sensitive to Al toxicity than other cereals. Seedlings, at the three leaf stage, of four Chinese maize foundation parent inbred lines with different Al tolerances, were exposed to complete Hoagland's nutrient solution at pH 4.5 supplemented with 48 μM Al(3+) under controlled growth conditions, and then the Al stress (AS) was removed. The leaf and root growth, root cell viability, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ions (K(+), Ca(++) and Mg(++)), photosynthetic rate and chlorophyll, protein and malondialdehyde contents in tissues were assayed. In conclusion, a low Al dose inhibits root growth but enhances leaf growth in maize. The Al-promoted leaf growth is likely a result of increased protein synthesis, a lowered Ca(++) level, and the discharge of the growth-inhibitory factors. The Al-promoted leaf growth may be a 'memory' effect caused by the earlier AS in maize. Al causes cell wall rupture, and a loss of K(+), Ca(++) and Mg(++) from root cells. CAT is an auxiliary antioxidant enzyme that works selectively with either SOD or POD against AS-related peroxidation, depending on the maize tissue. CAT is a major antioxidant enzyme responsible for root growth, but SOD is important for leaf growth during AS and after its removal. Our results contribute to understanding how low levels of Al affect maize and Al-resistant mechanisms in maize.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Jian-Long Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Zhang-Bao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
17
|
Paths and determinants for Penicillium janthinellum to resist low and high copper. Sci Rep 2015; 5:10590. [PMID: 26265593 PMCID: PMC4642507 DOI: 10.1038/srep10590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 01/21/2023] Open
Abstract
Copper (Cu) tolerance was well understood in fungi yeasts but not in filamentous fungi. Filamentous fungi are eukaryotes but unlike eukaryotic fungi yeasts, which are a collection of various fungi that are maybe classified into different taxa but all characterized by growth as filamentous hyphae cells and with a complex morphology. The current knowledge of Cu resistance of filamentous fungi is still fragmental and therefore needs to be bridged. In this study, we characterized Cu resistance of Penicillium janthinellum strain GXCR and its Cu-resistance-decreasing mutants (EC-6 and UC-8), and conducted sequencing of a total of 6 transcriptomes from wild-type GXCR and mutant EC-6 grown under control and external Cu. Taken all the results together, Cu effects on the basal metabolism were directed to solute transport by two superfamilies of solute carrier and major facilitator, the buffering free CoA and Acyl-CoA pool in the peroxisome, F-type H(+)-transporting ATPases-based ATP production, V-type H(+)-transporting ATPases-based transmembrane transport, protein degradation, and alternative splicing of pre-mRNAs. Roles of enzymatic and non-enzymatic antioxidants in resistance to low and high Cu were defined. The backbone paths, signaling systems, and determinants that involve resistance of filamentous fungi to high Cu were determined, discussed and outlined in a model.
Collapse
|
18
|
Li Y, Qin CX, Gao B, Hu Y, Xu H. Lead-resistant strain KQBT-3 inoculants of Tricholoma lobayensis Heim that enhance remediation of lead-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2015; 36:2451-2458. [PMID: 25939805 DOI: 10.1080/09593330.2015.1034788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To enhance lead-detoxifying efficiency of Tricholoma lobayensis Heim, one lead-resistant strain KQBT-3 (Bacillus thuringiensis) was applied owing to its excellent ability to tolerate Pb. KQBT-3 domesticated in liquid medium with increasing lead concentrations could tolerate Pb(NO3)2 up to a concentration of 800 mg L(-1). Pot experiments showed that the KQBT-3 not only could promote the growth of T. lobayensis, but also could enhance its Pb accumulation ability under heavy metal stress. Biomass and accumulation of Pb increased 47.3% and 33.2%, respectively. In addition, after inoculation of KQBT-3, the significant decrease of malondialdehyde indicated KQBT-3 could alleviate lipid peroxidation in T. lobayensis. What is interesting is that superoxide dismutase and peroxidase activities in T. lobayensis inoculated with KQBT-3 were increased, and the maximum increasing rate was 121.71% and 117.29%, respectively. However, the catalase activity increased slightly. This revealed that inoculating KQBT-3 further induced oxidative response in T. lobayensis due to Pb accumulation. Therefore, the present work showed that KQBT-3 made a major contribution to promote growth and lead uptake of T. lobayensis and alleviate the oxidative stress. This kind of auxiliary effect on macrofungi can be developed into a novel bioremediation strategy.
Collapse
Affiliation(s)
- Ying Li
- a Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science , Sichuan University , Chengdu , Sichuan , People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 151:160-6. [PMID: 25575343 DOI: 10.1016/j.jenvman.2014.12.045] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/23/2014] [Accepted: 12/27/2014] [Indexed: 05/10/2023]
Abstract
Endophytic bacteria have the potential to promote plant growth and heavy metal(loid) (HM) removal from contaminated soil. Pseudomonas koreensis AGB-1, isolated from roots of Miscanthus sinensis growing in mine-tailing soil, exhibited high tolerance to HMs and plant growth promoting traits. Transmission electron microscope (TEM) analysis revealed that AGB-1 sequestered HMs extracellularly and their accumulation was visible as dark metal complexes on bacterial surfaces and outside of the cells. DNA sequencing of HM resistance marker genes indicated high homology to the appropriate regions of the arsB, ACR3(1), aoxB, and bmtA determinants. Inoculating mining site soil with AGB-1 increased M. sinensis biomass by 54%, chlorophyll by 27%, and protein content by 28%. High superoxide dismutase and catalase activities, and the lower malondialdehyde content of plants growing in AGB-1-inoculated soil indicate reduced oxidative stress. Metal(loid) concentrations in roots and shoots of plants grown in inoculated soil were higher than those of the controls in pot trials with mine tailing soil. Results suggest that AGB-1 can be used in association with M. sinensis to promote phytostabilization and remediation of HM-contaminated sites.
Collapse
Affiliation(s)
- A Giridhar Babu
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Patrick J Shea
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0817, USA
| | - D Sudhakar
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Ik-Boo Jung
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea.
| |
Collapse
|
20
|
Babu AG, Shea PJ, Oh BT. Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:561-567. [PMID: 24496029 DOI: 10.1016/j.scitotenv.2013.12.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/28/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
Vegetation is critical to stabilize and remediate mine tailing sites, but plant growth is often poor due to toxicity from heavy metal(loid)s (HMs). A non-symbiotic endophytic fungus, Trichoderma sp. PDR1-7, isolated from Pb-contaminated mine tailing soil, exhibited both high tolerance to HMs and desirable plant growth-promoting characteristics. PDR1-7 promoted HM solubilization in mine tailing soil and removed significant amounts of Pb and other HMs from liquid media containing single and multiple metals. Pb removal efficiency increased with initial pH from 4 to 6 and with Pb concentration from 100 to 125 mg L(-1). Inoculating soil with PDR1-7 significantly increased nutrient availability and seedling growth, chlorophyll and protein contents, as well as antioxidative enzyme (superoxide dismutase) activity. A decrease in malondialdehyde indicated less oxidative stress. HM concentrations were much higher in Pinus sylvestris roots when PDR1-7 was present. These observations suggest the utility of Trichoderma sp. PDR1-7 for pine reforestation and phytoremediation of Pb-contaminated mine soil.
Collapse
Affiliation(s)
- A Giridhar Babu
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Patrick J Shea
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0817, USA
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea.
| |
Collapse
|