1
|
Zhao Q, Dong J, Li S, Lei W, Liu A. Effects of micro/nano-ozone bubble nutrient solutions on growth promotion and rhizosphere microbial community diversity in soilless cultivated lettuces. FRONTIERS IN PLANT SCIENCE 2024; 15:1393905. [PMID: 38665368 PMCID: PMC11043558 DOI: 10.3389/fpls.2024.1393905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Due to its high efficacy as a wide-spectrum disinfectant and its potential for the degradation of pollutants and pesticides, ozone has broad application prospects in agricultural production. In this study, micro/nano bubble technology was applied to achieve a saturation state of bubble nutrient solution, including micro-nano oxygen (O2 group) and micro-nano ozone (O3 group) bubble nutrient solutions. The effects of these solutions on lettuce physiological indices as well as changes in the microbial community within the rhizosphere substrate were studied. The application of micro/nano (O2 and O3) bubble nutrient solutions to substrate-cultured lettuce plants increased the amount of dissolved oxygen in the nutrient solution, increased the lettuce yield, and elevated the net photosynthetic rate, conductance of H2O and intercellular carbon dioxide concentration of lettuce plants. Diversity analysis of the rhizosphere microbial community revealed that both the abundance and diversity of bacterial and fungal communities in the substrate increased after plant cultivation and decreased following treatment with micro/nanobubble nutrient solutions. RDA results showed that the microbial community in the S group was positively associated with EC, that in the CK and O2 groups exhibited a positive correlation with SC, and that in the O3 group displayed a positive correlation with CAT and POD. Overall, the implementation of micro/nanobubble generation technology in soilless substrates can effectively increase the lettuce growth and yield, and O3 had a more pronounced effect on lettuce yield and quality and the microbial community structure in the substrate than O2. Our study would provide a reference and theoretical basis for developing sustainable and green technology for promoting lettuce production and can be a promising alternative to conventional methods for improving crop yields.
Collapse
Affiliation(s)
| | | | | | | | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, China
| |
Collapse
|
2
|
Shang B, Tian T, Shen D, Du E, Agathokleous E, Feng Z. Can ethylenediurea (EDU) alter the effects of ozone on the source-sink regulation of nitrogen uptake and remobilization during grain filling period in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171030. [PMID: 38367724 DOI: 10.1016/j.scitotenv.2024.171030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Increased surface ozone (O3) pollution seriously threatens crop production, and ethylenediurea (EDU) can alleviate crop yield reduction caused by O3. However, the reason for the decrease in grain nitrogen (N) accumulation caused by O3 and whether EDU serves as N fertilizer remain unclear. An experiment was conducted to investigate the impacts of factorial combinations of O3 enrichment (ambient air plus 60 ppb) and EDU (foliage spray with 450 ppm solutions) on N concentration, accumulation and remobilization in hybrid rice seedlings. Compared to ambient condition, elevated O3 significantly inhibited the N accumulation in vegetative organs during anthesis and grain N accumulation during the maturity stage. Elevated O3 significantly decreased the total N accumulation during anthesis and maturity stages, with a greater impact at the latter stage. The decrease in grain N accumulation caused by O3 was attributed to a decrease in N remobilization of vegetative organs during the grain filling period as well as to a decrease in post-anthesis N uptake. However, there was no significant change in the proportion of N remobilization and N uptake in grain N accumulation. The inhibitory effect of O3 on N remobilization in the upper canopy leaves was greater than that in the lower canopy leaves. In addition, elevated O3 increased the N accumulation of panicles at the anthesis stage, mainly by resulting in earlier heading of rice. EDU only increased N accumulation at the maturity stage, which was mainly attributed to an increase in rice biomass by EDU. EDU had no significant effect on N concentration, N remobilization process, and N harvest index. The findings are helpful to better understand the utilization of N fertilizer by rice under O3 pollution, and can also provide a theoretical basis for sustainable nutrient management to alleviate the negative impact of O3 on crop yield and quality.
Collapse
Affiliation(s)
- Bo Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Tongtong Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Dongyun Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| |
Collapse
|
3
|
Kannaujia R, Prasad V, Pandey V. Ozone-induced oxidative stress alleviation by biogenic silver nanoparticles and ethylenediurea in mung bean (Vigna radiata L.) under high ambient ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26997-27013. [PMID: 38503953 DOI: 10.1007/s11356-024-32917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Ground-level ozone (O3) is the most phytotoxic secondary air pollutant in the atmosphere, severely affecting crop yields worldwide. The role of nanoparticles (NP) in the alleviation of ozone-induced yield losses in crops is not known. Therefore, in the present study, we investigated the effects of biogenicB-AgNPs on the mitigation of ozone-induced phytotoxicity in mung bean and compared its results with ethylenediurea (EDU) for the first time. Two mung bean cultivars (Vigna radiata L., Cv. SML-668 and PDM-139) were foliar sprayed with weekly applications of B-AgNPs (0 = control, 10 and 25 ppm) and EDU (0 = control, 200 and 300 ppm) until maturation phase. Morphological, physiological, enzymatic, and non-enzymatic antioxidant data were collected 30 and 60 days after germination (DAG). The mean O3 and AOT40 values (8 h day-1) during the cultivation period were approximately 52 ppb and 4.4 ppm.h, respectively. More biomass was accumulated at the vegetative phase due to the impact of B-AgNPs and EDU, and more photosynthates were transported to the reproductive phase, increasing yield. We observed that the 10 ppm B-AgNPs treatment had a more noticeable impact on yield parameters and lower Ag accumulation in seeds for both cultivars. Specifically, SML-668 cultivar treated with 10 ppm B-AgNPs (SN1) showed greater increases in seed weight plant-1 (124.97%), hundred seed weight (33.45%), and harvest index (37.53%) in comparison to control. Our findings suggest that B-AgNPs can enhance growth, biomass, yield, and seed quality, and can improve mung bean ozone tolerance. Therefore, B-AgNPs may be a promising protectant for mung bean.
Collapse
Affiliation(s)
- Rekha Kannaujia
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Vivek Prasad
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Frei M, Ashrafuzzaman M, Piepho HP, Herzog E, Begum SN, Islam MM. Evidence for tropospheric ozone effects on rice production in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168560. [PMID: 37979852 DOI: 10.1016/j.scitotenv.2023.168560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Although Bangladesh is known to be burdened with elevated tropospheric ozone levels, little is known about its effects on food security. We conducted field experiments in four highly polluted rice growing environments of Bangladesh in three cropping seasons (2020-2022), in which we grew 20 different rice varieties with or without application of the ozone protectant ethylene diurea (EDU). The average daytime ozone concentrations at the study sites during the rice growing seasons ranged from 53 ppb to 84 ppb, with the lowest concentrations occurring in the year 2020. EDU increased rice grain yields significantly by an average of 10.4 % across all seasons and locations, indicating that plants were stressed under ambient ozone concentrations. EDU was effective in distinguishing ozone-tolerant from ozone-sensitive varieties, in which yield increased by up to 21 %. Likewise, the EDU treatment positively affected vegetation indices representing chlorophyll (NDVI), the chorophyll:carotenoid ratio (Lic2), and pigments of the xanthophyll cycle (PRI). Stomatal conductance was increased significantly by an average of around 10 % among all varieties when plants were treated with EDU. In all physiological traits, significant genotype by treatment interactions occurred, indicating that different varieties varied in their responses to ozone stress. Our study demonstrates that rice production in Bangladesh is severely affected by tropospheric ozone, and calls for the breeding of tolerant rice varieties as well as mitigation measures to reduce air pollution.
Collapse
Affiliation(s)
- Michael Frei
- Department of Agronomy and Crop Physiology, Justus-Liebig-University, Giessen, Germany.
| | - Md Ashrafuzzaman
- Department of Genetic Engineering & Biotechnology (GEB), School of Life Sciences, Shahjalal University of Science and Technology (SUST), Sylhet, Bangladesh
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Eva Herzog
- Department of Biometry and Population Genetics, Justus-Liebig-University, Giessen, Germany
| | - Shamsun Nahar Begum
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh
| | - Mirza Mofazzal Islam
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh
| |
Collapse
|
5
|
Ramya A, Dhevagi P, Poornima R, Avudainayagam S, Watanabe M, Agathokleous E. Effect of ozone stress on crop productivity: A threat to food security. ENVIRONMENTAL RESEARCH 2023; 236:116816. [PMID: 37543123 DOI: 10.1016/j.envres.2023.116816] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Tropospheric ozone (O3), the most important phytotoxic air pollutant, can deteriorate crop quality and productivity. Notably, satellite and ground-level observations-based multimodel simulations demonstrate that the present and future predicted O3 exposures could threaten food security. Hence, the present study aims at reviewing the phytotoxicity caused by O3 pollution, which threatens the food security. The present review encompasses three major aspects; wherein the past and prevailing O3 concentrations in various regions were compiled at first, followed by discussing the physiological, biochemical and yield responses of economically important crop species, and considering the potential of O3 protectants to alleviate O3-induced phytotoxicity. Finally, the empirical data reported in the literature were quantitatively analysed to show that O3 causes detrimental effect on physiological traits, photosynthetic pigments, growth and yield attributes. The review on prevailing O3 concentrations over various regions, where economically important crop are grown, and their negative impact would support policy makers to implement air pollution regulations and the scientific community to develop countermeasures against O3 phytotoxicity for maintaining food security.
Collapse
Affiliation(s)
- Ambikapathi Ramya
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India.
| | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - S Avudainayagam
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
6
|
Wang Q, Wang D, Agathokleous E, Cheng C, Shang B, Feng Z. Soil Microbial Community Involved in Nitrogen Cycling in Rice Fields Treated with Antiozonant under Ambient Ozone. Appl Environ Microbiol 2023; 89:e0018023. [PMID: 37022183 PMCID: PMC10132097 DOI: 10.1128/aem.00180-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/04/2023] [Indexed: 04/07/2023] Open
Abstract
Ethylenediurea (EDU) can effectively mitigate the crop yield loss caused by ozone (O3), a major, phytotoxic air pollutant. However, the relevant mechanisms are poorly understood, and the effect of EDU on soil ecosystems has not been comprehensively examined. In this study, a hybrid rice variety (Shenyou 63) was cultivated under ambient O3 and sprayed with 450 ppm EDU or water every 10 days. Real time quantitative polymerase chain reaction (RT-qPCR) showed that EDU had no significant effect on the microbial abundance in either rhizospheric or bulk soils. By applying both metagenomic sequencing and the direct assembly of nitrogen (N)-cycling genes, EDU was found to decrease the abundance of functional genes related to nitrification and denitrification processes. Moreover, EDU increased the abundance of genes involved in N-fixing. Although the abundance of some functional genes did not change significantly, nonmetric multidimensional scaling (NMDS) and a principal coordinates analysis (PCoA) suggested that the microbial community structure involved in N cycling was altered by EDU. The relative abundances of nifH-and norB-harboring microbial genera in the rhizosphere responded differently to EDU, suggesting the existence of functional redundancy, which may play a key role in sustaining microbially mediated N-cycling under ambient O3. IMPORTANCE Ethylenediurea (EDU) is hitherto the most efficient phytoprotectant agent against O3 stress. However, the underlying biological mechanisms of its mode of action are not clear, and the effects of EDU on the environment are still unknown, limiting its large-scale application in agriculture. Due to its sensitivity to environmental changes, the microbial community can be used as an indicator to assess the environmental impacts of agricultural practices on soil quality. This study aimed to unravel the effects of EDU spray on the abundance, community structure, and ecological functions of microbial communities in the rhizosphere of rice plants. Our study provides a deep insight into the impact of EDU spray on microbial-mediated N cycling and the structure of N-cycling microbial communities. Our findings help to elucidate the mode of action of EDU in alleviating O3 stress in crops from the perspective of regulating the structure and function of the rhizospheric soil microbial community.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Dan Wang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Cheng Cheng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Bo Shang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Gupta A, Yadav DS, Agrawal SB, Agrawal M. Sensitivity of agricultural crops to tropospheric ozone: a review of Indian researches. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:894. [PMID: 36242703 DOI: 10.1007/s10661-022-10526-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
Tropospheric ozone (O3) is a long-range transboundary secondary air pollutant, causing significant damage to agricultural crops worldwide. There are substantial spatial variations in O3 concentration in different areas of India due to seasonal and geographical variations. The Indo-Gangetic Plain (IGP) region is one of the most crop productive and air-polluted regions in India. The concentration of tropospheric O3 over the IGP is increasing by 6-7.2% per decade. The annual trend of increase is 0.4 ± 0.25% year-1 over the Northeastern IGP. High O3 concentrations were reported during the summer, while they were at their minimum during the monsoon months. To explore future potential impacts of O3 on major crop plants, the responses of different crops grown under ambient and elevated O3 concentrations were compared. The studies clearly showed that O3 is an important stress factor, negatively affecting the yield of crops. In this review, we have discussed yield losses in agricultural crops due to rising O3 pollution and variations in O3 sensitivity among cultivars and species. The use of ethylene diurea (EDU) as a research tool in assessing the losses in yield under ambient and elevated O3 levels also discussed. Besides, an overview of interactive effects of O3 and nitrogen on crop productivity has been included. Several recommendations are made for future research and policy development on rising concentration of O3 in India.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Durgesh Singh Yadav
- Department of Botany, Government Raza P.G. College, Rampur, U.P. 244901, India
| | - Shashi Bhushan Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
8
|
Singh AK, Mitra S, Kar G. Assessing the impact of current tropospheric ozone on yield loss and antioxidant defense of six cultivars of rice using ethylenediurea in the lower Gangetic Plains of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40146-40156. [PMID: 35119638 DOI: 10.1007/s11356-022-18938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Climate change influences the current tropospheric ozone (O3) budget due to industrialization and urbanization processes. In recent years, the impact of elevated O3 on crop development and yield loss has emerged as one of the most important environmental issues, particularly in rural and suburban areas of the lower Indo-Gangetic Plains of India. The impact of the current tropospheric ozone (O3) on the crop yield, photosynthetic yield, and enzymatic antioxidants of six rice (Oryza sativa L.) cultivars (IR 36, MTU 1010, GB 3, Khitish, IET 4786, and Ganga Kaveri) was investigated with and without the application of ethylenediurea (EDU). The results revealed that O3 stress significantly affected crop yield, photosynthetic yield, and antioxidant enzymes. The findings showed that O3 toxicity induces oxidative stress biomarkers, i.e., malondialdehyde (MDA) content, and was manifested by increasing the enzymatic antioxidants, i.e., superoxidase dismutase (SOD) and catalase (CAT) in four rice cultivars (IR 36, GB 3, IET 4786, and Ganga Kaveri). At the same time, the results also illustrated that the rice cultivars MTU 1010 and Khitish are more tolerant to O3 stress as they had less oxidative damage, greater photosynthetic SPAD value, SOD and CAT activities, and lower MDA activity. The results also elucidated that the application of EDU decreased O3 toxicity in sensitive cultivars of rice by increasing antioxidant defense systems. The current O3 level is likely to show an additional increase in the near future, and the use of tolerant genotypes of rice may reduce the negative impacts of O3 on rice production.
Collapse
Affiliation(s)
- Arvind Kumar Singh
- Crop Production Division, ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700121, West Bengal, India.
| | - Sabyasachi Mitra
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700121, West Bengal, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700121, West Bengal, India
| |
Collapse
|
9
|
Shang B, Fu R, Agathokleous E, Dai L, Zhang G, Wu R, Feng Z. Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151341. [PMID: 34728207 DOI: 10.1016/j.scitotenv.2021.151341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone (O3) is the main phytotoxic air pollutant threatening food security, while ethylenediurea (EDU) can effectively mitigate O3-induced crop yield loss. EDU's mode of action, however, remains unclear, and the underlying physiological mechanisms of mitigating O3-induced crop yield loss are poorly understood. We cultivated hybrid rice seedlings under two O3 treatments (NF, nonfiltered ambient air; and NF60, ambient air plus 60 ppb O3) and sprayed foliage with 0 or 450 ppm EDU every ten days and determine photosynthesis-related traits, biomass indicators, and yield components. We found that EDU significantly increased the leaf nitrogen (N) allocation to photosynthesis (NP) and the grain N accumulation, while the grain N accumulation was positively correlated with NP and root biomass. EDU significantly increased the rice yield mainly by increasing the individual grain weight rather than the number of panicles and grains. While EDU protected from yield loss, the degree of protection was only 31% under NF60 treatment, thus EDU was unable to offer complete protection under high O3 pollution. These results will be conducive to a better understanding of the EDU protection mechanism and better application of EDU under high O3 pollution in the future.
Collapse
Affiliation(s)
- Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Rao Fu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Lulu Dai
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China.
| |
Collapse
|
10
|
Gupta SK, Sharma M, Majumder B, Maurya VK, Deeba F, Zhang JL, Pandey V. Effects of ethylenediurea (EDU) on regulatory proteins in two maize (Zea mays L.) varieties under high tropospheric ozone phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:675-688. [PMID: 32738705 DOI: 10.1016/j.plaphy.2020.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone is a major threat to the crops in the present climate change scenario. To investigate the EDU induced changes in proteins, two varieties of maize, the SHM3031 and the PEHM5, (hereafter S and P respectively) were treated with three EDU applications (0= control, 50 and 200 ppm) (hereafter 0= A, 1 and 2 respectively) (SA, S1, S2, PA, P1, P2 cultivar X treatments). Data on the morpho-physiology, enzymatic activity, and protein expression (for the first time) were collected at the vegetative (V, 45 DAG) and flowering (F, 75 DAG) developmental stages. The tropospheric ozone was around 53 ppb enough to cause phytotoxic effects. Protective effects of EDU were recorded in morpho-physiologically and biochemically. SOD, CAT and APX together with GR performed better under EDU protection in SHM3031 variety than PEHM5. The protein expression patterns in SHM3031 at the vegetative stage (28% proteins were increased, 7% were decreased), and at the flowering stage (17% increased, 8% decreased) were found. In PEHM5, a 14% increase and an 18% decrease (vegetative stage) whereas a 16% increase and a 20% decrease (flowering stage) were recorded in protein expression. Some protein functional categories, for instance, photosynthesis, carbon metabolism, energy metabolism, and defense were influenced by EDU. Rubisco expression was increased in SHM3031 whereas differentially expressed in PEHM5. Germin like protein, APX, SOD, and harpin binding proteins have enhanced defense regulatory mechanisms under EDU treatment during prevailing high tropospheric O3. The present study showed EDU protective roles in C4 plants as proven in C3.
Collapse
Affiliation(s)
- Sunil K Gupta
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666 303, China.
| | - Marisha Sharma
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Baisakhi Majumder
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Vivek K Maurya
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Farah Deeba
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666 303, China
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
11
|
Fatima A, Singh AA, Mukherjee A, Dolker T, Agrawal M, Agrawal SB. Assessment of Ozone Sensitivity in Three Wheat Cultivars Using Ethylenediurea. PLANTS (BASEL, SWITZERLAND) 2019; 8:E80. [PMID: 30934911 PMCID: PMC6524027 DOI: 10.3390/plants8040080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/04/2022]
Abstract
Three wheat (Triticum aestivum L.) cultivars [HD 2987 (ozone (O₃) sensitive), PBW 502 (intermediately sensitive) and Kharchiya 65 (O₃ tolerant)] with known sensitivity to O₃ were re-evaluated using ethylenediurea (EDU; 400 ppm) to ascertain the use of EDU in determiningO₃ sensitivity under highly O₃-polluted tropical environments. EDU treatment helped in improving the growth, biomass, photosynthetic pigments and the antioxidative defense system of all the wheat cultivars. Under EDU treatment, PBW 502 retained more biomass, while HD 2987 showed better performance and ultimately the greatest increment in yield. Cultivar Kharchiya 65 also showed a positive response to EDU as manifested with an increase in pigment contents, total biomass and enzymatic antioxidants; however, this increment was comparatively lower compared to the other two cultivars. The results indicated that EDU did not have many physiological effects on cultivars but helped in counteracting O₃ primarily by scavenging reactive oxygen species and enhancing the antioxidative defense system where superoxide dismutase emerged as the major responsive biochemical parameter against ambient O₃. The observed results clearly indicated that differential O₃ sensitivity in three wheat cultivars established by the previous study is in accordance with the present study using EDU as a sensitivity tool, which is an easy and efficient technology in comparison to chamber and Free-Air Carbon dioxide Enrichment (FACE) experiments although its mechanistic understanding needs to be further validated.
Collapse
Affiliation(s)
- Adeeb Fatima
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Aditya Abha Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
- Department of Plant Molecular Biology, University of Delhi, South Campus, Delhi 110021, India.
| | - Arideep Mukherjee
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Tsetan Dolker
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
12
|
Jiang L, Feng Z, Dai L, Shang B, Paoletti E. Large variability in ambient ozone sensitivity across 19 ethylenediurea-treated Chinese cultivars of soybean is driven by total ascorbate. J Environ Sci (China) 2018; 64:10-22. [PMID: 29478629 DOI: 10.1016/j.jes.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
The sensitivity of Chinese soybean cultivars to ambient ozone (O3) in the field is unknown, although soybean is a major staple food in China. Using ethylenediurea (EDU) as an O3 protectant, we tested the gas exchange, pigments, antioxidants and biomass of 19 cultivars exposed to 28ppm·hr AOT40 (accumulated O3 over an hourly concentration threshold of 40ppb) over the growing season at a field site in China. By comparing the average biomass with and without EDU, we estimated the cultivar-specific sensitivity to O3 and ranked the cultivars from very tolerant (<10% change) to highly sensitive (>45% change), which helps in choosing the best-suited cultivars for local cultivation. Higher lipid peroxidation and activity of the ascorbate peroxidase enzyme were major responses to O3 damage, which eventually translated into lower biomass production. The constitutional level of total ascorbate in the leaves was the most important parameter explaining O3 sensitivity among these cultivars. Surprisingly, the role of stomatal conductance was insignificant. These results will guide future breeding efforts towards more O3-tolerant cultivars in China, while strategies for implementing control measures of regional O3 pollution are being implemented. Overall, these results suggest that present ambient O3 pollution is a serious concern for soybean in China, which highlights the urgent need for policy-making actions to protect this critical staple food.
Collapse
Affiliation(s)
- Lijun Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Singh S, Singh P, Agrawal SB, Agrawal M. Use of Ethylenediurea (EDU) in identifying indicator cultivars of Indian clover against ambient ozone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:1046-1055. [PMID: 29976007 DOI: 10.1016/j.ecoenv.2017.09.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 06/08/2023]
Abstract
Three clover (Trifolium alexandrium L.) cultivars (Bundel, Wardan and JHB-146) were assessed for their responses to ambient ozone (O3) with respect to growth, physiological and biochemical parameters at two rural sites (R1 and R2) using ethylenediurea (EDU). EDU solution (300ppm) was applied as soil drench, 10 days after germination (DAG) at an interval of 10 days up to 80 DAG. The average O3 concentrations were 52.76 and 60.86 ppb at R1 and R2 sites, respectively during the experimental period. Ambient O3 induced visible symptoms in all the cultivars at both the sites, with more at R2 site having high ambient O3 levels. Visible injury was observed first in non-EDU treated plants of Wardan at R2 site. Wardan also showed maximum reduction in leaf injury under EDU treatment at both the sites with more at R2. Under EDU treatment, better adaptation to ambient O3 at initial age of observation and higher acquisition of resources at later ages of observation at both the sites led to better physiological and biochemical adaptations in Wardan. Bundel retained more biomass in shoot as is reflected with higher shoot/root ratio and thus focused more on repair and defense. Shoot/root ratio of JHB-146 did not respond to EDU treatment and thus showed insignificant variations except at initial age of observation at R1 site. This study clearly suggests that Wardan and Bundel are sensitive to ambient O3 and can be used as bioindicator species in areas having higher O3 levels using EDU as a research tool.
Collapse
Affiliation(s)
- Suruchi Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Poonam Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Zhang W, Feng Z, Wang X, Liu X, Hu E. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:710-720. [PMID: 28494296 DOI: 10.1016/j.scitotenv.2017.04.231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
High ground-level O3 is a new threat to agricultural production in Northeast China with the increasing ambient O3 concentration. Little is known about its impacts on soybean production in this key agricultural region. Accumulated O3 exposure-response and stomatal O3 flux-response relationships were developed during two continuous growing seasons to evaluate O3-induced yield reduction of four typical soybean cultivars in Northeast China. Results showed that critical levels of AOT40 (accumulated hourly O3 concentrations over a threshold of 40nmol·mol-1), SUM06 (sum of all hourly average O3 concentrations over 0.06μmol·mol-1) and W126 (sum of O3 concentrations weighted by a sigmoidal function) in relation to 5% reduction in relative seed yield were 4.2, 7.6 and 6.8μmol·mol-1·h, respectively. The effect of O3 on plants was influenced by leaf position in canopy. An improved Jarvis stomatal conductance model including leaf (node) position fitted well with field measurements. The best linear relationship between stomatal O3 flux and relative soybean yield was obtained when phytotoxic ozone dose was integrated over a threshold of 9.6nmol·m-2·s-1 (POD9.6) to represent the detoxification capacity of soybean. POD9.6 and the commonly used POD6 in relation to 5% reduction in relative seed yield of soybean were 0.9mmol·m-2 and 1.8mmol·m-2, respectively. O3 concentrations above ~38nmol·mol-1 contributed to POD9.6 and caused seed yield loss in soybean. Current annual yield loss of soybean at ambient O3 was estimated to range between 23.4% and 30.2%. The O3 dose-response relationships and corresponding thresholds obtained here will benefit regional O3 risk assessment on soybean production in Northeast China.
Collapse
Affiliation(s)
- Weiwei Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaobing Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Enzhu Hu
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
15
|
Ashrafuzzaman M, Lubna FA, Holtkamp F, Manning WJ, Kraska T, Frei M. Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:339-350. [PMID: 28668595 DOI: 10.1016/j.envpol.2017.06.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/12/2017] [Accepted: 06/17/2017] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone concentrations in Asia necessitate the breeding of adapted rice varieties to ensure food security. However, breeding requires field-based evaluation of ample plant material, which can be technically challenging or very costly when using ozone fumigation facilities. The chemical ethylenediurea (EDU) has been proposed for estimating the effects of ozone in large-scale field applications, but controlled experiments investigating constitutive effects on rice or its suitability to detect genotypic differences in ozone tolerance are missing. This study comprised a controlled open top chamber experiment with four treatments (i) control (average ozone concentration 16 ppb), (ii) control with EDU application, (iii) ozone stress (average 77 ppb for 7 h daily throughout the season), and (iv) ozone stress with EDU application. Three contrasting rice genotypes were tested, i.e. the tolerant line L81 and the sensitive Nipponbare and BR28. The ozone treatment had significant negative effects on plant growth (height and tillering), stomatal conductance, SPAD value, spectral reflectance indices such as the normalized difference vegetation index (NDVI), lipid peroxidation, as well as biomass and grain yields. These negative effects were more pronounced in the a priori sensitive varieties, especially the widely grown Bangladeshi variety BR28, which showed grain yield reductions by 37 percent. EDU application had almost no effects on plants in the absence of ozone, but partly mitigated ozone effects on foliar symptoms, lipid peroxidation, SPAD value, stomatal conductance, several spectral reflectance parameters, panicle number, grain yield, and spikelet sterility. EDU responses were more pronounced in sensitive genotypes than in the tolerant L81. In conclusion, EDU had no constitutive effects on rice and partly offset negative ozone effects, especially in sensitive varieties. It can thus be used to diagnose ozone damage in field grown rice and for distinguishing tolerant (less EDU-responsive) and sensitive (more EDU-responsive) genotypes.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Farzana Afrose Lubna
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany
| | - Felix Holtkamp
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany
| | | | - Thorsten Kraska
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Michael Frei
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany.
| |
Collapse
|
16
|
Agathokleous E. Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O 3 phytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:530-537. [PMID: 28478379 DOI: 10.1016/j.ecoenv.2017.04.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 05/22/2023]
Abstract
Ethylenediurea (EDU) has been widely studied for its effectiveness to protect plants against injuries caused by surface ozone (O3), however its mode of action remains unclear. So far, there is not a unified methodological approach and thus the methodology is quite arbitrary, thereby making it more difficult to generalize findings and understand the EDU mode of action. This review examines the question of whether potential N addition to plants by EDU is a fundamental underlying mechanism in protecting against O3 phytotoxicity. Yet, this review proposes an evidence-based hypothesis that EDU may protect plants against O3 deleterious effects upon generation of EDU-induced hormesis, i.e. by activating plant defense at low doses. This hypothesis challenges the future research directions. Revealing a hormesis-based EDU mode of action in protecting plants against O3 toxicity would have further implications to ecotoxicology and environmental safety. Furthermore, this review discusses the need for further studies on plant metabolism under EDU treatment through relevant experimental approach, and attempts to set the bases for approaching a unified methodology that will contribute in revealing the EDU mode of action. In this framework, focus is given to the main EDU application methods.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), National Research and Development Agency, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
17
|
Tiwari S. Ethylenediurea as a potential tool in evaluating ozone phytotoxicity: a review study on physiological, biochemical and morphological responses of plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14019-14039. [PMID: 28409426 DOI: 10.1007/s11356-017-8859-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Present-day climate change scenario has intensified the problem of continuously increasing ground-level ozone (O3), which is responsible for causing deleterious effects on growth and development of plants. Studies involving use of ethylenediurea (EDU), a chemical with antiozonant properties, have given some promising results in evaluating O3 injury in plants. The use of EDU is especially advantageous in developing countries which face a more severe problem of ground-level O3, and technical O3-induced yield loss assessment techniques like open-top chambers cannot be used. Recent studies have detected a hormetic response of EDU on plants; i.e. treatment with higher EDU concentrations may or may not show any adverse effect on plants depending upon the experimental conditions. Although the mode of action of EDU is still debated, it is confirmed that EDU remains confined in the apoplastic regions. Certain studies indicate that EDU significantly affects the electron transport chain and has positive impact on the antioxidant defence machinery of the plants. However, the mechanism of protecting the yield of plants without significantly affecting photosynthesis is still questionable. This review discusses in details the probable mode of action of EDU on the basis of available data along with the impact of EDU on physiological, biochemical, growth and yield response of plants under O3 stress. Data regarding the effect of EDU on plant 'omics' is highly insufficient and can form an important aspect of future EDU research.
Collapse
Affiliation(s)
- Supriya Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
18
|
Singh AA, Agrawal SB. Tropospheric ozone pollution in India: effects on crop yield and product quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4367-4382. [PMID: 27943144 DOI: 10.1007/s11356-016-8178-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Ozone (O3) in troposphere is the most critical secondary air pollutant, and being phytotoxic causes substantial losses to agricultural productivity. Its increasing concentration in India particularly in Indo-Gangetic plains is an issue of major concern as it is posing a threat to agriculture. In view of the issue of rising surface level of O3 in India, the aim of this compilation is to present the past and the prevailing concentrations of O3 and its important precursor (oxides of nitrogen) over the Indian region. The resulting magnitude of reductions in crop productivity as well as alteration in the quality of the product attributable to tropospheric O3 has also been taken up. Studies in relation to yield measurements have been conducted predominantly in open top chambers (OTCs) and also assessed by using antiozonant ethylene diurea (EDU). There is a substantial spatial difference in O3 distribution at different places displaying variable O3 concentrations due to seasonal and geographical variations. This review further recognizes the major information lacuna and also highlights future perspectives to get the grips with rising trend of ground level O3 pollution and also to formulate the policies to check the emissions of O3 precursors in India.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Xin Y, Yuan X, Shang B, Manning WJ, Yang A, Wang Y, Feng Z. Moderate drought did not affect the effectiveness of ethylenediurea (EDU) in protecting Populus cathayana from ambient ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1536-1544. [PMID: 27424114 DOI: 10.1016/j.scitotenv.2016.06.247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
A field study was conducted to evaluate the effects of ambient ozone (O3) on an O3-sensitive poplar (Populus cathayana) by using ethylenediurea (EDU) as a chemical protectant under two soil water treatments (well-watered (WW) and moderate drought (MD, 50-60% of WW in volumetric soil water content). EDU was applied as foliar spray at 0, 300, 450, and 600ppm. Photosynthetic parameters, pigment contents, leaf nitrogen, antioxidant capacity, growth, and biomass were measured. The 8h (9:00-17:00) average ambient O3 concentration was 71.7ppb, and AOT40 was 29.2ppmh during the experimental period (9 June to 21 September), which was high enough to cause plant injury. MD had significantly negative effects on P. cathayana, as indicated by reduced photosynthesis, growth, and biomass, and higher MDA contents. On the other hand, EDU significantly increased photosynthesis rate, chlorophyll a fluorescence, Vcmax and Jmax, photosynthetic pigments, total antioxidant capacity, tree growth and biomass accumulation, and reduced lipid peroxidation, but there was no significant interaction between EDU and drought for most parameters, indicating that EDU can efficiently protect Populus cathayana against ambient O3 and the protection was not affected by soil water contents when soil water reached moderate drought level. Among all doses, EDU at 450ppm provided maximum protection. Comparison of EDU-treated and non-treated P. cathayana could be used as a biomarker system in risk assessment of the effects of ambient O3 on forest health.
Collapse
Affiliation(s)
- Yue Xin
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Xiangyang Yuan
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Bo Shang
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - William J Manning
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003-9320, USA
| | - Aizhen Yang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China
| | - Younian Wang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China.
| | - Zhaozhong Feng
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
20
|
Ueda Y, Frindte K, Knief C, Ashrafuzzaman M, Frei M. Effects of Elevated Tropospheric Ozone Concentration on the Bacterial Community in the Phyllosphere and Rhizoplane of Rice. PLoS One 2016; 11:e0163178. [PMID: 27643794 PMCID: PMC5028031 DOI: 10.1371/journal.pone.0163178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Microbes constitute a vital part of the plant holobiont. They establish plant-microbe or microbe-microbe associations, forming a unique microbiota with each plant species and under different environmental conditions. These microbial communities have to adapt to diverse environmental conditions, such as geographical location, climate conditions and soil types, and are subjected to changes in their surrounding environment. Elevated ozone concentration is one of the most important aspects of global change, but its effect on microbial communities living on plant surfaces has barely been investigated. In the current study, we aimed at elucidating the potential effect of elevated ozone concentrations on the phyllosphere (aerial part of the plant) and rhizoplane (surface of the root) microbiota by adopting next-generation 16S rRNA amplicon sequencing. A standard japonica rice cultivar Nipponbare and an ozone-tolerant breeding line L81 (Nipponbare background) were pre-grown in a greenhouse for 10 weeks and then exposed to ozone at 85 ppb for 7 h daily for 30 days in open top chambers. Microbial cells were collected from the phyllosphere and rhizoplane separately. The treatment or different genotypes did not affect various diversity indices. On the other hand, the relative abundance of some bacterial taxa were significantly affected in the rhizoplane community of ozone-treated plants. A significant effect of ozone was detected by homogeneity of molecular variance analysis in the phyllosphere, meaning that the community from ozone-treated phyllosphere samples was more variable than those from control plants. In addition, a weak treatment effect was observed by clustering samples based on the Yue and Clayton and weighted UniFrac distance matrices among samples. We therefore conclude that the elevated ozone concentrations affected the bacterial community structure of the phyllosphere and the rhizosplane as a whole, even though this effect was rather weak and did not lead to changes of the function of the communities.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation (INRES) – Plant Nutrition, University of Bonn, Bonn, Germany
| | - Katharina Frindte
- Institute of Crop Science and Resource Conservation (INRES) – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation (INRES) – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Md Ashrafuzzaman
- Institute of Crop Science and Resource Conservation (INRES) – Plant Nutrition, University of Bonn, Bonn, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES) – Plant Nutrition, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Agathokleous E, Mouzaki-Paxinou AC, Saitanis CJ, Paoletti E, Manning WJ. The first toxicological study of the antiozonant and research tool ethylene diurea (EDU) using a Lemna minor L. bioassay: Hints to its mode of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:996-1006. [PMID: 26809480 DOI: 10.1016/j.envpol.2015.12.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
The antiozonant and research tool ethylene diurea (EDU) is widely studied as a phytoprotectant against the widespread pollutant ground-surface ozone. Although it has been extensively used, its potential toxicity in the absence of ozone is unknown and its mode of action is unclear. The purpose of this research was to toxicologically assess EDU and to further investigate its mode of action using Lemna minor L. as a model organism. Application of EDU concentrations greater than 593 mg L(-1) (practically 600 mg L(-1)) resulted in adverse inhibition of colony growth. As no-observed-toxic-effects concentration (NOEL) we recommend a concentration of 296 mg L(-1) (practically 300 mg L(-1)). A hormetic response was detected, i.e. stimulatory effects of low EDU concentrations, which may indicate overcompensation in response to disruption in homeostasis. Growth inhibition and suppressed biomass were associated with impacted chlorophyll a fluorescence (ΦPSII, qP and ETR). Furthermore, EDU increased mesophyll thickness, as indicated by frond succulence index. Applications of concentrations ≥593 mg L(-1) to uncontrolled environments should be avoided due to potential toxicity to sensitive organisms and the environment.
Collapse
Affiliation(s)
- Eugenios Agathokleous
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece.
| | - Akrivi-Chara Mouzaki-Paxinou
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Elena Paoletti
- Institute of Plant Protection, National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - William J Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
22
|
Yuan X, Calatayud V, Jiang L, Manning WJ, Hayes F, Tian Y, Feng Z. Assessing the effects of ambient ozone in China on snap bean genotypes by using ethylenediurea (EDU). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:199-208. [PMID: 26074161 DOI: 10.1016/j.envpol.2015.05.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 05/22/2023]
Abstract
Four genotypes of snap bean (Phaseolus vulgaris L.) were selected to study the effects of ambient ozone concentration at a cropland area around Beijing by using 450 ppm of ethylenediurea (EDU) as a chemical protectant. During the growing season, the 8h (9:00-17:00) average ozone concentration was very high, approximately 71.3 ppb, and AOT40 was 29.0 ppm.h. All genotypes showed foliar injury, but ozone-sensitive genotypes exhibited much more injury than ozone-tolerant ones. Compared with control, EDU significantly alleviated foliar injury, increased photosynthesis rate and chlorophyll a fluorescence, Vcmax and Jmax, and seed and pod weights in ozone-sensitive genotypes but not in ozone-tolerant genotypes. EDU did not significantly affect antioxidant contents in any of the genotypes. Therefore, EDU effectively protected sensitive genotypes from ambient ozone damage, while protection on ozone-tolerant genotypes was limited. EDU can be regarded as a useful tool in risk assessment of ambient ozone on food security.
Collapse
Affiliation(s)
- Xiangyang Yuan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Department of Food, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, China
| | - Vicent Calatayud
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, 46980 Paterna, Valencia, Spain
| | - Lijun Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - William J Manning
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003-9320, USA
| | - Felicity Hayes
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Yuan Tian
- Department of Food, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, China
| | - Zhaozhong Feng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China.
| |
Collapse
|