1
|
da Silva RMG, de Oliveira Moraes VM, Granero FO, Malaguti Figueiredo CC, Dos Santos VHM, Machado LP, Pereira Silva L. Cytogenotoxicity evaluation of heavy metals detected in extracts and infusion of Baccharis trimera, potential bioaccumulator plant. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:108-119. [PMID: 37942923 DOI: 10.1080/15287394.2023.2279120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Heavy metals (HMs) are natural components of the Earth's crust that might originate from natural and anthropogenic sources. In excess quantities, the presence of these metals is harmful for both environment and human health. Taking this into account, various investigators examined bioaccumulator species in order to reduce environmental toxicity, among these Baccharis trimera. Therefore, the present study aimed to determine the capacity of B. trimera to bioaccumulate HMs and assess consequent cytogenotoxicity following exposure. B. trimera vegetative parts were collected from two groups (1) control, in which plants were cultivated in soil exposed to distilled water, and (2) exposed, in which plants were cultivated in soil exposed to HMs including manganese (Mn), iron (Fe), lead (Pb), copper (Cu), cobalt (Co), zinc (Zn), and chromium (Cr). HMs were quantified in cultivation soil and extracts (aqueous and ethanolic) as well as infusion of B. trimera vegetative parts. Root lengths and cytogenotoxic effects were determined using Allium cepa test. Results demonstrated that all HMs studied were absorbed and bioaccumulated by B. trimera. Root lengths were decreased when exposed to ethanolic extract of B. trimera cultivated in soil exposed to HMs solution, which was the extract that exhibited the highest cytogenotoxicity values. Thus, data demonstrated that B. trimera might serve as a bioaccumulator for the reduction of environmental toxicity associated with the presence of certain HMs.
Collapse
Affiliation(s)
- Regildo Márcio Gonçalves da Silva
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Vanessa Marques de Oliveira Moraes
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | | | | | | | - Levi Pompermayer Machado
- Faculty of Agricultural Sciences of Vale do Ribeira, Department of Fisheries Engineering, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | | |
Collapse
|
2
|
Neto JLS, de Carli RF, Lehmann M, de Souza CT, Niekraszewicz LAB, Dias JF, da Silva FR, da Silva J, Dihl RR. In vivo and in silico approaches to assess surface water genotoxicity from Tocantins River, in the cities of Porto Nacional and Palmas, Brazil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:27-45. [PMID: 35895928 DOI: 10.1080/26896583.2021.2014278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The main environmental problem in urban areas, especially in Brazil, is the discharge of untreated sewage. The in vivo Drosophila melanogaster Somatic Mutation and Recombination Test (SMART) was used to assess the genotoxicity of surface waters from three different sites in the Tocantins River, Brazil. The in silico approach was used to search for known and predicted interactions between environmental chemicals found in our samples and Drosophila and human proteins. The genotoxicity tests were performed in standard (ST) and high bioactivation (HB) crosses with samples collected at two periods, the rainy and dry seasons. Mutant spot frequencies found in treatments with unprocessed water from the test sites were compared with the frequencies observed in negative controls. The collection points were represented as sites A, B and C along Tocantins River. Sites A and B are located in Porto Nacional City, whereas site C is located in Palmas City. Considering the rainy season collection, positive responses in the ST cross were observed for sites A and C (89.47% and 85% of recombination, respectively) and in the HB cross for sites A, B and C (88.24%, 84.21% and 82.35% of recombination, respectively). The positive results in the dry season were restricted to sites A and B (88.89% and 85.71% of recombination, respectively) in the HB cross. In accordance with in vivo and in silico results, we hypothesize that ribosomal proteins (RPs) in fruit fly and humans are depleted in cells exposed to heavy metal causing DNA damage and chromosome instability, increasing homologous recombination.
Collapse
Affiliation(s)
- José Lopes Soares Neto
- Laboratory of Genetic Toxicity (TOXIGEN), Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Raíne Fogliati de Carli
- Laboratory of Genetic Toxicity (TOXIGEN), Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Mauricio Lehmann
- Laboratory of Genetic Toxicity (TOXIGEN), Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Cláudia Telles de Souza
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Rabaioli da Silva
- Laboratory of Genetic Toxicity (TOXIGEN), Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- UniLaSalle, Canoas, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicity (TOXIGEN), Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- UniLaSalle, Canoas, Brazil
| | - Rafael Rodrigues Dihl
- Laboratory of Genetic Toxicity (TOXIGEN), Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| |
Collapse
|
3
|
Blanco GD, Sühs RB, Brizola E, Corrêa PF, Campos ML, Hanazaki N. Invisible contaminants and food security in former coal mining areas of Santa Catarina, Southern Brazil. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:44. [PMID: 32795318 PMCID: PMC7427890 DOI: 10.1186/s13002-020-00398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mining activities have environmental impacts due to sediment movement and contamination of areas and may also pose risks to people's food security. In Brazil, the majority of coal mining activities are in the south, in the Santa Catarina carboniferous region. In this region, previously mined areas contaminated with heavy metals frequently occur nearby inhabited zones. Mining is part of the daily lives of local communities, and its environmental impacts are visible in the landscape; however, plants with medicinal and food use from these areas can be still consumed. Heavy metals are contaminants that do not have odor, color, or taste, and are therefore difficult to detect. We aimed to verify whether people use plants from contaminated mine areas, and understand which factors can influence the use of these resources, even from areas visibly impacted. METHODS We conducted 195 semi-structured interviews with residents from 14 areas nearby abandoned mines in the main municipalities of the Santa Catarina carboniferous region. We asked each interviewee about the length of time they lived in the region, their perception of the quality of the environment, and what plant species were used and for what purpose. We constructed generalized multivariate linear models to verify which variables can affect the group of species mentioned and generalized linear models to verify which variables can affect the total number of citations. We estimated the frequency of citing species collected using the Smith index. RESULTS From all interviewees, 127 (65%) reported collecting plants for medicinal and food use, directly from contaminated mine areas. Long-term residents, as well as those who noticed more environmental changes (positive and negative), cited more plants used and had more detailed knowledge of plant use in their communities. When asked if they were aware of the possible contamination of mined areas, 85% said they knew about it. However, only 10% associated negative health effects with the use of plant species collected in contaminated mined areas. CONCLUSIONS Our study demonstrates that people living nearby contaminated areas use and consume locally sourced plants, e.g., people know little about the danger of this contamination in their food and the risk of these contaminants to their health. These results also reveal a lack of information about contamination, as well as a lack of actions that include local communities in contaminated area restoration strategies. This situation poses a risk to the food security of the people living nearby former coal mining areas.
Collapse
Affiliation(s)
- Graziela Dias Blanco
- Laboratório de Ecologia Humana e Etnobotânica, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Rafael Barbizan Sühs
- Laboratório de Ecologia Humana e Etnobotânica, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Escarlet Brizola
- Laboratório de Ecologia Humana e Etnobotânica, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Patrícia Figueiredo Corrêa
- Herbário Padre Dr. Raulino Reitz (CRI), Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Mari Lucia Campos
- Laboratório de Análises Químicas do Solo e Calcário, Departamento de Solos e Recursos Naturais, Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brazil
| | - Natalia Hanazaki
- Laboratório de Ecologia Humana e Etnobotânica, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
4
|
Khan MI, Cheema SA, Anum S, Niazi NK, Azam M, Bashir S, Ashraf I, Qadri R. Phytoremediation of Agricultural Pollutants. CONCEPTS AND STRATEGIES IN PLANT SCIENCES 2020. [DOI: 10.1007/978-3-030-00099-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Guerrero-Castilla A, Olivero-Verbel J, Sandoval IT, Jones DA. Toxic effects of a methanolic coal dust extract on fish early life stage. CHEMOSPHERE 2019; 227:100-108. [PMID: 30986591 DOI: 10.1016/j.chemosphere.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Coal dust is a contaminant that impacts the terrestrial and aquatic environment with a complex mixture of chemicals, including PAHs and metals. This study aims to evaluate the toxic effect of a methanolic coal dust extract on a fish early life stage by analyzing phenotypic alterations, transcriptome changes, and mortality in zebrafish (ZF) embryos. ZF embryos were exposed to methanolic coal dust extract at 1-5000 mg·L-1 and monitored using bright field microscopy 24 and 48 hpf to determine malformations and mortality. In situ hybridization, RNA sequencing, and qRT-PCR were employed to identify transcriptome changes in malformed embryos. Three malformed phenotypes were generated in a dose-dependent manner. In situ hybridization analysis revealed brain, somite, dorsal cord, and heart tube development biomarker alterations. Gene expression profile analysis identified changes in genes related to structural constituent of muscle, calcium ion binding, actin binding, melanin metabolic process, muscle contraction, sarcomere organization, cardiac myofibril assembly, oxidation-reduction process, pore complex, supramolecular fiber, striated muscle thin filament, Z disc, and intermediate filament. This study shows, for the first time, the malformations generated by a mixture of pollutants from a methanolic coal dust extract on a fish early life stage, constituting a potential risk for normal embryonic development of other aquatic vertebrate organisms. Furthermore, we establish that phenotypes and changes in gene expression induced by the extract constitute a target for future studies about mechanical toxicity and their utility as sensitive tools in environmental risk assessments for biota and humans exposed to coal mining activities.
Collapse
Affiliation(s)
- Angélica Guerrero-Castilla
- Facultad de Ciencias de la Salud, Química y Farmacia, Universidad Arturo Prat, Casilla 121, Iquique, 1100000, Chile; Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia.
| | - Jesús Olivero-Verbel
- Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Imelda T Sandoval
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - David A Jones
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Silveira Rabelo AC, Caldeira Costa D. A review of biological and pharmacological activities of Baccharis trimera. Chem Biol Interact 2018; 296:65-75. [DOI: 10.1016/j.cbi.2018.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
|
7
|
Nordin AP, da Silva J, de Souza CT, Niekraszewicz LAB, Dias JF, da Boit K, Oliveira MLS, Grivicich I, Garcia ALH, Oliveira LFS, da Silva FR. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2018; 346:263-272. [PMID: 29288979 DOI: 10.1016/j.jhazmat.2017.12.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
Coal processing generates a large volume of waste that can damage human health and the environment. Often these wastes produce acid drainage in which several minerals are crystallized (evaporites). This study aimed to identify secondary minerals, as well as the genotoxic potential of these materials. The samples were collected at two sites along the Rocinha River in Santa Catarina state (Brazil): (1) directly from the source of the acid drainage (evaporite 1), and (2) on the river bank (evaporite 2). The samples were characterized by X-ray diffraction and by particle-induced X-ray emission techniques. In vitro genotoxicity testing using Comet assay and Micronucleus test in V79 cells was used to evaluate evaporite samples. Our study also used System Biology tools to provide insight regarding the influence of this exposure on DNA damage in cells. The results showed that the samples induced DNA damage for both evaporites that can be explained by high concentrations of chromium, iron, nickel, copper and zinc in these materials. Thus, this study is very important due to the dearth of knowledge regarding the toxicity of evaporites in the environment. The genetic toxicity of this material can be induced by increased oxidative stress and DNA repair inhibition.
Collapse
Affiliation(s)
- Adriane Perachi Nordin
- Mestrado em Avaliação de Impactos Ambientais, La Salle University (UNILASALLE), Canoas, RS, Brazil; Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| | - Claudia Telles de Souza
- Laboratory of Environmental Analytical Chemistry and Oleochemistry, Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liana A B Niekraszewicz
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Kátia da Boit
- Universidad De La Costa, Calle #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Marcos L S Oliveira
- Universidad De La Costa, Calle #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Ivana Grivicich
- Laboratory of Cancer Biology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | | | | |
Collapse
|
8
|
Jaramillo-García V, Trindade C, Lima E, Guecheva TN, Villela I, Martinez-Lopez W, Corrêa DS, Ferraz ADBF, Moura S, Sosa MQ, Da Silva J, Henriques JAP. Chemical characterization and cytotoxic, genotoxic, and mutagenic properties of Baccharis trinervis (Lam, Persoon) from Colombia and Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:210-220. [PMID: 29100934 DOI: 10.1016/j.jep.2017.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
PHARMACOLOGY RELEVANCE Baccharis trinervis (Lam, Persoon) leaves are used in the traditional medicine for the treatment of high fevers, edema, inflammation, sores and muscle cramps, snakebites and as antiseptic. AIM OF THE STUDY To investigate the cytotoxic, genotoxic, and mutagenic effects of extracts and fractions of B. trinervis from Brazil and Colombia in Chinese Hamster Ovary (CHO) cells, and to examine the mutagenic activity in Salmonella typhimurium. MATERIAL AND METHODS Aqueous extracts (AE) of aerial parts of B. trinervis from Brazil (B) and Colombia (C) were fractioned in ethyl acetate fraction (EAF), butanol extract (BF), and aqueous residue fraction (ARF). Qualitative chemical screening and determination of total flavonoid content were made. Identification of chemical constituents was performed by High Performance Liquid Chromatography (HPLC) and High Resolution Mass Spectrometry (HRMS). For the in vitro tests, CHO cells were treated for 3h with extracts and fractions. The cytotoxic activity was evaluated by clonal survival and 3-(4.5-dimethylthiazole-2-yl)-2.5-biphenyl tetrazolium bromide reduction assay (MTT). Genotoxic and mutagenic effects were evaluated by the alkaline comet assay and Cytokinesis-blockage micronucleus test (CBMN), respectively. Additionally, Salmonella/microsome assay was carried out to determinate the mutagenic effects in EAF from Brazil and Colombia. RESULTS Phytochemical analyses indicated the presence of saponins and flavonoids. AE and EAF were the samples with the highest quantity of total flavonoids. HPLC showed the presence of luteolin only in AEC, and caffeic acid, ellagic acid, rosmarinic acid, and rutin were identified in AEB and AEC (AEC>AEB). The HRMS in positive mode of EAFB and EAFC showed presence of two carboxylic acids, coumarin, and two terpenoids. In addition, were identified one terpenoid and two carboxylic acids in AE, BF and ARF of B. trinervis from both countries in negative mode. Dose-dependent cytotoxic effects were observed in CHO cells treated with B. trinervis extracts and fractions by using clonal survival and MTT at concentrations higher than 0.05mg/mL. All the extracts and fractions induced DNA strand breaks in CHO cells with dose-dependent response, mostly EAFB and EAFC. The EAF from Brazil and Colombia showed mutagenic effect at 0.5mg/mL, while the other fractions did not show a significant difference in relation to the control. No mutagenic effects were found in EAF from both countries by the Salmonella/microsome assay. CONCLUSIONS Cytotoxic and genotoxic effects were demonstrated in all extracts and fractions used, although only EAF showed mutagenic effects by CBMN, but not by Salmonella/microsome assay. Our results suggest that flavonoids, phenylpropanoids, coumarins, and diterpenes may be responsible for the cytotoxic, genotoxic and mutagenic effects observed.
Collapse
Affiliation(s)
- Victoria Jaramillo-García
- Departamento de Biofísica/Centro de Biotecnologia-UFRGS, Porto Alegre- RS-Brasil.; Programa de Pós Graduação em Biologia Celular e Molecular (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cristiano Trindade
- Unidad de Investigación, Desarrollo e Innovación en Genética y Biología Molecular, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Elisiane Lima
- Programa de Pós Graduação em Biologia Celular e Molecular Aplicada à Saúde - ULBRA, Canoas, RS, Brazil
| | - Temenouga N Guecheva
- Laboratório de Cardiologia Celular e Molecular, PPG em Ciências da Saúde: Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Izabel Villela
- InnVitro Research and Development, Av. Osvaldo Aranha, 1022 sl 1415, 90035-190 Porto Alegre, RS, Brazil
| | - Wilner Martinez-Lopez
- Laboratorio de Epigenética e Inestabilidad Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Dione S Corrêa
- Programa de Pós Graduação em Biologia Celular e Molecular Aplicada à Saúde - ULBRA, Canoas, RS, Brazil
| | - Alexandre de B F Ferraz
- Programa de Pós Graduação em Biologia Celular e Molecular Aplicada à Saúde - ULBRA, Canoas, RS, Brazil
| | - Sidnei Moura
- Centro de Ciências Exatas e de Tecnologia, Instituto de Biotecnologia, Universidade de Caxias do Sul - UCS Caxias do Sul - RS, Brazil
| | - Milton Quintana Sosa
- Unidad de Investigación, Desarrollo e Innovación en Genética y Biología Molecular, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Juliana Da Silva
- Programa de Pós Graduação em Biologia Celular e Molecular Aplicada à Saúde - ULBRA, Canoas, RS, Brazil
| | - João Antônio Pegas Henriques
- Departamento de Biofísica/Centro de Biotecnologia-UFRGS, Porto Alegre- RS-Brasil.; Programa de Pós Graduação em Biologia Celular e Molecular (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Centro de Ciências Exatas e de Tecnologia, Instituto de Biotecnologia, Universidade de Caxias do Sul - UCS Caxias do Sul - RS, Brazil.
| |
Collapse
|
9
|
Da Silva Pinto EA, Garcia EM, de Almeida KA, Fernandes CFL, Tavella RA, Soares MCF, Baisch PRM, Muccillo-Baisch AL, da Silva Júnior FMR. Genotoxicity in adult residents in mineral coal region-a cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16806-16814. [PMID: 28567685 DOI: 10.1007/s11356-017-9312-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The present study assessed the DNA damage in environmentally exposed volunteers living in seven municipalities in an industrial coal region, through the use of the comet assay with blood cells and the micronucleus test with buccal cells. Blood and buccal smears were collected from 320 male volunteers living in seven cities inserted in a coal region. They were ages of 18 and 50 years and also completed a questionnaire intended to identify factors associated with DNA damage through a Poisson regression analysis. The comet assay detected significant differences in DNA damage in volunteers from different municipalities, and neighboring cities (Pedras Altas, Aceguá, and Hulha Negra) had a higher level of DNA damage in relation to control city. Some of the risk factors associated with identified DNA lesions included residence time and life habits. On the other hand, the micronucleus test did not identify differences between the cities studied, but the regression analysis identified risk factors such as age and life habits (consumption of mate tea and low carbohydrates diet). We conclude that there are differences in the DNA damage of volunteers from different cities of the carboniferous region, but the presence of micronuclei in the oral mucosa does not differ between the same cities. Furthermore, we alert that some related factors may increase the risk of genotoxicity, such as residence location and time, and living and food habits. Finally, we suggest the need for continuous biomonitoring of the population, as well as for investing in health promotion in these vulnerable populations.
Collapse
Affiliation(s)
- Edlaine Acosta Da Silva Pinto
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Edariane Menestrino Garcia
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Krissia Aparecida de Almeida
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Caroline Feijó Lopes Fernandes
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Ronan Adler Tavella
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Maria Cristina Flores Soares
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Paulo Roberto Martins Baisch
- Laboratório de Oceanografia Geológica, Instituto de Oceanografia, Universidade Federal do Rio Grande do Sul - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96201-900, Brazil
| | - Ana Luíza Muccillo-Baisch
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil.
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
10
|
Matzenbacher CA, Garcia ALH, Dos Santos MS, Nicolau CC, Premoli S, Corrêa DS, de Souza CT, Niekraszewicz L, Dias JF, Delgado TV, Kalkreuth W, Grivicich I, da Silva J. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:781-788. [PMID: 27894755 DOI: 10.1016/j.jhazmat.2016.11.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Coal mining and combustion generating huge amounts of bottom and fly ash are major causes of environmental pollution and health hazards due to the release of polycyclic aromatic hydrocarbons (PAH) and heavy metals. The Candiota coalfield in Rio Grande do Sul, is one of the largest open-cast coal mines in Brazil. The aim of this study was to evaluate genotoxic and mutagenic effects of coal, bottom ash and fly ash samples from Candiota with the comet assay (alkaline and modified version) and micronucleus test using the lung fibroblast cell line (V79). Qualitative and quantitative analysis of PAH and inorganic elements was carried out by High Performance Liquid Chromatography (HPLC) and by Particle-Induced X-ray Emission (PIXE) techniques respectively. The samples demonstrated genotoxic and mutagenic effects. The comet assay modified using DNA-glicosilase formamidopirimidina (FPG) endonuclease showed damage related to oxidative stress mechanisms. The amount of PAHs was higher in fly ash followed by pulverized coal. The amount of inorganic elements was highest in fly ash, followed by bottom ash. It is concluded that the samples induce DNA damage by mechanisms that include oxidative stress, due to their complex composition, and that protective measures have to be taken regarding occupational and environmental hazards.
Collapse
Affiliation(s)
- Cristina Araujo Matzenbacher
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana Letícia Hilario Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Marcela Silva Dos Santos
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Caroline Cardoso Nicolau
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Suziane Premoli
- Research Center Product and Development (CEPPED), Postgraduate Program in Genetics and Applied Toxicology (PPGGTA), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Dione Silva Corrêa
- Research Center Product and Development (CEPPED), Postgraduate Program in Genetics and Applied Toxicology (PPGGTA), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Claudia Telles de Souza
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liana Niekraszewicz
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tânia Valéria Delgado
- Coal Analysis and Rocks Oil Generators Laboratory, Institute of Geosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Wolfgang Kalkreuth
- Coal Analysis and Rocks Oil Generators Laboratory, Institute of Geosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| |
Collapse
|
11
|
Oyuela Leguizamo MA, Fernández Gómez WD, Sarmiento MCG. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands - A review. CHEMOSPHERE 2017; 168:1230-1247. [PMID: 27823781 DOI: 10.1016/j.chemosphere.2016.10.075] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Soil, air and water pollution caused by the mobility and solubility of heavy metals significantly damages the environment, human health, plants and animals. One common in situ method used for the decontamination of heavy metals is phytoremediation. This usually involves the use of exotic species. However, these species may exhibit invasive behavior, thereby, affect the environmental and ecological dynamics of the ecosystem into which they are introduced. This paper focuses on some native herbaceous plant species reported on the wetlands of Bogota, Colombia, with potential use in phytoremediation of heavy metals. To do that, the authors identified and searched a bibliography based on key words related to heavy metal decontamination. In addition, authors gathered and analyzed relevant information that allowed the comprehension of the phytoremediation process. This paper suggests the study of 41 native or endemic species regarding their behavior towards heavy metal contamination. From a survey of herbaceous plants reported in Bogota, native and endemic species that belong to predominant families in heavy metal accumulation processes were selected. Although found in Colombian's wetlands, these can also be found worldwide. Therefore, they are of great interest due to their global presence and their potential for use in phytoremediation. The current research about the development of phytoremediation focuses on the identification of new herbaceous species able to decontaminate substratum polluted with heavy metals to contribute with the investigation of the ecology and environment of the nature's remnants in urban wetland ecosystems.
Collapse
Affiliation(s)
- Mayerly Alexandra Oyuela Leguizamo
- Faculty of Environmental and Natural Resources, Campus El Vivero, Natura Building, Universidad Distrital Francisco José de Caldas, Bogota, Colombia.
| | - Wilmar Darío Fernández Gómez
- Faculty of Environmental and Natural Resources, Campus El Vivero, Natura Building, Universidad Distrital Francisco José de Caldas, Bogota, Colombia.
| | - Martha Cecilia Gutiérrez Sarmiento
- Faculty of Environmental and Natural Resources, Campus El Vivero, Natura Building, Universidad Distrital Francisco José de Caldas, Bogota, Colombia.
| |
Collapse
|
12
|
Menezes APS, da Silva J, Fisher C, da Silva FR, Reyes JM, Picada JN, Ferraz AG, Corrêa DS, Premoli SM, Dias JF, de Souza CT, Ferraz ADBF. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area. CHEMOSPHERE 2016; 146:396-404. [PMID: 26741544 DOI: 10.1016/j.chemosphere.2015.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
The entire process of power generation, extraction, processing and use of coal strongly impact water resources, soil, air quality and biota leads to changes in the fauna and flora. Pollutants generated by coal burning have been contaminating plants that grow in area impacted by airborne pollution with high metal contents. Baccharis trimera is popularly consumed as tea, and is widely developed in Candiota (Brazil), one of the most important coal burning regions of the Brazil. This study aims to investigate the phytochemical profile, in vivo genotoxic and mutagenic potential of extracts of B. trimera collected from an exposed region to pollutants generated by coal burning (Candiota City) and other unexposed region (Bagé City), using the Comet assay and micronucleus test in mice and the Salmonella/microsome short-term assay. The HPLC analyses indicated higher levels of flavonoids and phenolic acids for B. trimera aqueous extract from Bagé and absence of polycyclic aromatic hydrocarbons for both extracts. The presence of toxic elements such as cobalt, nickel and manganese was statistically superior in the extract from Candiota. For the Comet assay and micronucleus test, the mice were treated with Candiota and Bagé B. trimera aqueous extracts (500-2000 mg/kg). Significant genotoxicity was observed at higher doses treated with B. trimera aqueous extract from Candiota in liver and peripheral blood cells. Micronuclei were not observed but the results of the Salmonella/microsome short-term assay showed a significant increase in TA98 revertants for B. trimera aqueous extract from Candiota. The extract of B. trimera from Candiota bioacumulated higher levels of trace elements which were associated with the genotoxic effects detected in liver and peripheral blood cells.
Collapse
Affiliation(s)
- Ana Paula S Menezes
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde (PPGBioSaude), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Centro de Ciências da Saúde, Universidade da Região da Campanha (URCAMP), Bagé, Rio Grande do Sul, Brazil
| | - Juliana da Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde (PPGBioSaude), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Genética e Toxicologia Aplicada (PPGGTA.MP), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil.
| | - Camila Fisher
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde (PPGBioSaude), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Fernanda R da Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde (PPGBioSaude), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Juliana M Reyes
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde (PPGBioSaude), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Jaqueline N Picada
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde (PPGBioSaude), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Genética e Toxicologia Aplicada (PPGGTA.MP), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Alice G Ferraz
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde (PPGBioSaude), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Dione S Corrêa
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada (PPGGTA.MP), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Suziane M Premoli
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada (PPGGTA.MP), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Johnny F Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Claudia T de Souza
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Alexandre de B F Ferraz
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde (PPGBioSaude), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Genética e Toxicologia Aplicada (PPGGTA.MP), Lutheran University of Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil.
| |
Collapse
|