1
|
Wang Q, Tang J, Pan L, Song A, Miao J, Zheng X, Li Z. Study on epigenotoxicity, sex hormone synthesis, and DNA damage of benzo[a]pyrene in the testis of male Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169340. [PMID: 38110097 DOI: 10.1016/j.scitotenv.2023.169340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Research on the mechanisms of reproductive toxicity caused by persistent organic pollutants (POPs) in marine animals has received significant attention. One group of typical POPs, called polycyclic aromatic hydrocarbons (PAHs), has been found to cause various reproductive toxicities in aquatic organisms, including epigenotoxicity, reproductive endocrine disruption, DNA damage effects and other reproductive toxicity, thereby affecting gonadal development. Interestingly, male aquatic animals are more susceptible to the disturbance and toxicity of environmental pollutants. However, current studies primarily focus on vertebrates, leaving a large gap in our understanding of the reproductive toxicity and mechanisms of PAHs interference in marine invertebrates. In this study, male Ruditapes philippinarum was used as an experimental subject to investigate reproduction-related indexes in clams under the stress of benzo[a]pyrene (B[a]P) at different concentrations (0, 0.8, 4 and 20 μg/L) during the proliferative, growth, maturity, and spawning period. We analyzed the molecular mechanisms of reproductive toxicity caused by PAHs in marine bivalves, specifically epigenotoxicity, reproductive endocrine disruption, and gonadal damage-apoptotic effect. The results suggest that DNA methylation plays a crucial role in mediating B[a]P-induced reproductive toxicity in male R. philippinarum. B[a]P may affect sex hormone levels, impede spermatogenesis and testis development in clams, by inhibiting the steroid hormone synthesis pathway and downregulating genes critical for cell proliferation, testis development, and spermatid expulsion. Moreover, the spermatids of male R. philippinarum were severely impaired under the B[a]P stress, leading to reduced reproductive performance in the clams. These findings contribute to a better understanding of the reproductive toxicity response of male marine invertebrates to POPs stress.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jian Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Aimin Song
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
2
|
Ladouali Z, Boudjema N, Loudjani F, Boubsil S, Abdennour C. The effects of environmental stressors on gonad biomarkers of a sentinel marine bivalve, Mytilus galloprovincialis. MOLLUSCAN RESEARCH 2022. [DOI: 10.1080/13235818.2022.2113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Zeyneb Ladouali
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, Annaba, Algeria
| | - Naouel Boudjema
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, Annaba, Algeria
| | - Farida Loudjani
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, Annaba, Algeria
| | - Soumaya Boubsil
- Department of Biology, Faculty of Natural and Life Sciences, University Souk Ahras, Souk Ahras, Algeria
| | - Cherif Abdennour
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, Annaba, Algeria
| |
Collapse
|
3
|
Xu R, Pan L, Zhou Y, Gao Z, Miao J, Yang Y, Li D. Reproductive toxicity induced by benzo[a]pyrene exposure: first exploration highlighting the multi-stage molecular mechanism in female scallop Chlamys farreri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48675-48693. [PMID: 35195870 DOI: 10.1007/s11356-022-19235-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Reproductive toxicity induced by benzo[a]pyrene (B[a]P) exposure has received great ecotoxicological concerns. However, huge gaps on the molecular mechanism still exist in bivalves. In this study, reproduction-related indicators were investigated in female scallops Chlamys farreri during life cycle of proliferative, growth, mature, and spawn stages, under gradient concentrations of B[a]P at 0, 0.04, 0.4, and 4 μg/L. Meanwhile, a multi-stage ovarian transcriptome analysis under 4 μg/L B[a]P exposure was also conducted to elucidate the potential molecular mechanisms. The results indicated that life-cycle exposure to 0.4 and 4 μg/L B[a]P significantly decreased GSI and sex steroid levels. Even 0.04 μg/L B[a]P could play the adverse role in DNA integrity at the mature and spawn stages. Ovarian histological sections showed that B[a]P inhibited the maturation and release of oocytes. Through the functional enrichment analysis of differentially expressed genes (DEGs) from transcriptome data, 18 genes involved in endocrine disruption effects, DNA damage and repair, and oogenesis were selected and further determined by qRT-PCR. The downregulation of genes involved in steroidogenic and estrogen signaling pathways indicated that B[a]P could cause endocrine disruption through both receptor-dependent and receptor-independent pathways. The variations of gene expressions involved in DNA single-strand break and repair implied the presence of toxic mechanisms similar with vertebrates. Additionally, the changes of gene expressions of cell cycle, apoptosis, and cell adhesion suggested that exposure to B[a]P possibly caused the reproductive toxicity effects by affecting oogenesis. Taken together, this study was a pioneer in combining genome-wide transcriptomic analysis with its corresponding reproductive indicators (GSI, sex steroid levels, DNA single-strand break, and histological sections) to explore the bivalves' toxic mechanisms under B[a]P exposure. Meanwhile, some genes involved in estrogen signaling pathway and DNA damage were firstly analyzed in bivalves, and the expression data might be useful in establishing new hypotheses and discovering new biomarkers for marine biomonitoring.
Collapse
Affiliation(s)
- Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| |
Collapse
|
4
|
The Role of the Ecotoxicology Applied to Seafood as a Tool for Human Health Risk Assessments Concerning Polycyclic Aromatic Hydrocarbons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031211. [PMID: 35162233 PMCID: PMC8834783 DOI: 10.3390/ijerph19031211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Background: Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants routinely detected in aquatic ecosystems. It is, therefore, necessary to assess the link between deleterious marine biota PAH effects, especially in commercialized and consumed animals, environmental health status, and potential human health risks originating from the consumption of contaminated seafood products. Thus, this review seeks to verify the relationships of ecotoxicological studies in determining effect and safety concentrations on animals routinely consumed by humans. Methods: A total of 52 published studies between 2011 and 2021, indexed in three databases, were selected following the PICO methodology, and information on test animals, evaluated PAH, and endpoints were extracted. Results: Benzo(a)pyrene and phenanthrene were the most investigated PAHs in terms of biomarkers and test organisms, and mussels were the most evaluated bioindicator species, with an emphasis on reproductive responses. Furthermore, despite the apparent correlation between environmental PAH dynamics and effects on aquatic biota and human health, few assessments have been performed in a multidisciplinary manner to evaluate these three variables together. Conclusions: The links between human and environmental sciences must be strengthened to enable complete and realistic toxicity assessments as despite the application of seafood assessments, especially to mussels, in bioassays, the connection between toxicological animal responses and risks associated with their consumption is still understudied.
Collapse
|
5
|
Yang Y, Pan L, Zhou Y, Xu R, Miao J, Gao Z, Li D. Damages to biological macromolecules in gonadal subcellular fractions of scallop Chlamys farreri following benzo[a]pyrene exposure: Contribution to inhibiting gonadal development and reducing fertility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117084. [PMID: 33848904 DOI: 10.1016/j.envpol.2021.117084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P), a representative polycyclic aromatic hydrocarbon (PAH) compound in marine ecosystem, has great potential for chronic toxicity to marine animals. It is becoming increasingly apparent that reproductive system is the major target of B[a]P, but the adverse effects of B[a]P on subcellular fractions in bivalve gonads have not been elucidated. Scallops Chlamys farreri are used as the experimental species since they are sensitive to environmental pollutants. This study was conducted to investigate how B[a]P affected the gonadal subcellular fractions, including plasma membrane, nucleus, mitochondria and microsome in scallops, and whether subcellular damages were related to reproductive toxicity. The results showed that mature gametes' counts were significantly decreased in B[a]P-treated scallops. Three biological macromolecules (viz., DNA, lipids and proteins) in gonadal subcellular fractions obtained by differential centrifugation suffered damages, including DNA damage, lipid peroxidation and protein carbonylation in B[a]P treatment groups. Interestingly, mitochondria and microsome were more vulnerable to lipid peroxidation and protein carbonylation than plasma membrane and nucleus, meanwhile males were more susceptible to DNA damage than females under B[a]P exposure. In addition, histological analysis showed that B[a]P delayed gonadal development in C. farreri. To summarize, our results indicated that B[a]P caused damages to biological macromolecules in gonadal subcellular fractions and then induced damages to gonadal tissues of C. farreri, which further inhibited gonadal development and ultimately leaded to reduction in fertility. This study firstly reports the impacts of PAHs on subcellular fractions in bivalves and their relationship with reproductive toxicity. Moreover, exposure of reproductive scallops to B[a]P leads to defects in reproduction, raising concerns on the possible long-term consequences of PAHs for natural populations of bivalves.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
6
|
Yang Y, Pan L, Zhou Y, Xu R, Li D. Benzo[a]pyrene exposure disrupts steroidogenesis and impairs spermatogenesis in diverse reproductive stages of male scallop (Chlamys farreri). ENVIRONMENTAL RESEARCH 2020; 191:110125. [PMID: 32861722 DOI: 10.1016/j.envres.2020.110125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (BaP), a model compound of polycyclic aromatic hydrocarbon known to impair reproductive functions of vertebrates, while the data is scarce in marine invertebrates. To investigate the toxic effects of BaP on invertebrates reproduction, we exposed male scallop (Chlamys farreri) to BaP (0, 0.38 and 3.8 μg/L) throughout three stages of reproductive cycle (early gametogenesis stage, late gametogenesis stage and ripe stage). The results demonstrated that BaP decreased the gonadosomatic index and mature sperms counts in a dose-dependent manner. Significant changes in sex hormones contents and increased 17β-estradiol/testosterone ratio suggested that BaP produced the estrogenic endocrine effects in male scallops. In support of this view, we confirmed that BaP significantly altered transcripts of genes along the upstream PKA and PKC mediated signaling pathway like fshr, lhcgr, adcy, PKA, PKC, PLC and NR5A2. Subsequently, the expressions of genes encoding downstream steroidogenic enzymes (e.g., 3β-HSD, CYP17 and 17β-HSD) were impacted, which corresponded well with hormonal alterations. In addition, BaP suppressed transcriptions of spermatogenesis-related genes, including ccnd2, SCP3, NRF1 and AQP9. Due to different functional demands, these transcript profiles involved in spermatogenesis exhibited a stage-specific expression pattern. Furthermore, histopathological analysis determined that BaP significantly inhibited testicular development and maturation in male scallops. Overall, the present findings indicated that, playing as an estrogenic-like chemical, BaP could disrupt the steroidogenesis pathway, impair spermatogenesis and caused histological damages, thereby inducing reproductive toxicities with dose- and stage-specific effects in male scallops. And the adverse outcomes might threaten the stability of bivalve populations and destroy the function of marine ecosystems in the long term.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
7
|
Yang Y, Zhou Y, Pan L, Xu R, Li D. Benzo[a]pyrene exposure induced reproductive endocrine-disrupting effects via the steroidogenic pathway and estrogen signaling pathway in female scallop Chlamys farreri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138585. [PMID: 32315858 DOI: 10.1016/j.scitotenv.2020.138585] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (B[a]P), as one of the typical polycyclic aromatic hydrocarbons and environmental contaminants, may cause endocrine disrupting effects and reproductive impairments in bivalves. However, the molecular mechanisms are still not fully understood. In this study, three reproductive stages (proliferative stage, growing stage and mature stage) of female scallops Chlamys farreri were exposed to B[a]P at 0, 0.38 and 3.8 μg/L. The present study determined the adverse effects of B[a]P on gonadosomatic index, circulating hormone concentrations, endocrine-associated gene expression and ovarian histology. Significant decrease in sex hormones including progesterone (P), testosterone (T) and 17β-estradiol (E2), was observed in B[a]P-treated C. farreri at growing stage and mature stage. These effects were associated with down-regulated expression of steroidogenic enzymes, including 3β-HSD, CYP17 and 17β-HSD, which were regulated by the upstream adenylate cyclase (Adcy) - protein kinase (PKA) signaling pathway. Ovarian transcript levels of estrogen receptor (ER) and caveolin-1 (cav-1) were decreased in B[a]P-treated C. farreri. Vitellogenin (Vtg), an estrogen-mediated gene involved in ovarian development, was down-regulated by B[a]P. Furthermore, ovarian histology was investigated to clarify the impairment of B[a]P on ovaries at growing stage and mature stage. Overall, the present results elucidated the anti-estrogenic mechanisms along the steroidogenic pathway and estrogen signaling pathway for the stage-dependent endocrine-disrupting effects of B[a]P. This finding provides important information regarding to the underlying molecular mechanisms of B[a]P-induced endocrine disruption in different reproductive stages of bivalves. In addition, the adverse effects should be taken into concertation during protection of bivalves germplasm resources and comprehensive evaluation of ecological risks.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
8
|
Zhang CM, Sun ZX, Wang ZL, Chen JS, Chang Z, Wang Z, Zhu L, Ma ZH, Peng YJ, Xu ZA, Wang SQ. Abnormal methylation of spermatozoa induced by benzo(a)pyrene in rats. Hum Exp Toxicol 2019; 38:846-856. [PMID: 30982342 DOI: 10.1177/0960327119836230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epigenetic mutations caused by pollutants are possibly linked to many diseases. Benzo(a)pyrene (BaP) is one of the most representative air pollutants and has aroused wide concern because of its strong carcinogenicity. The reproductive toxicity induced by BaP has been identified, but little is known about the characteristics of the methylation changes induced by BaP. In this study, a methylated DNA immunoprecipitation sequencing method was used to detect the methylation of sperm DNA of rats exposed to BaP. Compared with the respective genes in normal rats, there were 3227 hypomethylated genes and 828 hypermethylated genes after BaP exposure. Gene ontology enrichment analysis reported that differentially methylated genes (DMGs) were enriched in the localization, single-multicellular organism process and plasma membrane. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the DMGs were significantly enriched in the Ras signalling pathway, Rap1 signalling pathway, pancreatic secretion and neuroactive ligand-receptor interaction. DisGeNET disease spectrum analysis showed that DMGs were associated with infertility and certain genetic diseases. Further research needs to be done to explore whether these abnormal methylation are transgenerational.
Collapse
Affiliation(s)
- C M Zhang
- 1 Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Z X Sun
- 2 Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Z L Wang
- 1 Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - J S Chen
- 2 Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Z Chang
- 1 Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Z Wang
- 2 Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - L Zhu
- 1 Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Z H Ma
- 3 Pain Department of Henan Provincial Hospital, Zhengzhou, Henan, China
| | - Y J Peng
- 1 Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Z A Xu
- 1 Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - S Q Wang
- 1 Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Chen H, Diao X, Wang H, Zhou H. An integrated metabolomic and proteomic study of toxic effects of Benzo[a]pyrene on gills of the pearl oyster Pinctada martensii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:330-336. [PMID: 29573723 DOI: 10.1016/j.ecoenv.2018.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the most important polycyclic aromatic hydrocarbons (PAHs), which are widely present in the marine environment. Because of its teratogenic, mutagenic, and carcinogenic effects on various organisms, the toxicity of BaP is of great concern. In this study, we focused on the toxic effects of BaP (1 µg/L and 10 µg/L) on gills of the pearl oyster Pinctada martensii using combined metabolomic and proteomic approaches. At the metabolome level, the high concentration of BaP mainly caused abnormal energy metabolism, osmotic regulation and immune response marked by significantly altered metabolites in gills. At the proteome level, both concentrations of BaP mainly induced signal transduction, transcription regulation, cell growth, stress response, and energy metabolism. Overall, the research demonstrated that the combination of proteomic and metabolomic approaches could provide a significant way to elucidate toxic effects of BaP on P. martensii.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
10
|
Pan L, Xu R, Wen J, Guo R. Assessing PAHs pollution in Shandong coastal area (China) by combination of chemical analysis and responses of reproductive toxicity in crab Portunus trituberculatus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14291-14303. [PMID: 28424957 DOI: 10.1007/s11356-017-8993-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
The concentrations of PAHs in seawater and sediments were measured at three selected sites (S1, S2, and S3) along the coastal area of Shandong (China) in April, May, and June, 2015, which ranged from 29.72 to 123.88 ng/L and 82.62 to 232.63 ng/g, respectively. Meanwhile, the reproductive toxicity responses in crab Portunus trituberculatus were also evaluated to assess the pollution of PAHs during the sampling period. Chemical analysis showed that S3 was the most PAH-contaminated area while S1 was the least, and the biochemical parameters concerned with reproduction were efficiently responded to the three sites, especially in S3 (p < 0.05). Moreover, the principal component analyses (PCA) showed that parameters for DNA alkaline unwinding, protein carbonyl content, and lipid peroxidation levels in two genders, 17β-estradiol in female, testosterone and TESK2 gene expression in male crabs, were closely correlated with the concentrations of PAHs (2 + 3 rings, 4 rings, and 5 + 6 rings), which were considered to be good candidate indicators to assess the environmental pollutions resulting from PAHs in the coastal area of Shandong, China.
Collapse
Affiliation(s)
- Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China.
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Jianmin Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Ruiming Guo
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| |
Collapse
|
11
|
Sheweita SA, Al-Shora S, Hassan M. Effects of benzo[a]pyrene as an environmental pollutant and two natural antioxidants on biomarkers of reproductive dysfunction in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17226-17235. [PMID: 27221463 DOI: 10.1007/s11356-016-6934-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
Benzo[a]pyrene (B[a]P) is an environmental toxicant and endocrine disruptor. Therefore, the aim of the present study was to investigate the toxicity of B[a]P in testis of rats and also to study the role of silymarin and thymoquinone (TQ) as natural antioxidants in the alleviation of such toxicity. Data of the present study showed that levels of testosterone, estrogen and progesterone were significantly decreased after treatment of rats with B[a]P. In addition, B[a]P caused downregulation of the expressions of steroidogenic enzymes including CYP17A1 and CP19A1, and decreased the activity of 17-β hydroxysteroid dehydrogenase (17β-HSD). Moreover, B[a]P decreased the activities of antioxidant enzymes including catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD), and significantly increased free radicals levels in testis of male rats. However, pretreatment of rats with silymarin prior to administration of B[a]P was found to restore the level of free radicals, antioxidant status, and activities of steroidogenic enzymes to their normal levels in testicular tissues. Moreover, histopathological finding showed that silymarin recovered the abnormalities occurred in tubules caused by B[a] P in testis of rats. On the other hand, TQ showed pro-oxidant effects and did not ameliorate the toxic effects of B[a] P on the testicular tissue since it decreased antioxidant enzymes activities and inhibited the protein expression of CYP11A1 and CYP21A2 compared to control rats. Moreover, TQ decreased the levels of testosterone, estrogen, and progesterone either in the presence or absence of B[a]P. It is concluded that B[a]P decreased testosterone levels, inhibited antioxidant enzymes activities, caused downregulation of CYP isozymes involved in steroidogenesis, and increased free radical levels in testis. Moreover, silymarin was more effective than TQ in restoring organism health and alleviating the deleterious effects caused by B[a]P in the testis of rats. Due to its negative impact, it is highly recommended to limit the use of TQ as a dietary supplement since millions of people in the Middle East are using it to improve their health.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt.
| | - S Al-Shora
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt
| | - M Hassan
- Department of Environmental Studies, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt
| |
Collapse
|