1
|
Mercan S, Kilic MD, Zengin S, Yayla M. Experimental study for inorganic and organic profiling of toy makeup products: Estimating the potential threat to child health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33975-33992. [PMID: 38696006 PMCID: PMC11136717 DOI: 10.1007/s11356-024-33362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Inorganic elements are added to toys as impurities to give desired stability, brightness, flexibility, and color; however, these elements may cause numerous health issues after acute or chronic exposure. In this study, the inorganic profile of 14 elements (Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Se, Sb, Pb, and Zn) in 63 toy makeup products was identified by inductively coupled plasma-mass spectrometry after microwave acid digestion method. Additionally, organic allergen fragrance was investigated by gas chromatography-mass spectrometry. The systemic exposure dosage (SED), margin of safety (MoS), lifetime cancer risk (LCR), hazard quotient (HQ), and hazard indices were used to assess the safety evaluation. Then, 57 out of 63 samples (90.48%) exceeded the limits at least for one toxic element with descending order Ni > Cr > Co > Pb > Sb > Cd > As > Hg. The SED values were compared with tolerable daily intake values and remarkably differences were found for Al and Pb. The MoS values for 57.15% of samples exceeded the limit value for Al, As, Cd, Co, Hg, Mn, Sb, and Zn elements. The LCR values were observed at 100% (n = 63), 79.37% (n = 50), 85.71% (n = 54), 77.78% (n = 49), and 18.87% (n = 10) for Cr, Ni, As, Pb, and Cd, respectively. Also, the skin sensitization risks were obtained for Cr and Ni at 26.980% (n = 17) and 9.52% (n = 6), respectively. The HQ values for 80% of samples were found to be ≥ 1 at least for one parameter. The investigation of fragrance allergens in samples did not show any significant ingredients. As a result, toy makeup products marketed in local stores were found to be predominantly unsafe. Children should be protected from harmful chemicals by regular monitoring and strict measures.
Collapse
Affiliation(s)
- Selda Mercan
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey.
| | - Mihriban Dilan Kilic
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Simge Zengin
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Murat Yayla
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
2
|
Yu L, He X, Gao C, Li G, Wang Y, Wang Y. An emission model for inhalable chemicals from children's play mats based on partition coefficients. J Chromatogr A 2024; 1721:464855. [PMID: 38569298 DOI: 10.1016/j.chroma.2024.464855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Inhalable chemicals found in children's play mats can be slowly released into indoor environments and consequently threaten human health. In this study, the partition coefficients of seven inhalable chemicals between play mats and air were calculated by headspace gas chromatography-mass spectrometry based on the law of conservation of mass and the principle of equilibrium of headspace bottles. Furthermore, an emission source model for the residual ratio of the inhalable chemicals in play mats was established. Most substances found in play mats have large partition coefficients owing to the complex void structure of the mats, which adsorbs a large number of organic pollutants. The partition coefficient is not only related to the boiling point and environmental temperature, but also the specific material and the adsorption of the organic pollutant onto the material. The emission source model for children's play mats developed in this study can characterize the decay of the inhalable chemicals over time. The data showed that after eight days of placing the play mat in a ventilated environment, the residual ratio of seven inhalable chemicals did not exceed 15 %.
Collapse
Affiliation(s)
- Lihua Yu
- Shandong Institute for Product Quality Inspection, Jinan 250102, China
| | - Xiangke He
- Shandong Institute for Product Quality Inspection, Jinan 250102, China
| | - Cuiling Gao
- Shandong Institute for Product Quality Inspection, Jinan 250102, China.
| | - Guixiao Li
- Shandong Institute for Product Quality Inspection, Jinan 250102, China
| | - Yue Wang
- Shandong Institute for Product Quality Inspection, Jinan 250102, China
| | - Yunbo Wang
- Shandong Jianzhu University, Jinan, 250101, China
| |
Collapse
|
3
|
Yan M, Zhang N, Li X, Xu J, Lei H, Ma Q. Integrating Post-Ionization Separation via Differential Mobility Spectrometry into Direct Analysis in Real Time Mass Spectrometry for Toy Safety Screening. Anal Chem 2024; 96:265-271. [PMID: 38153235 DOI: 10.1021/acs.analchem.3c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Direct analysis in real time (DART) enables direct desorption and ionization of analytes, bypassing the time-consuming chromatographic separation traditionally required for mass spectrometry (MS) analysis. However, DART-MS suffers from matrix interference of complex samples, resulting in compromised detection sensitivity and quantitation accuracy. In this study, DART-MS was combined with differential mobility spectrometry (DMS) to provide an additional dimension of post-ionization ion mobility separation within a millisecond time scale, compensating for the lack of separation in DART-MS analysis. As proof-of-concept, primary aromatic amines (PAAs), a class of potentially hazardous chemicals, were analyzed in various toy products, including bubble solutions, finger paints, and plush toys. In addition to commercial Dip-it glass rod and metal mesh sampling tools, a customized rapid extractive evaporation device was designed for the accelerated extraction and sensitive analysis of solid toy samples. The incorporation of DMS in DART-MS analysis enabled the rapid separation and differentiation of isomeric analytes, leading to improved accuracy and reliability. The developed protocols were optimized and validated, achieving good linearity with correlation coefficients greater than 0.99 and acceptable repeatability with relative standard deviations less than 10%. Moreover, satisfactory sensitivity was realized with limits of detection and quantitation ranges of 0.2-5 and 1-20 μg/kg (μg/L) for the 11 PAA analytes. The established methodology was applied for the analysis of real toy samples (n = 18), which confirmed its appealing potential for toy safety screening and consumer health protection.
Collapse
Affiliation(s)
- Mengmeng Yan
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing 100091, China
| | - Nan Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoxu Li
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215021, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
4
|
Zou ML, Huang HC, Chen YH, Jiang CB, Wu CD, Lung SCC, Chien LC, Lo YC, Chao HJ. Sex-differences in the effects of indoor air pollutants and household environment on preschool child cognitive development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160365. [PMID: 36427743 DOI: 10.1016/j.scitotenv.2022.160365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Air pollution, outdoor residential environment, indoor household characteristics, and parental mental health are potential factors associated with child development. However, few studies have simultaneously analyzed the association between the aforementioned factors and preschool child (aged 2-5 years) development. This study investigated the effects of those factors on child development and their potential modifying effects. A total of 142 participants were recruited from a birth cohort study in the Greater Taipei Area, and the evaluation was conducted at each participant's home from 2017 to 2020. Child cognitive development was assessed by psychologists using the Bayley Scales of Infant and Toddler Development and the Wechsler Preschool & Primary Scale of Intelligence. Household air pollutants, outdoor residential environment, indoor household characteristics, parental mental health, and other covariates were evaluated. Multiple regressions were used to examine the relationships between child development and covariates. Stratified analysis by child sex and parental mental health was conducted. Average indoor air pollutant levels were below Taiwan's Indoor Air Quality Standards. After adjustment for covariates, the indoor total volatile organic compounds (TVOCs) level was significantly associated with poor child development (per interquartile range increase in the TVOC level was associated with a 5.1 percentile decrease in child cognitive development). Sex difference was observed for the association between TVOC exposure and child development. Living near schools, burning incense at home, purchasing new furniture, and parental anxiety were related to child development. Indoor TVOC level was associated with poor child cognitive development, specifically with the girls. Indoor and outdoor residential environment and parental anxiety interfered with child development. TVOCs should be used cautiously at home to minimize child exposure. A low-pollution living environment should be provided to ensure children's healthy development.
Collapse
Affiliation(s)
- Ming-Lun Zou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chun Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | | | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsing Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Galeja M, Wypiór K, Wachowicz J, Kędzierski P, Hejna A, Marć M, Klewicz K, Gabor J, Okła H, Swinarew AS. POM/EVA Blends with Future Utility in Fused Deposition Modeling. MATERIALS 2020; 13:ma13132912. [PMID: 32610478 PMCID: PMC7372422 DOI: 10.3390/ma13132912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023]
Abstract
Polyoxymethylene (POM) is one of the most popular thermoplastic polymers used in the industry. Therefore, the interest in its potential applications in rapid prototyping is understandable. Nevertheless, its low dimensional stability causes the warping of 3D prints, limiting its applications. This research aimed to evaluate the effects of POM modification with ethylene-vinyl acetate (EVA) (2.5, 5.0, and 7.5 wt.%) on its processing (by melt flow index), structure (by X-ray microcomputed tomography), and properties (by static tensile tests, surface resistance, contact angle measurements, differential scanning calorimetry, and thermogravimetric analysis), as well as very rarely analyzed emissions of volatile organic compounds (VOCs) (by headspace analysis). Performed modifications decreased stiffness and strength of the material, simultaneously enhancing its ductility, which simultaneously increased the toughness even by more than 50% for 7.5 wt.% EVA loading. Such an effect was related to an improved linear flow rate resulting in a lack of defects inside the samples. The decrease of the melting temperature and the slight increase of thermal stability after the addition of EVA broadened the processing window for 3D printing. The 3D printing trials on two different printers showed that the addition of EVA copolymer increased the possibility of a successful print without defects, giving space for further development.
Collapse
Affiliation(s)
- Mateusz Galeja
- Department of Material Engineering, Central Mining Institute, Pl. Gwarków 1, 40-166 Katowice, Poland; (M.G.); (K.W.); (J.W.)
| | - Klaudiusz Wypiór
- Department of Material Engineering, Central Mining Institute, Pl. Gwarków 1, 40-166 Katowice, Poland; (M.G.); (K.W.); (J.W.)
| | - Jan Wachowicz
- Department of Material Engineering, Central Mining Institute, Pl. Gwarków 1, 40-166 Katowice, Poland; (M.G.); (K.W.); (J.W.)
| | - Przemysław Kędzierski
- Department of Acoustics, Electronics and IT Solutions, Central Mining Institute, Pl. Gwarków 1, 40-166 Katowice, Poland;
| | - Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
- Correspondence:
| | - Mariusz Marć
- Department of Analytical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (M.M.); (K.K.)
| | - Krzysztof Klewicz
- Department of Analytical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (M.M.); (K.K.)
| | - Jadwiga Gabor
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland; (J.G.); (H.O.); (A.S.S.)
| | - Hubert Okła
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland; (J.G.); (H.O.); (A.S.S.)
| | - Andrzej Szymon Swinarew
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland; (J.G.); (H.O.); (A.S.S.)
- Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
6
|
Oleneva E, Kuchmenko T, Drozdova E, Legin A, Kirsanov D. Identification of plastic toys contaminated with volatile organic compounds using QCM gas sensor array. Talanta 2019; 211:120701. [PMID: 32070603 DOI: 10.1016/j.talanta.2019.120701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 11/19/2022]
Abstract
In this paper, we propose a fast and easy-to-use analytical method to identify the children toys contaminated with potentially dangerous substances from the class of volatile organic compounds (VOCs). It is shown that the use of cross-sensitive gas sensor array based on piezoelectric sensors, modified with different sorbents, allows reliable recognition of items with the elevated levels of VOCs. Applying chemometric methods for processing of the sensor array data, it is possible to classify the toys into clean and hazardous ones with sensitivity and accuracy around 96%. Taking into account the simplicity of the suggested procedure, it appears to be an attractive option for cost-effective pre-screening of potentially dangerous plastic toys in comparison with the expensive and time-consuming chromatographic methods.
Collapse
Affiliation(s)
- E Oleneva
- Laboratory of Artificial Sensory Systems, ITMO University, Kronverksy Pr., 49, 197101, St. Petersburg, Russian Federation.
| | - T Kuchmenko
- Department of Environment and Chemical Engineering, Voronezh State University of Engineering Technology, 394000, Voronezh, Russian Federation
| | - E Drozdova
- Department of Environment and Chemical Engineering, Voronezh State University of Engineering Technology, 394000, Voronezh, Russian Federation
| | - A Legin
- Laboratory of Artificial Sensory Systems, ITMO University, Kronverksy Pr., 49, 197101, St. Petersburg, Russian Federation; Institute of Chemistry, St. Petersburg State University, Universitetskaya Nab., 7/9, 199034, St. Petersburg, Russian Federation
| | - D Kirsanov
- Laboratory of Artificial Sensory Systems, ITMO University, Kronverksy Pr., 49, 197101, St. Petersburg, Russian Federation; Institute of Chemistry, St. Petersburg State University, Universitetskaya Nab., 7/9, 199034, St. Petersburg, Russian Federation
| |
Collapse
|
7
|
Meng X, Zhang N, Sun X, Niu Z, Deng Y, Xu J, Bai H, Ma Q. Suspect screening of 200 hazardous substances in plastic toys using ultra-high-performance liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry. J Chromatogr A 2019; 1617:460830. [PMID: 31902577 DOI: 10.1016/j.chroma.2019.460830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/09/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
There is an urgent need for the development of efficient and comprehensive analytical methods for organic chemical compounds due to their increasing number and diversity in children's toy products. The presence of these chemicals in toys poses an extreme risk for the health and development of children. In this study, an analytical methodology has been developed using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). This hybrid instrumentation together with an in-house accurate-mass database and a mass spectral library, allows for wide-scope screening and identification of hazardous substances in plastic toys. A total number of 200 compounds belonging to eight chemical families were investigated, such as coloring agents, plasticizers, fragrance allergens, nitrosamines, primary aromatic amines, flame retardants, perfluorinated compounds, and endocrine disruptors. Following a straightforward and efficient dissolution/precipitation method for sample preparation, chemical screening and confirmation were conducted by comparing the experimentally measured exact mass, retention time, and isotopic pattern with the accurate-mass database and by matching the acquired MS/MS spectra against the mass spectral library. The matrix effect, linearity, sensitivity, precision, and recovery of the proposed method were properly evaluated. The obtained limits of detection (LODs) and quantitation (LOQs) were in the range of 0.01-0.98 mg kg-1 and 0.03-2.99 mg kg-1, respectively. The applicability of the developed protocol was verified through the analysis of 55 real plastic toy products.
Collapse
Affiliation(s)
- Xianshuang Meng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Nan Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Xiaojie Sun
- SCIEX (China) Co., Ltd., Beijing 100102, China
| | - Zengyuan Niu
- Technical Center of Qingdao Customs District, Qingdao 266002, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jianqiang Xu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|