1
|
Chen Y, Cheng Y, Ruan J, Huang D, Xiao J, Zhao X, Li J, Qu J, Wang X. The Association Between Brominated Flame Retardants Exposure and Liver-Related Biomarkers in US Adults. TOXICS 2024; 12:852. [PMID: 39771067 PMCID: PMC11679693 DOI: 10.3390/toxics12120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Background: Emerging studies demonstrate that exposure to brominated flame retardants (BFRs) can have harmful effects on human health. Our study focused on the relationship between exposure to various BFRs and markers of liver function. Methods: To further explore the association between BFR exposure and liver function impairment, we used data from the National Health and Nutrition Examination Surveys (NHANES) for three cycles from 2009 to 2014, leaving 4206 participants (≥20 years of age) after screening. Nine BFRs and eight liver function tests (LFTs) were measured in the participants' serum to represent BFRs and liver function impairment in vivo. To investigate whether there is a relationship between BFRs and health outcome, statistical research methods such as the weighted linear regression model, restricted cubic spline (RCS), weighted quantile sum (WQS), quantile-based g computing (QGC), and the Bayesian Kernel Machine Regression (BKMR) were used to evaluate the correlation between serum BFRs and LFTs. Results: The studies reveals that exposure to BFRs is associated with liver function biomarkers. In a weighted linear regression model, we found that PBB153, PBDE99, PBDE154, PBDE209, PBDE85 exposure was positively correlated with AST, ALT, GGT, ALP, TP, and SL risk. In RCS model, the nonlinear relationships between PBB153 and AST, ALT, and GGT and PBDE209 and ALT and TP are the most significant. The exposure to combined BFRs was positively correlated with AST, ALT, and GGT in WQS and QGC models. BKMR analysis showed that BFR exposure was positively correlated with AST, ALT, ALP, and GGT. Conclusions: Exposure to BFRs is associated with liver function impairment, suggesting that BFR exposure is potentially toxic to the human liver, but more in-depth studies are needed to explore this correlation.
Collapse
Affiliation(s)
- Yuqing Chen
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.C.); (Y.C.); (J.R.); (D.H.); (J.X.); (X.Z.)
| | - Yulan Cheng
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.C.); (Y.C.); (J.R.); (D.H.); (J.X.); (X.Z.)
| | - Jialing Ruan
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.C.); (Y.C.); (J.R.); (D.H.); (J.X.); (X.Z.)
| | - Donglei Huang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.C.); (Y.C.); (J.R.); (D.H.); (J.X.); (X.Z.)
| | - Jing Xiao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.C.); (Y.C.); (J.R.); (D.H.); (J.X.); (X.Z.)
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.C.); (Y.C.); (J.R.); (D.H.); (J.X.); (X.Z.)
| | - Jinlong Li
- School of Pharmacy, Nantong University, Nantong 226001, China;
| | - Jianhua Qu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.C.); (Y.C.); (J.R.); (D.H.); (J.X.); (X.Z.)
| | - Xiaoke Wang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.C.); (Y.C.); (J.R.); (D.H.); (J.X.); (X.Z.)
| |
Collapse
|
2
|
Wang T, Hosseinzadeh M, Cuccagna A, Alakenova R, Casademunt P, Reyes Rovatti A, López-Rubio A, Porte C. Comparative toxicity of conventional versus compostable plastic consumer products: An in-vitro assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132123. [PMID: 37499498 DOI: 10.1016/j.jhazmat.2023.132123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
This study investigates the toxicity of methanolic extracts obtained from compostable plastics (BPs) and conventional plastics (both virgin and recycled). Additionally, it explores the potential influence of plastic photodegradation and composting on toxic responses using a battery of in vitro assays conducted in PLHC-1 cells. The extracts of BPs, but not those of conventional plastics, induced a significant decrease in cell viability (<70%) in PLHC-1 cells after 24 h of exposure. Toxicity was enhanced by either photodegradation or composting of BPs. Extracts of conventional plastics, and particularly those of recycled plastics, induced 7-ethoxyresorufin-O-deethylase (EROD) activity and micronucleus formation in exposed cells, indicating the presence of significant amounts of CYP1A inducers and genotoxic compounds in the extracts, which was enhanced by photodegradation. These findings highlight the importance of investigating the effects of degradation mechanisms such as sunlight and composting on the toxicity of BPs. It is also crucial to investigate the composition of newly developed formulations for BPs, as they may be more harmful than conventional ones.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain.
| | - Mahboubeh Hosseinzadeh
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Alice Cuccagna
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Rakhat Alakenova
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Paula Casademunt
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Alcira Reyes Rovatti
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Marques ML, Cairrao E. Occurrence and Health Effects of Hexabromocyclododecane: An Updated Review. TOXICS 2023; 11:toxics11050409. [PMID: 37235223 DOI: 10.3390/toxics11050409] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Hexabromocyclododecane (HBCD) is a non-aromatic compound belonging to the bromine flame retardant family and is a known persistent organic pollutant (POP). This compound accumulates easily in the environment and has a high half-life in water. With a variety of uses, the HBCD is found in house dust, electronics, insulation, and construction. There are several isomers and the most studied are α-, β-, and γ-HBCD. Initially used as a substitute for other flame retardants, the polybrominated diphenyl ethers (PBDEs), the discovery of its role as a POP made HBCD use and manufacturing restricted in Europe and other countries. The adverse effects on the environment and human health have been piling, either as a result from its accumulation or considering its power as an endocrine disruptor (ED). Furthermore, it has also been proven that it has detrimental effects on the neuronal system, endocrine system, cardiovascular system, liver, and the reproductive system. HBCD has also been linked to cytokine production, DNA damage, increased cell apoptosis, increased oxidative stress, and reactive oxygen species (ROS) production. Therefore, this review aims to compile the most recent studies regarding the negative effects of this compound on the environment and human health, describing the possible mechanisms by which this compound acts and its possible toxic effects.
Collapse
Affiliation(s)
- Maria Lopes Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
4
|
Artabe AE, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review. Food Chem Toxicol 2020; 145:111677. [PMID: 32810589 DOI: 10.1016/j.fct.2020.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Halogenated organic compounds are a particular group of contaminants consisting of a large number of substances, and of great concern due to their persistence in the environment, potential for bioaccumulation and toxicity. Some of these compounds have been classified as persistent organic pollutants (POPs) under The Stockholm Convention and many toxicity assessments have been conducted on them previously. In this work we provide an overview of enzymatic assays used in these studies to establish toxic effects and dose-response relationships. Studies in vivo and in vitro have been considered with a particular emphasis on the impact of halogenated compounds on the activity of relevant enzymes to the humans and the environment. Most information available in the literature focuses on chlorinated compounds, but brominated and fluorinated molecules are also the target of increasing numbers of studies. The enzymes identified can be classified as enzymes: i) the activities of which are affected by the presence of halogenated organic compounds, and ii) those involved in their metabolisation/detoxification resulting in increased activities. In both cases the halogen substituent seems to have an important role in the effects observed. Finally, the use of these enzymes in biosensing tools for monitoring of halogenated compounds is described.
Collapse
Affiliation(s)
- Amaia Ereño Artabe
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Hugo Cunha-Silva
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Alejandro Barranco
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
5
|
Wu P, Xie L, Wang Y, Cui Y, Chen Z, Zou X, Ge H, Ruan C, Zhang Y, Jin H. RETRACTED: Residual papaya promoting the growth performance, antioxidant, nonspecific immunity of juvenile Tilapia mossambica. FISH & SHELLFISH IMMUNOLOGY 2020; 98:605-610. [PMID: 31669278 DOI: 10.1016/j.fsi.2019.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of Editors-in-Chief and first Author. The article duplicates significant parts of a paper that had already appeared in Fish & Shellfish Immunology, Volume 93 (2019) 726-731, https://doi.org/10.1016/j.fsi.2019.06.052. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. The article was published without the knowledge of the co-authors.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Liying Xie
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of SunYat-Sen University, Guangzhou, 510630, China
| | - Yubo Cui
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhaobo Chen
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Xuejun Zou
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hui Ge
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chengjiang Ruan
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Hua Jin
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| |
Collapse
|
6
|
Wang B, Wang H, Han D, Yin Y. Screening toxicological effects of different contaminants using hepatic homogenates-based ethoxyresorufin-O-deethylase in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135775. [PMID: 31806302 DOI: 10.1016/j.scitotenv.2019.135775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we demonstrated the potential of an in vitro method of liver homogenate-based ethoxyresorufin-O-deethylase (EROD) to determine the toxicological effects of multiple kinds of contaminants. We evaluated the in vitro impact of nine pharmaceutically active compounds (PhACs), 13 polycyclic aromatic hydrocarbons (PAHs), and three polychlorinated biphenyls (PCBs). There were different responses of EROD to these contaminants. The response of EROD to PhACs was quite complex, exhibiting both induction and inhibition effects. PAHs and PCBs elicited a strong inhibitory response on EROD activity at high concentrations in a dose-dependent manner. PAHs showed more inhibitory effects as the number of benzene rings increased. Our in vitro bioassay seems to be a potential method for toxicological screening of multiple types of contaminants.
Collapse
Affiliation(s)
- Biyan Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Haiyan Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Daxiong Han
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Yan Yin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
7
|
Zhang Y, Wang X, Chen C, An J, Shang Y, Li H, Xia H, Yu J, Wang C, Liu Y, Guo S. Regulation of TBBPA-induced oxidative stress on mitochondrial apoptosis in L02 cells through the Nrf2 signaling pathway. CHEMOSPHERE 2019; 226:463-471. [PMID: 30951941 DOI: 10.1016/j.chemosphere.2019.03.167] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a commonly used brominated flame retardant, which has a wide range of toxic effects on organisms. This study investigated the cytotoxic effects on human hepatocytes (L02 cells) after treated with 0, 5, 10, 20, and 40 μM of TBBPA. Results showed that TBBPA significantly increased intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and the ratio of oxidized/reduced glutathione (GSSG/GSH) dose-dependently. TBBPA also decreased the cell mitochondrial membrane potential (MMP), caused the release of cytochrome C (Cyt C) to cytoplasm and promoted the expression of caspase-9 and caspase-3, and finally increased the level of apoptosis. The ROS inhibitor N-acetyl-L-cysteine (NAC) relieved the oxidative stress responses, and prevented the decrease of MMP and increase of apoptosis. In addition, TBBPA promoted the expression of antioxidant genes related to Nrf2, such as quinone oxidoreductase 1 (NQO1), catalase (CAT), and heme oxygenase 1 (HO-1). Oxidative stress initiated by TBBPA, activated mitochondrial apoptosis and Nrf2 pathway, and increased the degree of apoptosis in L02 cells.
Collapse
Affiliation(s)
- Yunchao Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chao Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing An
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yu Shang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Hubin Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jun Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shu Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, Guangdong Province, 510655, PR China
| |
Collapse
|