1
|
Murata Y, Sakai H. Abating a micropollutant epinastine by UV-based advanced oxidation processes: Comparison for UV/hydrogen peroxide, UV/persulfate, and UV/chlorine, impacts of bromide contents, and formation of DBPs during post-chlorination. CHEMOSPHERE 2025; 374:144206. [PMID: 39946939 DOI: 10.1016/j.chemosphere.2025.144206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Anthropogenic organic compounds, such as pharmaceuticals and personal care products, contaminate water, posing toxicological risks caused by either their parent compounds or transformation products. This study compares ultraviolet (UV)-based advanced oxidation processes (UV/hydrogen peroxide, UV/persulfate, and UV/chlorine) for the abatement of an antihistamine drug epinastine. UV light at 254 nm was irradiated upon solutions containing 10 μM epinastine and 100 μM oxidant. UV/chlorine degraded epinastine most effectively at pH 6.0-8.0; considerable contributions by reactive chlorine species and hydroxyl radicals were quantified using probe compounds. Furthermore, the degradation efficiency of the UV/chlorine treatment persisted with a halved chlorine dosage. Additionally, the types and concentrations of disinfection byproducts (DBPs) produced during UV/chlorine treatment with or without post-chlorination varied depending on the concentrations of chlorine or bromide. By comparing estimated DBP formations at a constant degradation rate of epinastine, UV/chlorine formed smaller concentrations of DBPs. Consequently, this study experimentally revealed that UV/chlorine is superior to UV/hydrogen peroxide and UV/persulfate for degrading epinastine at the possible pH and bromide content in the environment and controlling toxicological risks caused by disinfection DBPs formation by optimising chlorine dosage and UV fluence.
Collapse
Affiliation(s)
- Yuichiro Murata
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan.
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan.
| |
Collapse
|
2
|
Shi XY, Wang JG, Tian Y, Wang YF, Li ZF, Ma HG, Yin Y, Zhou LQ. Melatonin ameliorates the toxic effects of 2,6-Dichloro-1,4-benzoquinone on mouse oocytes by restoring subcellular structures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117421. [PMID: 39615304 DOI: 10.1016/j.ecoenv.2024.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is a disinfection by-product (DBP) formed during the disinfection of drinking water. Due to its frequent detection and high concentrations, it has garnered significant attention. However, the effects of 2,6-DCBQ on oocyte meiosis remain poorly understood. In this study, we demonstrate that 2,6-DCBQ exposure disrupts nuclear maturation in oocytes by damaging the spindle and chromosome structure. Additionally, exposure to 2,6-DCBQ impairs cytoplasmic maturation by altering actin dynamics, disrupting cortical granule distribution, and compromising the function of key organelles, including the mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Supplementing melatonin during meiotic maturation reverses these effects, enhancing organelle function, reducing reactive oxygen species (ROS) levels, alleviating DNA damage, and inhibiting apoptosis. Together, these findings show that 2,6-DCBQ causes organelle dysfunction and meiotic disruption in oocytes, while melatonin provides protective effects against these disruptions during meiotic maturation.
Collapse
Affiliation(s)
- Xiao-Yan Shi
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jin-Guang Wang
- Reproductive Medicine Center of Weifang People's Hospital, Weifang, Shandong 261041, China
| | - Yu Tian
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yu-Fan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhen-Feng Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Hua-Gang Ma
- Reproductive Medicine Center of Weifang People's Hospital, Weifang, Shandong 261041, China.
| | - Ying Yin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Murata Y, Sakai H, Kosaka K. Degrading surface-water-based natural organic matter and mitigating haloacetonitrile formation during chlorination: Comparison of UV/persulfate and UV/hydrogen peroxide pre-treatments. CHEMOSPHERE 2024; 354:141717. [PMID: 38490617 DOI: 10.1016/j.chemosphere.2024.141717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Haloacetonitriles (HANs) are unregulated disinfection by-products that are more toxic than regulated species. Therefore, efficient decomposition of HAN precursors prior to disinfection is crucial for allaying the potential HAN-induced health risks. This study investigated the key roles of ultraviolet-activated persulfate (UV/PS) treatment in alleviating HAN formation. The effects of UV/PS treatment were evaluated by correlating with the characteristics of organic matter in surface water and comparing with conventional UV/H2O2 treatment. Upon irradiating raw water samples and a Suwannee River humic acid solution spiked with 10 mM PS or H2O2 with 254 nm UV light, UV/PS treatment was found to be more potent than UV/H2O2 in mitigating the HAN production and degrading organic substances; moreover, UV/PS treatment effectively decreased the dissolved organic nitrogen (DON) content. In contrast, UV/H2O2 treatment did not induce any noticeable reduction in DON level. Furthermore, both UV/PS and UV/H2O2 treatments reduced the dichloroacetonitrile (DCAN) formation potential (FP), leading to strong correlations with the degradation of aromatic and humic-acid-like compounds. Notably, UV/PS treatment efficiently decreased the FP of bromochloroacetonitrile (BCAN) and dramatically reduced that of dibromoacetonitrile (DBAN) after a sharp increase; however, UV/H2O2 treatment gradually increased the DBAN-FP. Bromide was activated by sulfate radicals during UV/PS treatment, negatively correlating with the BCAN-FP and DBAN-FP, indicating that the formation of reactive bromine species increased the DBAN-FP; however, excessive oxidation possibly led to the recovery of inorganic bromine for decreasing the BCAN-FP and DBAN-FP. Additionally, UV/PS treatment effectively suppressed toxicity owing to its high reduction rate for brominated HANs; in contrast, UV/H2O2 treatment resulted in less significant BCAN and DBAN reductions, leading to minimal net reduction in toxicity. Overall, UV/PS treatment was remarkably effective at diminishing the toxicity of brominated HANs, underscoring its potential to mitigate drinking-water-related health risks.
Collapse
Affiliation(s)
- Yuichiro Murata
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan.
| | - Koji Kosaka
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-city, Saitama, 3510197, Japan
| |
Collapse
|
4
|
Hosseinzadeh M, Postigo C, Porte C. Toxicity and underlying lipidomic alterations generated by a mixture of water disinfection byproducts in human lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170331. [PMID: 38278255 DOI: 10.1016/j.scitotenv.2024.170331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Complex mixtures of disinfection by-products (DBPs) are present in disinfected waters, but their mixture toxicity has been rarely described. Apart from ingestion, DBP exposure can occur through inhalation, which may lead to respiratory effects in highly exposed individuals. However, the underlying biological mechanisms have yet to be elucidated. This study aimed to investigate the toxicity of a mixture of 10 DBPs, including haloacetic acids and haloaromatics, on human alveolar A549 cells by assessing their cytotoxicity, genotoxicity, and impact on the cell lipidome. A DBP mixture up to 50 μM slightly reduced cell viability, induced the generation of reactive oxygen species (ROS) up to 3.5-fold, and increased the frequency of micronuclei formation. Exposure to 50 μM DBP mixture led to a significant accumulation of triacylglycerides and a decrease of diacylglycerides and phosphatidylcholines in A549 cells. Lipidomic profiling of extracellular vesicles (EVs) released in the culture medium revealed a marked increase in cholesterol esters, sphingomyelins, and other membrane lipids. Overall, these alterations in the lipidome of cells and EVs may indicate a disruption of lipid homeostasis, and thus, potentially contribute to the respiratory effects associated with DBP exposure.
Collapse
Affiliation(s)
- Mahboubeh Hosseinzadeh
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Avda. Severo Ochoa s/n, Granada 18071, Spain; Institute for Water Research (IdA), University of Granada, Ramón y Cajal 4, 18071 Granada, Spain
| | - Cinta Porte
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
5
|
Li F, Zhu X, Xu X, Zhou J, Lu R, Wang S, Xing G, Ye Y. Dibromoacetonitrile induced autophagy by mediating the PERK signalling pathway and ROS interaction in HT22 cell. Toxicology 2024; 501:153698. [PMID: 38065397 DOI: 10.1016/j.tox.2023.153698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Dibromoacetonitrile (DBAN) is a high-risk haloacetonitrile (HAN) generated as a byproduct of chloramine disinfection in drinking water. DBAN-induced neurotoxicity in mouse hippocampal neuronal cells (HT22) and mammals was observed to be related to reactive oxygen species (ROS). ROS, endoplasmic reticulum stress (ERS) and autophagy play crucial roles in regulating a variety of cellular processes. However, whether ERS and autophagy are associated with HAN-responsive apoptosis remains unclear. This study indicated that DBAN (10 μM, 24 h) activated the ERS protein kinase like endoplasmic reticulum kinase (PERK) signaling pathway. The ERS inhibitor 4-phenylbutyric acid (4-PBA) reversed DBAN-inhibited cell viability and alleviated DBAN-induced apoptosis in HT22 cell, indicating that activation of the ERS PERK pathway mediates DBAN induced cytotoxicity. Moreover, DBAN activated autophagy. The autophagy inhibitor 3-methyladenine(3-MA) reversed DBAN-inhibited cell viability and alleviated DBAN-induced apoptosis in HT22 cell, suggesting that autophagy activation mediates DBAN-induced cell toxicity. Notably, the results showed that 4-PBA inhibited DBAN-activated autophagy, demonstrating that ERS-PERK promotes DBAN-induced cellular autophagy. Pretreatment with antioxidant N-acetylcysteine (NAC) inhibited the increase in ROS production and the activation of ERS, and protected cells from toxicity. Furthermore, 4-PBA pretreatment reduced the increase in ROS production, indicating that the ROS and PERK promote each other and form a positive feedback loop. ROS also promoted DBAN-induced autophagy. In summary, our findings indicate that DBAN induced autophagy by mediating the PERK signalling pathway and ROS interaction, leading to HT22 cell damage. Accordingly, targeting these pathogenic mechanisms may provide a potential target and theoretical basis for preventing and improving HAN-induced neurotoxicity.
Collapse
Affiliation(s)
- Fang Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xueyu Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Xinwei Xu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Huaibei people's Hospital, Huaibei, Anhui 235000, China
| | - Rongzhu Lu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yang Ye
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
6
|
Yin J, Li D, Zheng T, Hu B, Wang P. Gastrointestinal Degradation and Toxicity of Disinfection Byproducts in Drinking Water Using In Vitro Models and the Roles of Gut Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16219-16231. [PMID: 37847491 DOI: 10.1021/acs.est.3c04483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Disinfection byproducts (DBPs) in drinking water are mainly exposed to the human body after oral ingestion and degradation in the gastrointestinal tract. The role of gastrointestinal degradation in the toxic effects of DBPs still needs further investigation. In this study, the degradation of five categories of DBPs (22 DBPs) in the stomach and small intestine was investigated based on a semicontinuous steady-state gastrointestinal simulation system, and 22 DBPs can be divided into three groups based on their residual proportions. The degradation of chloroacetonitrile (CAN), dibromoacetic acid (DBAA), and tetrabromopyrrole (FBPy) was further analyzed based on the Simulator of the Human Intestinal Microbial Ecosystem inoculating the gut microbiota, and approximately 60% of CAN, 45% of DBAA, and 80% of FBPy were degraded in the stomach and small intestine, followed by the complete degradation of remaining DBPs in the colon. Meanwhile, gastrointestinal degradation can reduce oxidative stress-mediated DNA damage and apoptosis induced by DBPs in DLD-1 cells, but the toxicity of DBPs did not disappear with the complete degradation of DBPs, possibly because of their interferences on gut microbiota. This study provides new insights into investigating the gastrointestinal toxic effects and mechanisms of DBPs through oral exposure.
Collapse
Affiliation(s)
- Jinbao Yin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Tianming Zheng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| |
Collapse
|
7
|
Jiang L, Luo J, Wei W, Song M, Shi W, Li A, Zhou Q, Pan Y. Comparative cytotoxicity analyses of disinfection byproducts in drinking water using dimensionless parameter scaling method: Effect of halogen substitution type and number. WATER RESEARCH 2023; 240:120087. [PMID: 37247438 DOI: 10.1016/j.watres.2023.120087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Up to date, over 700 disinfection byproducts (DBPs) have been detected and identified in drinking water. It has been recognized that cytotoxicity of DBPs varied significantly among groups. Even within the same group, cytotoxicity of different DBP species was also different due to different halogen substitution types and numbers. However, it is still difficult to quantitatively determine the inter-group cytotoxicity relationships of DBPs under the effect of halogen substitution in different cell lines, especially when a large number of DBP groups and multiple cytotoxicity cell lines are involved. In this study, a powerful dimensionless parameter scaling method was adopted to quantitatively determine the relationship of halogen substitution and the cytotoxicity of various DBP groups in three cell lines (i.e., the human breast carcinoma (MVLN), Chinese hamster ovary (CHO), and human hepatoma (Hep G2) cell cytotoxicity) with no need to consider their absolute values and other influences. By introducing the dimensionless parameters Dx-orn-speciescellline and D¯x-orn-speciescellline, as well as their corresponding linear regression equation coefficients ktypeornumbercellline and k¯typeornumbercellline, the strength and trend of halogen substitution influences on the relative cytotoxic potency could be determined. It was found that the effect of halogen substitution type and number on the cytotoxicity of DBPs followed the same patterns in the three cell lines. The CHO cell cytotoxicity was the most sensitive cell line to evaluate the effect of halogen substitution on the aliphatic DBPs, whereas the MVLN cell cytotoxicity was the most sensitive cell line to evaluate the effect of halogen substitution on the cyclic DBPs. Notably, seven quantitative structure activity relationship (QSAR) models were established, which could not only predict the cytotoxicity data of DBPs, but also help to explain and verify the patterns of halogen substitution effect on cytotoxicity of DBPs.
Collapse
Affiliation(s)
- Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jiayi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenzhe Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
8
|
Jayawardana TK, Hossain MF, Patel D, Kimura SY. Haloacetonitrile stability in cell culture media used in vitro toxicological studies. CHEMOSPHERE 2023; 313:137568. [PMID: 36529179 DOI: 10.1016/j.chemosphere.2022.137568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Haloacetonitriles (HANs) are an emerging class of nitrogenous disinfection by-products (DBPs) formed in disinfected drinking water and have been reported to be more cyto- and genotoxic than the regulated DBPs. HANs are also known to hydrolyze under neutral pH and normal room temperature. However, the stability of HANs has not been well characterized in DBP toxicological assessments. Most toxicological assessments expose DBPs up to several days which may result in a mixture of HANs and degradation products that might have underestimated HAN toxicity. In this study, HANs stability was characterized in 1) a buffer solution in sealed vials, 2) cell culture media (CCM) in sealed vials, and 3) CCM in 96 sealed well plates with 5% CO2. Solutions were incubated at 37 °C for 3 days. MonoHANs were found to be stable in buffer and CCM except when HANs were incubated in CCM in plates where they could possibly be affected by volatilization and photodegradation during sample handling. However, di- and tri- HANs degraded between 70 and 100% in both buffer solution and CCM. They were also found to be less stable in CCM than in buffer solution possibly from HANs reacting with nucleophiles present in CCM (i.e., amino acids). Identified degradation products include corresponding haloacetamides and haloacetic acids for buffer solutions and only haloacetic acids and an unknown brominated compound for CCM. Results of this study suggests that reported toxicity values might have been underestimated and should consider changing CCM and DBP on a daily basis for a more accurate toxicity measurement.
Collapse
Affiliation(s)
- Thilina K Jayawardana
- University of Calgary, Department of Chemistry, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Md Fahim Hossain
- University of Calgary, Department of Chemistry, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Dhruvin Patel
- University of Calgary, Department of Chemistry, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Susana Y Kimura
- University of Calgary, Department of Chemistry, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
9
|
Xue P, Wang H, Yang L, Jiang Z, Li H, Liu Q, Zhang Q, Andersen ME, Crabbe MJC, Hao L, Qu W. NRF2-ARE signaling is responsive to haloacetonitrile-induced oxidative stress in human keratinocytes. Toxicol Appl Pharmacol 2022; 450:116163. [PMID: 35842135 DOI: 10.1016/j.taap.2022.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022]
Abstract
Humans are exposed to disinfection by-products through oral, inhalation, and dermal routes, during bathing and swimming, potentially causing skin lesions, asthma, and bladder cancer. Nuclear factor E2-related factor 2 (NRF2) is a master regulator of the adaptive antioxidant response via the antioxidant reaction elements (ARE) orchestrating the transcription of a large group of antioxidant and detoxification genes. Here we used an immortalized human keratinocyte model HaCaT cells to investigate NRF2-ARE as a responder and protector in the acute cytotoxicity of seven haloacetonitriles (HANs), including chloroacetonitrile (CAN), bromoacetonitrile (BAN), iodoacetonitrile (IAN), bromochloroacetonitrile (BCAN), dichloroacetonitrile (DCAN), dibromoacetonitrile (DBAN), and trichloroacetonitrile (TCAN) found in drinking water and swimming pools. The rank order of cytotoxicity among the HANs tested was IAN ≈ BAN ˃ DBAN ˃ BCAN ˃ CAN ˃ TCAN ˃ DCAN based on their LC50. The HANs induced intracellular reactive oxygen species accumulation and activated cellular antioxidant responses in concentration- and time-dependent fashions, showing elevated NRF2 protein levels and ARE activity, induction of antioxidant genes, and increased glutathione levels. Additionally, knockdown of NRF2 by lentiviral shRNAs sensitized the HaCaT cells to HANs-induced cytotoxicity, emphasizing a protective role of NRF2 against the cytotoxicity of HANs. These results indicate that HANs cause oxidative stress and activate NRF2-ARE-mediated antioxidant response, which in turn protects the cells from HANs-induced cytotoxicity, highlighting that NRF2-ARE activity could be a sensitive indicator to identify and characterize the oxidative stress induced by HANs and other environmental pollutants.
Collapse
Affiliation(s)
- Peng Xue
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lili Yang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hongliang Li
- Pudong New Area Center for Diseases Control & Prevention, Pudong New Area, Shanghai 200120, China
| | - Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA 30322, USA
| | | | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, UK; Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, UK
| | - Lipeng Hao
- Pudong New Area Center for Diseases Control & Prevention, Pudong New Area, Shanghai 200120, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Hu S, Chen X, Zhang B, Liu L, Gong T, Xian Q. Occurrence and transformation of newly discovered 2-bromo-6-chloro-1,4-benzoquinone in chlorinated drinking water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129189. [PMID: 35739719 DOI: 10.1016/j.jhazmat.2022.129189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Halobenzoquinones (HBQs) have been reported as an emerging category of disinfection byproducts (DBPs) in drinking water with relatively high toxicity, and the previously reported HBQs include 2,6-dichloro-1,4-benzoquinone, 2,3,6-trichloro-1,4-benzoquinone, 2,6-dichloro-3-methyl-1,4-benzoquinone, 2,6-dibromo-1,4-benzoquinone, 2,6-diiodo-1,4-benzoquinone, 2-chloro-6-iodo-1,4-benzoquinone, and 2-bromo-6-iodo-1,4-benzoquinone. In this study, another HBQ species, 2-bromo-6-chloro-1,4-benzoquinone (2,6-BCBQ), was newly detected and identified in drinking water. The occurrence frequency and levels of 2,6-BCBQ were investigated, and its cytotoxicity was evaluated. Since the formed 2,6-BCBQ was found to be not stable in chlorination, its transformation kinetics and mechanisms in chlorination were further studied. The results reveal that 2,6-BCBQ was generated from Suwannee River humic acid with concentrations in the range of 4.4-47.9 ng/L during chlorination within 120 h, and it was present in all the tap water samples with concentrations ranging from 1.5 to 15.7 ng/L. Among all the tested bromochloro-DBPs, 2,6-BCBQ showed the highest cytotoxicity on the human hepatoma cells. The transformation of 2,6-BCBQ in chlorination followed a pseudo-first-order decay, which was significantly affected by the chlorine dose, pH, and temperature. Seven polar chlorinated and brominated intermediates (including HBQs, halohydroxybenzoquinones, and halohydroxycyclopentenediones) were detected in chlorinated 2,6-BCBQ samples, according to which the transformation pathways of 2,6-BCBQ in chlorination were proposed. Besides, four trihalomethanes and four haloacetic acids were also generated during chlorination of 2,6-BCBQ with molar transformation percentages of 1.6-13.7%.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Chen
- Lower Changjiang River Bureau of Hydrological and Water Resources Survey, Nanjing 210011, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lanyao Liu
- Water Resources Department of Linyi, Linyi 276037, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Kajjumba GW, Bokota RE, Attene-Ramos M, Marti EJ. Evaluation of disinfection byproducts for their ability to affect mitochondrial function. J Environ Sci (China) 2022; 117:295-304. [PMID: 35725082 DOI: 10.1016/j.jes.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
In the race to deliver clean water to communities through potable water reuse, disinfection and water quality assessment are and will continue to be fundamental factors. There are over 700 disinfection byproducts (DBPs) in water; evaluating each compound is practically impossible and very time consuming. A bioanalytical approach could be an answer to this challenge. In this work, the response of four major classes of DBPs toward mitochondrial membrane potential (ΔΨm) and cytoplasmic adenosine triphosphate (C-ATP) was investigated with human carcinoma (HepG2) cells. Within 90 min of cell exposure, only the haloacetic acid (HAA) mixture caused a cytotoxic response as measured by C-ATP. All four groups (haloacetonitriles (HANs), trihalomethanes (THMs), nitrosamines (NOAs), and HAAs) responded well to ΔΨm, R2 > 0.70. Based on the half-maximum concentration that evoked a 50% response in ΔΨm, the response gradient was HANs >> HAAs ∼ THM > NOAs. The inhibition of the ΔΨm by HANs is driven by dibromoacetonitrile (DBAN), while dichloroacetonitrile (DCAN) did not cause a significant change in the ΔΨm at less than 2000 µM. A mixture of HANs exhibited an antagonistic behavior on the ΔΨm compared to individual compounds. If water samples are concentrated to increase HAN concentrations, especially DBAN, then ΔΨm could be used as a biomonitoring tool for DBP toxicity.
Collapse
Affiliation(s)
| | - Rachael E Bokota
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington DC, USA
| | - Matias Attene-Ramos
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington DC, USA
| | - Erica J Marti
- Department of Civil and Environmental Engineering, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
12
|
Li F, Zhou J, Zhu X, Lu R, Ye Y, Wang S, Xing G, Shen H. Oxidative injury induced by drinking water disinfection by-products dibromoacetonitrile and dichloroacetonitrile in mouse hippocampal neuronal cells: The protective effect of N-acetyl-L-cysteine. Toxicol Lett 2022; 365:61-73. [PMID: 35724848 DOI: 10.1016/j.toxlet.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022]
Abstract
Dibromoacetonitrile (DBAN) and dichloroacetonitrile (DCAN) are haloacetonitriles (HANs) produced as by-products of chloramine disinfection of drinking water and can cause neurotoxicity. The molecular pathways leading to HAN-induced neuronal cell death remain unclear. The nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of oxidation reactions. We explored the role of the sequestosome 1 (p62)-Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 pathway in DBAN- and DCAN-induced mouse hippocampal neuronal (HT22) cell injury. DBAN and DCAN reduced cell viability, increased lactate dehydrogenase release rate, and promoted apoptosis. Over the same treatment time, DBAN at lower concentrations caused cell injury, suggesting that DBAN is more cytotoxic than DCAN. DBAN and DCAN triggered oxidative stress by reducing intracellular glutathione and increasing reactive oxygen species concentrations. DBAN and DCAN activated the Nrf2 pathway. Furthermore, Nrf2 inhibitors (all-trans retinoic acid) attenuated DBAN- and DCAN-induced toxicity, whereas Nrf2 activators (tert-Butylhydroquinone) achieved the opposite effect. This indicates that activation of the Nrf2 pathway mediates DBAN- and DCAN-induced cell injury. Notably, the expression of p62, a noncanonical pathway that mediates Nrf2 activation, increased, whereas the expression of Keap1, another regulator of Nrf2, decreased. We noted that high p62 expression activated the Nrf2 pathway, and p62 was regulated through Nrf2, forming a positive feedback loop. N-acetyl-L-cysteine, a mercaptan substance, protected against DBAN- and DCAN-induced toxicity and inhibited the Nrf2 pathway. In summary, Nrf2 pathway inhibition and mercaptan supplementation prevent DBAN- and DCAN-induced HT22 cell injury, accordingly, targeting them is a potential approach to preventing HAN-induced neurotoxicity.
Collapse
Affiliation(s)
- Fang Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xueyu Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongzhu Lu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yang Ye
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haijun Shen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
13
|
Lagunas‐Rangel FA, Linnea‐Niemi JV, Kudłak B, Williams MJ, Jönsson J, Schiöth HB. Role of the Synergistic Interactions of Environmental Pollutants in the Development of Cancer. GEOHEALTH 2022; 6:e2021GH000552. [PMID: 35493962 PMCID: PMC9036628 DOI: 10.1029/2021gh000552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
There is a growing awareness that the large number of environmental pollutants we are exposed to on a daily basis are causing major health problems. Compared to traditional studies that focus on individual pollutants, there are relatively few studies on how pollutants mixtures interact. Several studies have reported a relationship between environmental pollutants and the development of cancer, even when pollutant levels are below toxicity reference values. The possibility of synergistic interactions between different pollutants could explain how even low concentrations can cause major health problems. These intricate that molecular interactions can occur through a wide variety of mechanisms, and our understanding of the physiological effects of mixtures is still limited. The purpose of this paper is to discuss recent reports that address possible synergistic interactions between different types of environmental pollutants that could promote cancer development. Our literature studies suggest that key biological pathways are frequently implicated in such processes. These include increased production of reactive oxygen species, activation by cytochrome P450, and aryl hydrocarbon receptor signaling, among others. We discuss the need to understand individual pathological vulnerability not only in relation to basic genetics and gene expression, but also in terms of measurable exposure to contaminants. We also mention the need for significant improvements in future studies using a multitude of disciplines, such as the development of high-throughput study models, better tools for quantifying pollutants in cancer patients, innovative pharmacological and toxicological studies, and high-efficiency computer analysis, which allow us to analyze the molecular mechanisms of mixtures.
Collapse
Affiliation(s)
| | - Jenni Viivi Linnea‐Niemi
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Błażej Kudłak
- Faculty of ChemistryDepartment of Analytical ChemistryGdańsk University of TechnologyGdańskPoland
| | - Michael J. Williams
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
- Institute of Translational Medicine and BiotechnologyI. M. Sechenov First Moscow State Medical UniversityMoscowRussia
| |
Collapse
|
14
|
Komaki Y, Ibuki Y. Inhibition of nucleotide excision repair and damage response signaling by dibromoacetonitrile: A novel genotoxicity mechanism of a water disinfection byproduct. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127194. [PMID: 34844342 DOI: 10.1016/j.jhazmat.2021.127194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Dibromoacetonitrile (DBAN) is a carcinogenic disinfection byproduct (DBP) but how it precipitates cancer is unknown. Nucleotide excision repair (NER) is a versatile repair mechanism for removing bulky DNA lesions to maintain genome stability, and impairment of this process is associated with cancer development. In this study, we found that DBAN inhibited NER and investigated its mechanism with other DNA damage responses. Human keratinocytes HaCaT were treated with DBAN followed by ultraviolet (UV) as a model inducer of DNA damage, pyrimidine dimers, which require NER for the removal. DBAN pretreatment exacerbated UV-cytotoxicity, and inhibited the repair of pyrimidine dimers. DBAN treatment delayed the recruitment of NER proteins, transcription factor IIH (TFIIH) and xeroderma pigmentosum complementation group G (XPG), to DNA damaged sites, and subsequent gap filling process. Moreover, DBAN suppressed the UV-induced double strand breaks (DSBs) formation, as well as phosphorylated histone H2AX (γ-H2AX), a widely used DNA damage marker. Altogether, DBAN could negatively impact the NER process and phosphorylation pathway responding to DNA damage. This study was the first to identify the inhibition of NER and damage response signaling as a genotoxicity mechanism of a class of DBPs and it may serve as a foundation for DBP carcinogenesis.
Collapse
Affiliation(s)
- Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
15
|
Liu J, Gibb M, Pradhan SH, Sayes CM. Synergistic cytotoxicity of bromoacetic acid and three emerging bromophenolic disinfection byproducts against human intestinal and neuronal cells. CHEMOSPHERE 2022; 287:131794. [PMID: 34438205 DOI: 10.1016/j.chemosphere.2021.131794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Halogenated disinfection byproducts (halo-DBPs) are drinking water contaminants of great public health concern. Nine haloaliphatic DBPs have been regulated by the U.S. Environmental Protection Agency and various halophenolic compounds have been identified as emerging DBPs. In this study, we evaluated the cytotoxic interactions of the regulated bromoacetic acid and three emerging bromophenolic DBPs, i.e., 2,4,6-tribromophenol, 3,5-dibromo-4-hydroxybenzoic acid, and 3,5-dibromo-4-hydroxybenzaldehyde. Cytotoxicity was measured for each DBP individually as well as each of their mixtures using in vitro human epithelial colorectal adenocarcinoma (Caco-2) and neuroblastoma (SH-SY5Y) cells. Concentration addition (CA) model and isobolographic analysis were employed to characterize the interactions among the DBPs. Our results show that the cytotoxicity of four bromo-DBPs against both cell-types followed the descending rank order of bromoacetic acid > 2,4,6-tribromophenol > 3,5-dibromo-4-hydroxybenzaldehyde > 3,5-dibromo-4-hydroxybenzoic acid. Compared with the toxicity data in literature, our finding that bromoacetic acid showed higher cytotoxicity than bromophenolic DBPs was consistent with the results from Chinese hamster ovary cells (a commonly used in vitro model of DBP toxicological studies); but different from the results obtained from in vivo biological models. Significantly, with CA model prediction, we found that mixtures of four bromo-DBPs exhibited synergistic cytotoxic effects on both human cell types. Isobolographic analysis of binary DBP mixtures revealed that, for Caco-2 cells, bromoacetic acid, 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoic acid induced synergism; for SH-SY5Y cells, bromoacetic acid induced synergism with all three bromophenolic DBPs. The production of reactive oxidative species (ROS) induced by DBP mixtures could be an important reason for the synergistic cytotoxicity.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Sahar H Pradhan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
16
|
Xiao C, Wang C, Zhang Q, Yang X, Huang S, Luo Y, Feng Y, Zheng Q. Transcriptomic analysis of adult zebrafish heart and brain in response to 2, 6-dichloro-1, 4-benzoquinone exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112835. [PMID: 34600292 DOI: 10.1016/j.ecoenv.2021.112835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Halobenzoquinones (HBQs) are emerging and widespread disinfection byproducts (DBPs), but their toxicological mechanisms to aquatic organisms remain elusive. Herein, we evaluated oxidative stress, cardiac toxicity, and cerebral toxicity after 2, 6-dichloro-1, 4-benzoquinone (2,6-DCBQ) exposure in zebrafish. Adult zebrafish were respectively exposed to 0.25, 0.5, and 1 μM 2,6-DCBQ for 96 h. The mortality rate of 2,6-DCBQ (1 μM) was 10%, while the LC50 value was 1.532 μM. Besides, 2,6-DCBQ exposure caused irregularity and elimination of myocardial fiber in the heart, and the pyknosis of nuclears and the agglutination of chromatin in the brain. We measured the 2,6-DCBQ-induced oxidative stresses in the heart and brain. Additionally, the glutathione (GSH) content, superoxide dismutase (SOD) activity, catalase (CAT) activity, and total antioxidant capacity (T-AOC) were significantly inhibited. To better understand the potential toxicity of 2,6-DCBQ, transcriptomic analysis was performed in the control and 1 μM group after 96 h exposure. As a result, 545 and 1228 differentially expressed genes (DEGs) were detected in the heart and brain, respectively. GO analysis revealed that these DEGs were primarily enriched in blood vessel development, vasculature development, and oxidoreductase activity in the heart; response to stimulus, nervous system development, and oxidoreductase activity in the brain. KEGG enrichment analysis indicated that the DEGs were mainly enriched in VEGF signaling pathway and vascular smooth muscle contraction pathway in the heart; neuroactive ligand-receptor interaction, and NOD-like receptor signaling pathway in the brain. These findings exposed the underlying toxicity mechanism of 2,6-DCBQ exposure on zebrafish cardiovascular and brain systems.
Collapse
Affiliation(s)
- Chen Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environment Engineering, Jianghan University, Wuhan 430056, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environment Engineering, Jianghan University, Wuhan 430056, China
| | - Xiaoqiu Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environment Engineering, Jianghan University, Wuhan 430056, China
| | - Shiqi Huang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environment Engineering, Jianghan University, Wuhan 430056, China
| | - Yinjian Luo
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environment Engineering, Jianghan University, Wuhan 430056, China
| | - Yunfeng Feng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environment Engineering, Jianghan University, Wuhan 430056, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environment Engineering, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
17
|
Zhan W, Han Z, Li Y, Liu F, Zhang Y. [Simultaneous determination of six haloacetonitriles in finished water for drinking by purge and trap-gas chromatography-triple quadrupole mass spectrometry]. Se Pu 2021; 39:758-763. [PMID: 34227374 PMCID: PMC9404238 DOI: 10.3724/sp.j.1123.2020.08026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Haloacetonitriles (HANs) are widely used in finished water as unregulated disinfection by-products. HANs may pose much threat to human health, and there is no relevant standard examination method for these compounds. A method was established for the simultaneous determination of six HANs (chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), bromoacetonitrile (BAN), bromochloroacetonitrile (BCAN), and dibromoacetonitrile (DBAN)) in finished water by using purge and trap-gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). The purge and trap technology helps realize automatic determination of samples after collection, without using any harmful reagent. The cost and analytical efficiency of this method were superior to those of solid phase microextraction (SPME). Considering the instability of HANs, the analysis must be carried out as soon as possible after sampling, in order to avoid significant changes in their concentration during storage. In particular, the use of an appropriate quenching agent was critical to sample collection. In this study, ascorbic acid was chosen as the quenching agent. The stabilities of the spiked samples at the levels of 0.1 (TCAN), 0.2 (CAN), 1.0 (DCAN), 1.0 (BAN), 1.0 (BCAN), 4.0 (DBAN) μg/L were tested. The effect of sample storage time (0, 0.5, 1, 2, 3, 4, and 6 h) on the responses of the target component was evaluated. The stability results showed that within 6 h, the relative standard deviations of the responses for the six HANs ranged from 2.32% to 6.98%. To validate the method, first, different traps, viz. 7# (Tenax), 10# (Teanx/silica gel/cms), 11# (VOCARB), and 12# (BTEXTRAP) were optimized. Second, various chromatographic columns (VF-5, Rxi-624, DB-VRX, and HP-INNOWAX) were compared to investigate their influence on the peak shape. Under the optimal detection conditions, the six HANs in finished water were extracted with the 10# trap. The volume of the water sample was used 25 mL, with purging at 35 ℃ for 11 min, and desorbed at 190 ℃ for 1 min. Chromatographic separation was performed on a Rxi-624Sil MS chromatographic column (60 m×0.25 mm×1.40 μm). Gas chromatographic conditions were obtained under the following conditions: split ratio, 1∶10; linear velocity, 30 cm/s. The triple quadrupole mass spectrometer was operated in the electron impact (EI) mode. The target compounds were detected in the multiple reaction monitoring (MRM) mode. Quantitation was carried out using the external standard method. The results showed that the matrix effects of the six HANs ranged from 0.85 to 1.09. Good linearities were obtained in the range of the standard curves. The correlation coefficients (r) were greater than 0.9991. The limits of detection (LODs, S/N=3) were 0.8-120.0 ng/L. The limits of quantification (LOQs, S/N=10) were 1.5-300.0 ng/L. The average recoveries of the six HANs ranged from 84.2% to 106%, and the RSDs were in the range of 1.81%-10.7%. In August 2020, 38 samples of finished water were tested. All of the six HANs were found in the finished water. The concentrations of the HANs were in the range of 0.0101-1.28 μg/L, and the total detection rate was 92.1%. The detection rates of the individual components followed the order DCAN>BCAN>CAN>TCAN>BAN>DBAN. The developed method is efficient, sensitive, and environmentally friendly. It provides a high-quality technical choice for monitoring and health risk assessment of the emerging disinfection by-products of HANs.
Collapse
Affiliation(s)
- Wei Zhan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Zhiyu Han
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Yong Li
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Fei Liu
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Yong Zhang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| |
Collapse
|
18
|
Wei X, Yang M, Zhu Q, Wagner ED, Plewa MJ. Comparative Quantitative Toxicology and QSAR Modeling of the Haloacetonitriles: Forcing Agents of Water Disinfection Byproduct Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8909-8918. [PMID: 32551543 DOI: 10.1021/acs.est.0c02035] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The haloacetonitriles (HANs) is an emerging class of nitrogenous-disinfection byproducts (N-DBPs) present in disinfected drinking, recycled, processed wastewaters, and reuse waters. HANs were identified as primary forcing agents that accounted for DBP-associated toxicity. We evaluated the toxic characteristics of iodoacetonitrile (IAN), bromoacetonitrile (BAN), dibromoacetonitrile (DBAN), bromochloroacetonitrile (BCAN), tribromoacetonitrile (TBAN), chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), bromodichloroacetonitrile (BDCAN), and chlorodibromoacetonitrile (CDBAN). This research generated the first quantitative, comparative analyses on the mammalian cell cytotoxicity, genotoxicity and thiol reactivity of these HANs. The descending rank order for HAN cytotoxicity was TBAN ≈ DBAN > BAN ≈ IAN > BCAN ≈ CDBAN > BDCAN > DCAN ≈ CAN ≈ TCAN. The rank order for genotoxicity was IAN ≈ TBAN ≈ DBAN > BAN > CDBAN ≈ BDCAN ≈ BCAN ≈ CAN ≈ TCAN ≈ DCAN. The rank order for thiol reactivity was TBAN > BDCAN ≈ CDBAN > DBAN > BCAN > BAN ≈ IAN > TCAN. These toxicity metrics were associated with membrane permeability and chemical reactivity. Based on their physiochemical parameters and toxicity metrics, we developed optimized, robust quantitative structure activity relationship (QSAR) models for cytotoxicity and for genotoxicity. These models can predict cytotoxicity and genotoxicity of novel HANs prior to analytical biological evaluation.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000 China
| | - Qingyao Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000 China
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Aslani H, Hosseini MS, Mohammadi S, Naghavi-Behzad M. Drinking Water Disinfection By-products and Their Carcinogenicity; A Review of an Unseen Crisis. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2019; In Press. [DOI: 10.5812/ijcm.88930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|