1
|
Liu S, Xi C, Wu Y, Wang S, Li B, Zhu L, Xu X. Hexavalent chromium damages intestinal cells and coelomocytes and impairs immune function in the echiuran worm Urechis unicinctus by causing oxidative stress and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:110002. [PMID: 39151816 DOI: 10.1016/j.cbpc.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a common pollutant in the marine environment, which impairs immunity and causes reproductive and heredity disorders in organisms. To clarify the immunotoxic effects of Cr (VI) on the marine worm Urechis unicinctus, we analyzed tissue damage and immune dysfunction caused by Cr (VI) in this organism at histopathologic, zymologic, apoptotic and molecular levels. The results indicated that the bioaccumulation of Cr (VI) bioaccumulation levels in coelomocytes was significantly higher than in the intestines and muscles. Pathological observation showed that Cr (VI) caused damage to the respiratory intestine, stomach and midgut. Cr (VI) also increased the replication of goblet cells and a reduction in the replication of epithelial cells. Meanwhile, Cr (VI) induced apoptosis of intestinal cells and coelomocytes, accompanied by an increase in the expression of Caspase-3, COX-2, and MyD88 in the intestine and coelomocytes. At the same time, Cr (VI) significantly affected the activities of antioxidant enzymes such as SOD, ACP, CAT, CAT, and GST, and increased H2O2 and MDA contents in U. unicinctus. Moreover, Cr (VI) exposure also up-regulated the transcription of hsc70, mt and jnk genes but decreased that of sod in the intestines. In contrast, Cr (VI) down-regulated the expression of sod, hsc70, mt, and jnk genes in coelomocytes. Collectively, Cr (VI) bioaccumulated in U. unicinctus cells and tissues, causing several histopathological changes, oxidative stress, and apoptosis of several cells in the organism, resulting in intestinal and coelomocyte damage and immune dysfunctioning.
Collapse
Affiliation(s)
- Shun Liu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Chenxiao Xi
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yuxin Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Sijie Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Baiyu Li
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xinghong Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
2
|
An H, Li Y, Li Y, Gong S, Zhu Y, Li X, Zhou S, Wu Y. Advances in Metabolism and Metabolic Toxicology of Quinoxaline 1,4-Di-N-oxides. Chem Res Toxicol 2024; 37:528-539. [PMID: 38507288 DOI: 10.1021/acs.chemrestox.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Quinoxaline 1,4-di-N-Oxides (QdNOs) have been used as synthetic antimicrobial agents in animal husbandry and aquaculture. The metabolism and potential toxicity have been also concerns in recently years. The metabolism investigations showed that there were 8 metabolites of Carbadox (CBX), 34 metabolites of Cyadox (CYA), 33 metabolites of Mequindox (MEQ), 35 metabolites of Olaquindox (OLA), and 56 metabolites of Quinocetone (QCT) in different animals. Among them, Cb3 and Cb8, M6, and O9 are metabolic residual markers of CBX, MEQ and OLA, which are associated with N → O reduction. Toxicity studies revealed that QdNOs exhibited severe tumorigenicity, cytotoxicity, and adrenal toxicity. Metabolic toxicology showed that toxicity of QdNOs metabolites might be related to the N → O group reduction, and some metabolites exhibited higher toxic effects than the precursor, which could provide guidance for further research on the metabolic toxicology of QdNOs and provide a wealth of information for food safety evaluation.
Collapse
Affiliation(s)
- Haoxian An
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Shanmin Gong
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Ya'ning Zhu
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Xinru Li
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Shuang Zhou
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, People's Republic of China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, People's Republic of China
| |
Collapse
|
3
|
Pan E, Xin Y, Li X, Ping K, Li X, Sun Y, Xu X, Dong J. Immunoprotective effect of silybin through blocking p53-driven caspase-9-Apaf-1-Cyt c complex formation and immune dysfunction after difenoconazole exposure in carp spleen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19396-19408. [PMID: 38358624 DOI: 10.1007/s11356-024-32392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
As a broad-spectrum and efficient triazole fungicide, difenoconazole is widely used, which not only pollutes the environment but also exerts toxic effects on non-target organisms. The spleen plays an important role in immune protection as an important secondary lymphoid organ in carp. In this study, we assessed the protective impact of silybin as a dietary additive on spleen tissues of carp during exposure to difenoconazole. Sixty carp were separated into four groups for this investigation including control group, difenoconazole group, silybin group, and silybin and difenoconazole group. By hematoxylin-eosin staining, dihydroethidium staining, immunohistochemical staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, quantitative real-time PCR assay, Western blot analysis, biochemical assays, and immune function indicator assays, we found that silybin could prevent difenoconazole-induced spleen tissue damage, oxidative stress, and immune dysfunction, and inhibited apoptosis of carp spleen tissue cells by suppressing the formation of p53-driven caspase-9-apoptotic protease activating factor-1-cytochrome C complex. The results suggested that silybin as a dietary additive could improve spleen tissue damage and immune dysfunction induced by difenoconazole in aquaculture carp.
Collapse
Affiliation(s)
- Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
4
|
Zhong L, Wu C, Liao L, Wu Y. Mycoplasma synoviae induce spleen tissue damage and inflammatory response of chicken through oxidative stress and apoptosis. Virulence 2023:2283895. [PMID: 37963095 DOI: 10.1080/21505594.2023.2283895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Mycoplasma synovium (MS) is a prominent avian pathogen known to elicit robust inflammatory responses in birds while evading immune detection, often leading to chronic infection and immune compromise. The mechanisms underpinning MS-mediated splenic tissue damage in chickens, however, remain undefined. In our investigation with 7-day-old SPF chickens, we administered an MS-Y bacterial solution (200 µl, 1 × 109 CCU/ml) through eye and nose droplets, collecting spleen samples on days 3, 6, and 12 post-infection. Comprehensive analyses utilizing histopathology, electron microscopy, TUNEL assay, qRT-PCR, and western blot were employed. Results demonstrated that MS-infection downregulated T-SOD, GSH-PX, and CAT, while concurrently elevating iNOS, NO, and MDA levels. Evidently, MS-induced oxidative stress compromised the spleen's antioxidant defences. Histological examinations pinpointed splenic damage characterized by lymphocyte reduction and increased inflammatory cell infiltration. Ultrastructural observations revealed clear apoptotic markers, including mitochondrial perturbations and nuclear anomalies. Importantly, MS induced significant spleen tissue apoptosis, as supported by TUNEL assay outputs and gene expression profiles associated with apoptosis. Concurrently, we observed upregulated expressions of mRNAs and proteins affiliated with the NF-κB/MAPK signalling cascade (p < 0.05). Collectively, our data elucidate that MS infection induces splenic apoptosis and oxidative disturbances, perturbs tissue integrity, and potentiates the NF-κB/MAPK-mediated inflammatory cascade.
Collapse
Affiliation(s)
- Lemiao Zhong
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| | - Chunlin Wu
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| | - Lvyan Liao
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| | - Yijian Wu
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| |
Collapse
|
5
|
Ma H, Meng Z, Zhou L, Feng H, Wu X, Xin Y, Dong J, Li Y. Ferulic acid attenuated difenoconazole-induced immunotoxicity in carp by inhibiting TRAF/TAK1/NF-κB, Nrf2 and p53 pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115339. [PMID: 37572622 DOI: 10.1016/j.ecoenv.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Difenoconazole (DFZ) is a classical triazole fungicide that causes immunosuppression in non-target organisms. Ferulic acid (FA) is a polyphenolic molecule found in nature that has antioxidant and anti-inflammatory activities. The purpose of this investigation was to see if FA could prevent DFZ-induced immunosuppression and to identify the potential mechanisms. Carp were exposed to 1/10 LC50 of DFZ as well as fed normal feed or feed containing dietary additive FA for 30 d. It was found that DFZ-induced immunosuppression could be improved by FA, as evidenced by upregulation of Hb, C3 and IgM and downregulation of LDH. It was then investigated that FA could ameliorate DFZ-induced splenic injury through p53-mediated apoptosis. At the same time, enhancing the levels of CAT, GSH and T-AOC in spleen and transcription levels Nrf2 signaling pathway related genes indicated that FA reduced oxidative damage caused by DFZ by blocking the Nrf2 signaling pathway. In addition, FA inhibited the inflammatory response triggered by TRAF/TAK1/NF-κB signaling pathway, downregulated the transcript levels of pro-inflammatory factors (il-1β, tnf-α, il-6) and the level of NLRP3 inflammasome (NRLP3, ASC, Caspase 1), and upregulated the transcript levels of anti-inflammatory factors (tgf-β1, il-10). In conclusion, the above results suggested that FA mediated TRAF/TAK1/NF-κB, Nrf2, and p53 pathways to attenuate DFZ-induced inflammation, oxidative stress, and apoptosis thereby enhancing the immune capacity of carp.
Collapse
Affiliation(s)
- Haoming Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zihui Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Wen Z, Hu X, Yan R, Wang W, Meng H, Song Y, Wang S, Wang X, Tang Y. A reliable upconversion nanoparticle-based immunochromatographic assay for the highly sensitive determination of olaquindox in fish muscle and water samples. Food Chem 2023; 406:135081. [PMID: 36463602 DOI: 10.1016/j.foodchem.2022.135081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Olaquindox residues in food from its illegal use has received great attention. Here, an immunoassay strategy integrating an upconversion nanoparticle (UCNP)-based immunochromatographic strip with a fluorescence reader was proposed for the highly selective and sensitive detection of olaquindox. Polyacrylic acid-functionalized UCNPs were synthesized using a simple ligand exchange process and combined with an olaquindox polyclonal antibody to form a fluorescent probe. This approach achieved a sensitive response and specific recognition of olaquindox. A convenient upconversion fluorescence reader was introduced to implement accurate and sensitive quantitative analysis of olaquindox based on the fluorescence intensity of control and test lines on a strip. Under optimal conditions, the method demonstrated a favorable linear range (0-50 ng/mL) and sensitive detection (1.42 ng/mL, S/N = 3). This method was applied successfully to determine olaquindox in fish muscle and water samples, and results were consistent with an HPLC approach, and considered a promising strategy for monitoring olaquindox residuals.
Collapse
Affiliation(s)
- Zhenhua Wen
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xuelian Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Rongfang Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - He Meng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yang Song
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
7
|
Tolerance Assessment of Atractylodes macrocephala Polysaccharide in the Diet of Largemouth Bass (Micropterus salmoides). Antioxidants (Basel) 2022; 11:antiox11081581. [PMID: 36009300 PMCID: PMC9404858 DOI: 10.3390/antiox11081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Atractylodes macrocephala polysaccharide (AMP) can enhance antioxidant defense and anti-inflammation, as the tolerance levels of AMP in aquaculture is important for additive utilization. However, the tolerance dose of AMP is unknown. We assess the tolerance levels of AMP in juvenile largemouth bass (3.38 ± 0.11 g) by feeding them a 0, 400, 4000, or 8000 mg/kg AMP supplemented diet for 10 weeks. The 400 mg/kg AMP dose increased growth performance. The Nrf2/Keap1 signaling pathway was activated, as indicated by Keap1 and Nrf2 protein levels in the liver. Enhanced activity of antioxidant enzymes (SOD, GPx), together with increased mRNA levels of antioxidant genes (sod, gpx) and decreased accumulation of reactive oxygen species (ROS) and MDA, was found in the liver, implying the antioxidant effect of AMP. Nutrient absorption was enhanced by AMP, as reflected by the increased length of intestinal villi and microvilli. However, 4000 and 8000 mg/kg AMP induced oxidant stress, as indicated by increased plasma ALT and AST content and decreased mRNA levels of antioxidant genes (sod, gpx) in the liver and intestinal tissues. Inflammatory reactions were also induced by high doses of AMP, as reflected by enhanced levels of pro-inflammatory cytokines (tnfα, nfκb) in the liver, intestinal, and kidney tissues and inhibited levels of anti-inflammatory cytokines (tgfβ, iκb). Histological analysis reveals inflammatory cell infiltration and tissue damage. Thus, the safe tolerance margin of AMP supplement for largemouth bass was 400–4000 mg/kg.
Collapse
|
8
|
Liu F, Li X, Bello BK, Zhang T, Yang H, Wang K, Dong J. Difenoconazole causes spleen tissue damage and immune dysfunction of carp through oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113563. [PMID: 35487176 DOI: 10.1016/j.ecoenv.2022.113563] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
As the use of pesticides increases year after year, so does the level of residual pesticides in the aquatic environment, posing a serious threat to non-target organisms. Difenoconazole (DFZ), a class of long-lasting fungicides and residues in the marine environment, has been shown to cause damaging effects on different organs of aquatic organisms. However, there is no research on the damage of DFZ to carp spleen tissue. This study aimed to investigate the acute toxic effects of DFZ on the spleen tissue of carp (Cyprinus carpio) by exposing juvenile carp to environmentally relevant concentrations of DFZ. We randomly selected 30 carp, divided them into the Control, Low, and High groups, and then exposed the three groups to 0, 0.488 mg/L DFZ, and 1.953 mg/L DFZ for 96 h respectively. We then investigated the toxic effects caused by DFZ on carp and spleen tissues by detecting changes in spleen histopathologic damage, apoptosis, oxidative stress, inflammation, and blood biochemical parameters. We found that DFZ causes severe histopathology in spleen tissue, including ballooning, structural relaxation, and giant mitochondria. In addition, we found that DFZ caused excessive apoptosis in spleen tissue by TUNEL staining and expression levels of apoptosis-related genes (caspase3, caspase8, caspase9, fas, bax, bcl-2, and p53). The activities and transcript levels of the antioxidant enzymes SOD, CAT, and GSH-Px were significantly down-regulated. In addition, DFZ led to a significant increase in activation of the NF-κB signaling pathway and mRNA levels of pro-inflammatory cytokines il-6, il-1β, and tnf-α, and a substantial decrease in mRNA levels of anti-inflammatory cytokines il-10 and tgf-β1 in spleen tissue. Blood biochemical parameters showed that DFZ exposure significantly reduced erythrocyte, leukocyte, hemoglobin, C3, and IgM levels. Collectively, DFZ exposure induced apoptosis, immunosuppression, oxidative stress, and inflammatory responses in the spleen tissue of carp, resulting in spleen tissue damage.
Collapse
Affiliation(s)
- Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Babatunde Kazeem Bello
- State Key Laboratory of Rice Biology, Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
9
|
Gao YQ, Ge L, Han Z, Hao X, Zhang ML, Zhang XJ, Zhou CJ, Zhang DJ, Liang CG. Oral administration of olaquindox negatively affects oocytes quality and reproductive ability in female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110826. [PMID: 32521368 DOI: 10.1016/j.ecoenv.2020.110826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
As an effective feed additive in the livestock industry, olaquindox (OLA) has been widely used in domestic animal production. However, it is unclear whether OLA has negative effects on mammalian oocyte quality and fetal development. In this study, toxic effects of OLA were tested by intragastric gavage ICR mice with water, low-dose OLA (5 mg/kg/day), or high-dose OLA (60 mg/kg/day) for continuous 45 days. Results showed that high-dose OLA gavage severely affected the offspring birth and growth. Significantly, high-dose OLA impaired oocyte maturation and early embryo development, indicated by the decreased percentage of germinal vesicle breakdown, first polar body extrusion and blastocyst formation. Meanwhile, oxidative stress levels were increased in oocytes or ovaries, indexed by the increased levels of ROS, MDA, H2O2, NO, and decreased levels of GSH, SOD, CAT, GSH-Px and GSH-Rd. Furthermore, aberrant mitochondria distribution, defective spindle assembly, abnormal H3K4me2/H3K9me3 levels, increased DNA double-strand breaks and early apoptosis rate, were observed after high-dose OLA gavage. Taken together, our results for the first time illustrated that high-dose OLA gavage led to sub-fertility of females, which means that restricted utilization of OLA as feed additive should be considered.
Collapse
Affiliation(s)
- Yu-Qing Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lei Ge
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Mei-Ling Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xiao-Jie Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - De-Jian Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|