1
|
Ji X, Wang W, Li J, Liu L, Yue H. Oxidation-reduction process of Arabidopsis thaliana roots induced by bisphenol compounds based on RNA-seq analysis. J Environ Sci (China) 2025; 148:188-197. [PMID: 39095156 DOI: 10.1016/j.jes.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 08/04/2024]
Abstract
Bisphenol compounds (BPs) have various industrial uses and can enter the environment through various sources. To evaluate the ecotoxicity of BPs and identify potential gene candidates involved in the plant toxicity, Arabidopsis thaliana was exposed to bisphenol A (BPA), BPB, BPE, BPF, and BPS at 1, 3, 10 mg/L for a duration of 14 days, and their growth status were monitored. At day 14, roots and leaves were collected for internal BPs exposure concentration detection, RNA-seq (only roots), and morphological observations. As shown in the results, exposure to BPs significantly disturbed root elongation, exhibiting a trend of stimulation at low concentration and inhibition at high concentration. Additionally, BPs exhibited pronounced generation of reactive oxygen species, while none of the pollutants caused significant changes in root morphology. Internal exposure concentration analysis indicated that BPs tended to accumulate in the roots, with BPS exhibiting the highest level of accumulation. The results of RNA-seq indicated that the shared 211 differently expressed genes (DEGs) of these 5 exposure groups were enriched in defense response, generation of precursor metabolites, response to organic substance, response to oxygen-containing, response to hormone, oxidation-reduction process and so on. Regarding unique DEGs in each group, BPS was mainly associated with the redox pathway, BPB primarily influenced seed germination, and BPA, BPE and BPF were primarily involved in metabolic signaling pathways. Our results provide new insights for BPs induced adverse effects on Arabidopsis thaliana and suggest that the ecological risks associated with BPA alternatives cannot be ignored.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| | - Weiwei Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jiande Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Liangpo Liu
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Bahmani R, Kim D, Modareszadeh M, Hwang S. Ethylene and ROS mediate root growth inhibition induced by the endocrine disruptor bisphenol A (BPA). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108212. [PMID: 38008009 DOI: 10.1016/j.plaphy.2023.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Bisphenol A (BPA) functions as a detrimental substance that disrupts the endocrine system in animals while also impeding the growth and development of plants. In our previous study, we demonstrated that BPA hinders the growth of roots in Arabidopsis by diminishing cell division and elongation, which is ascribed to the increased accumulation and redistribution of auxin. Here, we examined the mediation of ROS and ethylene in BPA-induced auxin accumulation and root growth inhibition. BPA enhanced ROS levels, and ROS increased auxin contents but reduced cell division activity and the expression of EXPA8 involved in root elongation. ROS scavenger treatment reversed BPA-triggered root growth retardation, auxin accumulation, and cell division inhibition. In addition, BPA induced ethylene, and ethylene synthesis inhibitor treatment reversed BPA-triggered root growth retardation and auxin accumulation. Taken together, ROS and ethylene are involved in BPA-inhibited cell elongation and cell division by mediating auxin accumulation and redistribution.
Collapse
Affiliation(s)
- Ramin Bahmani
- Department of Molecular Biology, South Korea; Department of Bioindustry and Bioresource Engineering, South Korea; Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - DongGwan Kim
- Department of Molecular Biology, South Korea; Department of Bioindustry and Bioresource Engineering, South Korea; Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - Mahsa Modareszadeh
- Department of Molecular Biology, South Korea; Department of Bioindustry and Bioresource Engineering, South Korea; Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - Seongbin Hwang
- Department of Molecular Biology, South Korea; Department of Bioindustry and Bioresource Engineering, South Korea; Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea.
| |
Collapse
|
3
|
Wei W, Li S, Li P, Yu K, Fan G, Wang Y, Zhao F, Zhang X, Feng X, Shi G, Zhang W, Song G, Dan W, Wang F, Zhang Y, Li X, Wang D, Zhang W, Pei J, Wang X, Zhao Z. QTL analysis of important agronomic traits and metabolites in foxtail millet ( Setaria italica) by RIL population and widely targeted metabolome. FRONTIERS IN PLANT SCIENCE 2023; 13:1035906. [PMID: 36704173 PMCID: PMC9872001 DOI: 10.3389/fpls.2022.1035906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
As a bridge between genome and phenotype, metabolome is closely related to plant growth and development. However, the research on the combination of genome, metabolome and multiple agronomic traits in foxtail millet (Setaria italica) is insufficient. Here, based on the linkage analysis of 3,452 metabolites via with high-quality genetic linkage maps, we detected a total of 1,049 metabolic quantitative trait loci (mQTLs) distributed in 11 hotspots, and 28 metabolite-related candidate genes were mined from 14 mQTLs. In addition, 136 single-environment phenotypic QTL (pQTLs) related to 63 phenotypes were identified by linkage analysis, and there were 12 hotspots on these pQTLs. We futher dissected 39 candidate genes related to agronomic traits through metabolite-phenotype correlation and gene function analysis, including Sd1 semidwarf gene, which can affect plant height by regulating GA synthesis. Combined correlation network and QTL analysis, we found that flavonoid-lignin pathway maybe closely related to plant architecture and yield in foxtail millet. For example, the correlation coefficient between apigenin 7-rutinoside and stem diameter reached 0.98, and they were co-located at 41.33-44.15 Mb of chromosome 5, further gene function analysis revealed that 5 flavonoid pathway genes, as well as Sd1, were located in this interval . Therefore, the correlation and co-localization between flavonoid-lignins and plant architecture may be due to the close linkage of their regulatory genes in millet. Besides, we also found that a combination of genomic and metabolomic for BLUP analysis can better predict plant agronomic traits than genomic or metabolomic data, independently. In conclusion, the combined analysis of mQTL and pQTL in millet have linked genetic, metabolic and agronomic traits, and is of great significance for metabolite-related molecular assisted breeding.
Collapse
Affiliation(s)
- Wei Wei
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Shuangdong Li
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Peiyu Li
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Kuohai Yu
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Guangyu Fan
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Yixiang Wang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Fang Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xiaolei Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xiaolei Feng
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Gaolei Shi
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Weiqin Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Guoliang Song
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Wenhan Dan
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Feng Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Yali Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xinru Li
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Dequan Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Wenying Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Jingjing Pei
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xiaoming Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Zhihai Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| |
Collapse
|
4
|
Raysyan A, Schneider RJ. Development of a Lateral Flow Immunoassay (LFIA) to Screen for the Release of the Endocrine Disruptor Bisphenol A from Polymer Materials and Products. BIOSENSORS 2021; 11:231. [PMID: 34356704 PMCID: PMC8301804 DOI: 10.3390/bios11070231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/01/2023]
Abstract
One of the most important chemicals used in the production of polymer plastics and coatings is bisphenol A. However, despite the large number of studies on the toxicity and hormonal activity of BPA, there are still open questions and thus considerable media attention regarding BPA toxicity. Hence, it is necessary to develop a sensitive, simple, cost-efficient, specific, portable, and rapid method for monitoring bisphenol A and for high sample throughput and on-site screening analysis. Lateral flow immunoassays have potential as rapid tests for on-site screening. To meet sensitivity criteria, they must be carefully optimized. A latex microparticle-based LFIA for detection of BPA was developed. The sensitivity of the assay was improved by non-contact printing of spot grids as the control and test lines with careful parameter optimization. Results of the test could be visually evaluated within 10 min with a visual cut-off of 10 µg/L (vLOD). Alternatively, photographs were taken, and image analysis performed to set up a calibration, which allowed for a calculated limit of detection (cLOD) of 0.14 µg/L. The method was validated for thermal paper samples against ELISA and LC-MS/MS as reference methods, showing good agreement with both methods.
Collapse
Affiliation(s)
- Anna Raysyan
- BAM Federal Institute for Materials Research and Testing, 12205 Berlin, Germany;
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Rudolf J. Schneider
- BAM Federal Institute for Materials Research and Testing, 12205 Berlin, Germany;
- Faculty III Process Sciences, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
5
|
Modareszadeh M, Bahmani R, Kim D, Hwang S. Decreases in arsenic accumulation by the plasma membrane intrinsic protein PIP2;2 in Arabidopsis and yeast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116646. [PMID: 33561751 DOI: 10.1016/j.envpol.2021.116646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is a toxic pollutant that mainly enters the human body via plants. Therefore, understanding the strategy for reducing arsenic accumulation in plants is important to human health and the environment. Aquaporins are ubiquitous water channel proteins that bidirectionally transport water across cell membranes and play a role in the transportation of other molecules, such as glycerol, ammonia, boric acid, and arsenic acid. Previously, we observed that Arabidopsis PIP2;2, encoding a plasma membrane intrinsic protein, is highly expressed in NtCyc07-expressing Arabidopsis, which shows a higher tolerance to arsenite (As(III)). In this study, we report that the overexpression of AtPIP2;2 enhanced As(III) tolerance and reduced As(III) levels in yeast. Likewise, AtPIP2;2-overexpressing Arabidopsis exhibited improved As(III) tolerance and lower accumulation of As(III). In contrast, atpip2;2 knockout Arabidopsis showed reduced As(III) tolerance but no significant change in As(III) levels. Interestingly, the AtPIP2;2 transcript and protein levels were increased in roots and shoots of Arabidopsis in response to As(III). Furthermore, As(III) efflux was enhanced and As(III) influx/accumulation was reduced in AtPIP2;2-expressing plants. The expression of AtPIP2;2 rescued the As(III)-sensitive phenotype of acr3 mutant yeast by reducing As levels and slightly reduced the As(III)-tolerant phenotype of fps1 mutant yeast by enhancing As content, suggesting that AtPIP2; 2 functions as a bidirectional channel of As(III), while the As(III) exporter activity is higher than the As(III) importer activity. All these results indicate that AtPIP2;2 expression promotes As(III) tolerance by decreasing As(III) accumulation through enhancing As(III) efflux in Arabidopsis. This finding can be applied to the generation of low arsenic crops for human health.
Collapse
Affiliation(s)
- Mahsa Modareszadeh
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - Ramin Bahmani
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - DongGwan Kim
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - Seongbin Hwang
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
6
|
Modareszadeh M, Bahmani R, Kim D, Hwang S. CAX3 (cation/proton exchanger) mediates a Cd tolerance by decreasing ROS through Ca elevation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 105:115-132. [PMID: 32926249 DOI: 10.1007/s11103-020-01072-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Over-expression of CAX3 encoding a cation/proton exchanger enhances Cd tolerance by decreasing ROS (Reactive Oxygen Species) through activating anti-oxidative enzymes via elevation of Ca level in Arabidopsis CAXs (cation/proton exchangers) are involved in the sequestration of cations such as Mn, Li, and Cd, as well as Ca, from cytosol into the vacuole using proton gradients. In addition, it has been reported that CAX1, 2 and 4 are involved in Cd tolerance. Interestingly, it has been reported that CAX3 expressions were enhanced by Cd in Cd-tolerant transgenic plants expressing Hb1 (hemoglobin 1) or UBC1 (Ub-conjugating enzyme 1). Therefore, to investigate whether CAX3 plays a role in increasing Cd tolerance, CAX3 of Arabidopsis and tobacco were over-expressed in Arabidopsis thaliana. Compared to control plants, both transgenic plants displayed an increase in Cd tolerance, no change in Cd accumulation, and enhanced Ca levels. In support of these, AtCAX3-Arabidopsis showed no change in expressions of Cd transporters, but reduced expressions of Ca exporters and lower rate of Ca efflux. By contrast, atcax3 knockout Arabidopsis exhibited a reduced Cd tolerance, while the Cd level was not altered. The expression of Δ90-AtCAX3 (deletion of autoinhibitory domain) increased Cd and Ca tolerance in yeast, while AtCAX3 expression did not. Interestingly, less accumulation of ROS (H2O2 and O2-) was observed in CAX3-expressing transgenic plants and was accompanied with higher antioxidant enzyme activities (SOD, CAT, GR). Taken together, CAX3 over-expression may enhance Cd tolerance by decreasing Cd-induced ROS production by activating antioxidant enzymes and by intervening the positive feedback circuit between ROS generation and Cd-induced spikes of cytoplasmic Ca.
Collapse
Affiliation(s)
- Mahsa Modareszadeh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea.
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
7
|
Kim D, Bahmani R, Modareszadeh M, Hwang S. Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco. PLANTS 2020; 9:plants9111480. [PMID: 33153165 PMCID: PMC7692962 DOI: 10.3390/plants9111480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/24/2023]
Abstract
Arsenite [As(III)] is a highly toxic chemical to all organisms. Previously, we reported that the overexpression of NtCyc07 enhanced As(III) tolerance and reduced As(III) accumulation in yeast (Saccharomyces cerevisiae) and tobacco (Nicotiana tabacum). To understand a mechanism for higher As(III) tolerance and lower As(III) accumulation in NtCyc07-overexpressing tobacco, we examined the expression levels of various putative As(III) transporters (aquaporin). The expressions of putative As(III) exporter NIP1;1, PIP1;1, 1;5, 2;1, 2;2, and 2;7 were enhanced, while the expressions of putative As(III) importer NIP3;1, 4;1, and XIP2;1 were decreased, contributing to the reduced accumulation of As(III) in NtCyc07-overexpressing tobacco. In addition, the levels of oxidative stress indicators (H2O2, superoxide and malondialdehyde) were lower, and the activities of antioxidant enzymes (catalase, superoxide dismutase and glutathione reductase) were higher in NtCyc07-tobacco than in the control tobacco. This suggests that the lower oxidative stress in transgenic tobacco may be attributed to the higher activities of antioxidant enzymes and lower As(III) levels. Taken together, the overexpression of NtCyc07 enhances As(III) tolerance by reducing As(III) accumulation through modulation of expressions of putative As(III) transporters in tobacco.
Collapse
|
8
|
Bahmani R, Kim D, Modareszadeh M, Thompson AJ, Park JH, Yoo HH, Hwang S. The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113516. [PMID: 31733969 DOI: 10.1016/j.envpol.2019.113516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
Bisphenol A (BPA) is a harmful environmental contaminant acting as an endocrine disruptor in animals, but it also affects growth and development in plants. Here, we have elucidated the functional mechanism of root growth inhibition by BPA in Arabidopsis thaliana using mutants, reporter lines and a pharmacological approach. In response to 10 ppm BPA, fresh weight and main root length were reduced, while auxin levels increased. BPA inhibited root growth by reducing root cell length in the elongation zone by suppressing expansin expression and by decreasing the length of the meristem zone by repressing cell division. The inhibition of cell elongation and cell division was attributed to the enhanced accumulation/redistribution of auxin in the elongation zone and meristem zone in response to BPA. Correspondingly, the expressions of most auxin biosynthesis and transporter genes were enhanced in roots by BPA. Taken together, it is assumed that the endocrine disruptor BPA inhibits primary root growth by inhibiting cell elongation and division through auxin accumulation/redistribution in Arabidopsis. This study will contribute to understanding how BPA affects growth and development in plants.
Collapse
Affiliation(s)
- Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - Mahsa Modareszadeh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - Andrew J Thompson
- Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Jeong Hoon Park
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea
| | - Hye Hyun Yoo
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea.
| |
Collapse
|
9
|
Kim DG, Bahmani R, Ko JH, Hwang S. A Convenient Plant-Based Detection System to Monitor Androgenic Compound in the Environment. PLANTS 2019; 8:plants8080266. [PMID: 31387207 PMCID: PMC6724103 DOI: 10.3390/plants8080266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Environmental androgen analogues act as endocrine disruptors, which inhibit the normal function of androgen in animals. In the present work, through the expression of a chimeric gene specified for the production of the anthocyanin in response to androgen DHT (dihydrotestosterone), we generated an indicator Arabidopsis that displays a red color in leaves in the presence of androgen compounds. This construct consists of a ligand-binding domain of the human androgen receptor gene and the poplar transcription factor gene PtrMYB119, which is involved in anthocyanin biosynthesis in poplar and Arabidopsis. The transgenic Arabidopsis XVA-PtrMYB119 displayed a red color in leaves in response to 10 ppm DHT, whereas it did not react in the presence of other androgenic compounds. The transcript level of PtrMYB119 peaked at day 13 of DHT exposure on agar media and then declined to its normal level at day 15. Expressions of anthocyanin biosynthesis genes including chalcone flavanone isomerase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, UFGT (UGT78D2), and anthocyanidin synthase were similar to that of PtrMYB119. It is assumed that this transgenic plant can be used by nonscientists for the detection of androgen DHT in the environment and samples such as food solution without any experimental procedures.
Collapse
Affiliation(s)
- Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| | - Ramin Bahmani
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Kyeonggi-do 17104, Korea
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| |
Collapse
|