1
|
Sreelatha L, Ambili AL, Sreedevi SC, Achuthavarier D. Metallothioneins: an unraveling insight into remediation strategies of plant defense mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:405-427. [PMID: 39704973 DOI: 10.1007/s11356-024-35790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Phytoremediation is an eco-friendly, sustainable way to clean up the environment using green plants that effectively remove and degrade pollutants from soil, water, or air. Certain hyperaccumulator plants can effectively mitigate heavy metals, organic compounds, and radioactive substances through absorption, adsorption, and transformation. This method offers a cost-effective and esthetically pleasing alternative to traditional remediation techniques, contributing to the restoration of contaminated ecosystems. Nanophytoremediation entails combining nanotechnology with phytoremediation techniques to improve plant-based environmental cleanup efficiency. Nanoparticles (NPs) or engineered NPs are applied to improve plants' absorption and transport of contaminants. This approach addresses limitations in traditional phytoremediation, offering increased remediation rates and effectiveness, particularly in removing pollutants like heavy metals. This review paper compares traditional phytoremediation and emerging nanophytoremediation, emphasizing their impact on metallothionein proteins in plants. The work reveals how plants get rid of unwanted foreign substances that build up on their bodies and keep homeostasis by using metallothionein proteins. These proteins effectively reduce the effects of these substances without affecting the plant's normal growth. The efficiency, cost-effectiveness, and ecological implications of the phytoremediation technologies in the light of the metallothionein protein action provide insights into optimizing contaminant detoxification strategies for polluted environments.
Collapse
Affiliation(s)
- Lekshmi Sreelatha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Ardra Lekshmi Ambili
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | | | - Deepthi Achuthavarier
- Modelling Program Division, Office of Science and Technology Integration, National Weather Service, NOAA, Silver Spring, MD, USA
| |
Collapse
|
2
|
Cui X, Cao X, Xue W, Xu L, Cui Z, Zhao R, Ni SQ. Integrative effects of microbial inoculation and amendments on improved crop safety in industrial soils co-contaminated with organic and inorganic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162202. [PMID: 36775162 DOI: 10.1016/j.scitotenv.2023.162202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Soils co-contaminated by organic and inorganic pollutants usually pose major ecological risks to soil ecosystems including plants. Thus, effective strategies are needed to alleviate the phytotoxicity caused by such co-contamination. In this study, microbial agents (a mixture of Bacillus subtilis, Sphingobacterium multivorum, and a commercial microbial product named OBT) and soil amendments (β-cyclodextrin, rice husk, biochar, calcium magnesium phosphate fertilizer, and organic fertilizer) were evaluated to determine their applicability in alleviating toxicity to crops (maize and soybean) posed by polycyclic aromatic hydrocarbon (PAHs) and potentially toxic metals co-contaminated soils. The results showed that peroxidase, catalase, and superoxide dismutase activity levels in maize or soybean grown in severely or mildly contaminated soils were significantly enhanced by the integrative effects of amendments and microbial agents, compared with those in single plant treatments. The removal rates of Zn, Pb, and Cd in severely contaminated soils were 49 %, 47 %, and 51 % and 46 %, 45 %, and 48 %, for soybean and maize, respectively. The total contents of Cd, Pb, Zn, and PAHs in soil decreased by day 90. Soil organic matter content, levels of nutrient elements, and enzyme activity (catalase, urease, and dehydrogenase) increased after the amendments and application of microbial agents. Moreover, the amendments and microbial agents also increased the diversity and distribution of bacterial species in the soil. These results suggest that the amendments and microbial agents were beneficial for pollutant purification, improving the soil environment and enhancing both plant resistance to pollutants and immune systems of plants.
Collapse
Affiliation(s)
- Xiaowei Cui
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Wenxiu Xue
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Lei Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
3
|
Cao X, Cui X, Xie M, Zhao R, Xu L, Ni S, Cui Z. Amendments and bioaugmentation enhanced phytoremediation and micro-ecology for PAHs and heavy metals co-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128096. [PMID: 34952500 DOI: 10.1016/j.jhazmat.2021.128096] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Co-existence of polycyclic aromatic hydrocarbons (PAHs) and multi-metals challenges the decontamination of large-scale contaminated sites. This study aims to comprehensively evaluate the remediation potential of intensified phytoremediation in coping with complex co-contaminated soils. Results showed that the removal of PAHs and heavy metals is time-dependent, pollution-relevant, and plant-specific. Removal of sixteen PAHs by Medicago sativa L. (37.3%) was significantly higher than that of Solanum nigrum L. (20.7%) after 30 days. S. nigrum L. removed higher amounts of Cd than Zn and Pb, while M. sativa L. uptake more Zn. Nevertheless, amendments and microbial agents significantly increased the phytoremediation efficiency of pollutants and shortened the gap between plants. Cd removal and PAHs dissipation reached up to 80% and 90% after 90 days for both plants. Heavy metal stability in soil was promoted after the intensified phytoremediation. Plant lipid peroxidation was alleviated, regulated by changed antioxidant defense systems (superoxide dismutase, peroxidase, catalase). Soil enzyme activities including dehydrogenase, urease, and catalase increased up to 5-fold. Soil bacterial diversity and structure were changed, being largely composed of Proteobacteria, Actinobacteria, Patescibacteria, Bacteroidetes, and Firmicutes. These findings provide a green and sustainable approach to decontaminating complex-polluted environments with comprehensive improvement of soil health.
Collapse
Affiliation(s)
- Xiufeng Cao
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Xiaowei Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Meng Xie
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Lei Xu
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Shouqing Ni
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China.
| |
Collapse
|
4
|
Zhao H, Gu Y, Liu X, Liu J, Waigi MG. Reducing Phenanthrene Contamination in Trifolium repens L. With Root-Associated Phenanthrene-Degrading Bacterium Diaphorobacter sp. Phe15. Front Microbiol 2021; 12:792698. [PMID: 34899673 PMCID: PMC8660855 DOI: 10.3389/fmicb.2021.792698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 12/04/2022] Open
Abstract
Some root-associated bacteria could degrade polycyclic aromatic hydrocarbons (PAHs) in contaminated soil; however, their dynamic distribution and performance on root surface and in inner plant tissues are still unclear. In this study, greenhouse container experiments were conducted by inoculating the phenanthrene-degrading bacterium Diaphorobacter sp. Phe15, which was isolated from root surfaces of healthy plants contaminated with PAHs, with the white clover (Trifolium repens L.) via root irrigation or seed soaking. The dynamic colonization, distribution, and performance of Phe15 in white clover were investigated. Strain Phe15 could efficiently degrade phenanthrene in shaking flasks and produce IAA and siderophore. After cultivation for 30, 40, and 50 days, it could colonize the root surface of white clover by forming aggregates and enter its inner tissues via root irrigation or seed soaking. The number of strain Phe15 colonized on the white clover root surfaces was the highest, reaching 6.03 Log CFU⋅g–1 FW, followed by that in the roots and the least in the shoots. Colonization of Phe15 significantly reduced the contents of phenanthrene in white clover; the contents of phenanthrene in Phe15-inoculated plants roots and shoots were reduced by 29.92–43.16 and 41.36–51.29%, respectively, compared with the Phe15-free treatment. The Phe15 colonization also significantly enhanced the phenanthrene removal from rhizosphere soil. The colonization and performance of strain Phe15 in white clove inoculated via root inoculation were better than seed soaking. This study provides the technical support and the resource of strains for reducing the plant PAH pollution in PAH-contaminated areas.
Collapse
Affiliation(s)
- Hui Zhao
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Yujun Gu
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Xiangyu Liu
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Zhao X, Miao R, Guo M, Zhou Y. Effects of Fire Phoenix (a genotype mixture of Fesctuca arundinecea L.) and Mycobacterium sp. on the degradation of PAHs and bacterial community in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25692-25700. [PMID: 33462693 DOI: 10.1007/s11356-021-12432-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/07/2021] [Indexed: 05/25/2023]
Abstract
Phytomicrobial remediation technology of PAH-contaminated soils has drawn great attention due to its low-cost, eco-friendly, and effective characteristics, but the mechanism underlying the removal of PAHs by rhizosphere in wastewater-irrigated soil is so far not clear. To evaluate the dissipation of PAHs and the shifts of bacterial community structure under plant-microorganism symbiotic system in an agricultural soil, a rhizo-box experiment with Fire Phoenix (a genotype mixture of Fesctuca arundinecea L.) or/and inoculated Mycobacterium sp. was conducted for 60 days. The changes of bacterial community structure and the contents of PAHs were analyzed by denaturing gradient gel electrophoresis (DGGE) and high-performance liquid chromatography (HPLC), respectively. The results showed that the removal rate of PAHs in phytomicrobial combined treatment was 53.7% after 60 days. The PAH-degraders were dominated by Microbacterium sp., Sphingomonas sp., Mycobacterium sp., and Flavobacterium sp. The plant of Fire Phoenix induced the appearance of Pseudomonas sp. and TM7 phylum sp. oral clone. The highest of bacterial diversity index was observed in unrhizosphere soils (MR-), rather than that in rhizosphere soils (MR+). In combination, phytomicrobial combined treatment of Fire Phoenix and Mycobacterium strain enhanced the removal rate of PAHs and changed the structure of bacterial community and bacterial diversity. Bacterial community has great effect on PAH degradation in PAH-contaminated soil from the wastewater-irrigated site. Our study can provide support information for PAH degradation enhancement by the synergetic effect of Fire Phoenix and Mycobacterium sp.
Collapse
Affiliation(s)
- Xuyang Zhao
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Renhui Miao
- International Joint Research Laboratory for Global Change Ecology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Meixia Guo
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Yanmei Zhou
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| |
Collapse
|
6
|
Mesa-Marín J, Pérez-Romero JA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID, Mateos-Naranjo E. Impact of Plant Growth Promoting Bacteria on Salicornia ramosissima Ecophysiology and Heavy Metal Phytoremediation Capacity in Estuarine Soils. Front Microbiol 2020; 11:553018. [PMID: 33042058 PMCID: PMC7527472 DOI: 10.3389/fmicb.2020.553018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/13/2020] [Indexed: 12/01/2022] Open
Abstract
Salicornia ramosissima is a C3 halophyte that grows naturally in South Western Spain salt marshes, under soil salinity and heavy metal pollution (mostly Cu, Zn, As, and Pb) caused by both natural and anthropogenic pressure. However, very few works have reported the phytoremediation potential of S. ramosissima. In this work, we studied a microbe-assisted phytoremediation strategy under greenhouse conditions. We inoculated plant growth promoting (PGP) and heavy metal resistant bacteria in pots with S. ramosissima and natural non-polluted and polluted sediments collected from Spanish estuaries. Then, we analyzed plant ecophysiological and metal phytoaccumulation response. Our data suggested that inoculation in polluted sediments improved S. ramosissima plant growth in terms of relative growth rate (RGR) (32%) and number of new branches (61%). S. ramosissima photosynthetic fitness was affected by heavy metal presence in soil, but bacteria inoculation improved the photochemical apparatus integrity and functionality, as reflected by increments in net photosynthetic rate (21%), functionality of PSII (Fm and Fv/Fm) and electron transport rate, according to OJIP derived parameters. Beneficial effect of bacteria in polluted sediments was also observed by augmentation of intrinsic water use efficiency (28%) and slightly water content (2%) in inoculated S. ramosissima. Finally, our results demonstrated that S. ramosissima was able to accumulate great concentrations of heavy metals, mostly at root level, up to 200 mg Kg–1 arsenic, 0.50 mg Kg–1 cadmium, 400 mg Kg–1 copper, 25 mg Kg–1 nickel, 300 mg Kg–1 lead, and 300 mg Kg–1 zinc. Bioaugmentation incremented S. ramosissima heavy metal phytoremediation potential due to plant biomass increment, which enabled a greater accumulation capacity. Thus, our results suggest the potential use of heavy metal resistant PGPB to ameliorate the capacity of S. ramosissima as candidate for phytoremediation of salty polluted ecosystems.
Collapse
Affiliation(s)
- Jennifer Mesa-Marín
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús A Pérez-Romero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | | | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|