1
|
Wołowicz A, Munir HMS. Emerging organic micropollutants as serious environmental problem: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177948. [PMID: 39675281 DOI: 10.1016/j.scitotenv.2024.177948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
The escalating problem of environmental pollution can be attributed to the accelerated pace of global development, which often prioritizes human needs over planetary health. Despite huge global attempts endeavours to mitigate legacy pollutants, the uninterrupted introduction of novel substances such as the emerging organic micropollutants (EOMs) represents a significant menace to the natural environment and all forms of life on the earth. The widespread occurrence of EOMs in water and wastewater is a consequence of both their growing consumption as well as the limitations of the conventional wastewater treatment methods containing such pollutants resulting in deterioration of water quality and its supplies as well as this is a significant challenge for researchers and the scientific community alike. EOMs possibility to bioaccumulate, their toxic properties, resistance to degradation, and the limitations of conventional wastewater treatment methods for quantitative removal of EOMs at low concentrations give a significant environmental risk. These compounds are not commonly monitored, which exacerbates further the problem. Therefore the wide knowledge concerning EOMs properties, their occurrence as well as awareness about their migration in the environment and harmful effects is also extremely important. Therefore the EOMs characterization of various types, their classification and sources, concentrations in the aquatic systems and wastewaters, existing regulatory guidelines and their impacts on the environment and human health are thoroughly vetted in this review. Although the full extent of EOMs' effects on aquatic ecosystems and human health is still in the process of investigations, there are evident indications of their potential acute and chronic impacts, which warrant urgent attention. In practical terms the results of the research presented in this paper will help to fill the knowledge gaps concerning EOMs as a serious problem and to raise public awareness of actions to move to sustainable pollution management practices to protect our planet for future generations are vital.
Collapse
Affiliation(s)
- Anna Wołowicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland.
| | - Hafiz Muhammad Shahzad Munir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan 64200, Pakistan.
| |
Collapse
|
2
|
Huang W, Yang Y, Tang S, Yin H, Yu X, Yu Y, Wei K. The combined toxicity of polystyrene nano/micro-plastics and triphenyl phosphate (TPHP) on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116489. [PMID: 38776781 DOI: 10.1016/j.ecoenv.2024.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Combined toxicity is a critical concern during the risk assessment of environmental pollutants. Due to the characteristics of strong hydrophobicity and large specific surface area, microplastics (MPs) and nanoplastics (NPs) have become potential carriers of organic pollutants that may pose a health risk to humans. The co-occurrence of organic pollutants and MPs would cause adverse effects on aquatic organism, while the information about combined toxicity induced by organophosphorus flame retardants and MPs on human cells was limited. This study aimed to reveal the toxicity effects of co-exposure to triphenyl phosphate (TPHP) and polystyrene (PS) particles with micron-size/nano-size on HepG2 cell line. The adsorption behaviors of TPHP on PS particles was observed, with the PS-NP exhibiting a higher adsorption capacity. The reactive oxygen species generation, mitochondrial membrane potential depolarization, lactate dehydrogenase release and cell apoptosis proved that PS-NPs/MPs exacerbated TPHP-induced cytotoxicity. The particle size of PS would affect the toxicity to HepG2 cells that PS-NP (0.07 μm) exhibited more pronounced combined toxicity than PS-MP (1 μm) with equivalent concentrations of TPHP. This study provides fundamental insights into the co-toxicity of TPHP and PS micro/nanoplastics in HepG2 cells, which is crucial for validating the potential risk of combined toxicity in humans.
Collapse
Affiliation(s)
- Wantang Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Yuanyu Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shaoyu Tang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yuanyuan Yu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Kun Wei
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| |
Collapse
|
3
|
Jing J, Wang J, Xiang X, Yin S, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Che L, Zhao H. Selenomethionine alleviates chronic heat stress-induced breast muscle injury and poor meat quality in broilers via relieving mitochondrial dysfunction and endoplasmic reticulum stress. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:363-375. [PMID: 38362514 PMCID: PMC10867585 DOI: 10.1016/j.aninu.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 02/17/2024]
Abstract
In the present study, the chronic heat stress (CHS) broiler model was developed to investigate the potential protection mechanism of organic selenium (selenomethionine, SeMet) on CHS-induced skeletal muscle growth retardation and poor meat quality. Four hundred Arbor Acres male broilers (680 ± 70 g, 21 d old) were grouped into 5 treatments with 8 replicates of 10 broilers per replicate. Broilers in the control group were raised in a thermoneutral environment (22 ± 2 °C) and fed with a basal diet. The other four treatments were exposed to hyperthermic conditions (33 ± 2 °C, 24 h in each day) and fed on the basal diet supplied with SeMet at 0.0, 0.2, 0.4, and 0.6 mg Se/kg, respectively, for 21 d. Results showed that CHS reduced (P < 0.05) the growth performance, decreased (P < 0.05) the breast muscle weight and impaired the meat quality of breast muscle in broilers. CHS induced protein metabolic disorder in breast muscle, which increased (P < 0.05) the expression of caspase 3, caspase 8, caspase 9 and ubiquitin proteasome system related genes, while decreased the protein expression of P-4EBP1. CHS also decreased the antioxidant capacity and induced mitochondrial stress and endoplasmic reticulum (ER) stress in breast muscle, which increased (P < 0.05) the ROS levels, decreased the concentration of ATP, increased the protein expression of HSP60 and CLPX, and increased (P < 0.05) the expression of ER stress biomarkers. Dietary SeMet supplementation linearly increased (P < 0.05) breast muscle Se concentration and exhibited protective effects via up-regulating the expression of the selenotranscriptome and several key selenoproteins, which increased (P < 0.05) body weight, improved meat quality, enhanced antioxidant capacity and mitigated mitochondrial stress and ER stress. What's more, SeMet suppressed protein degradation and improved protein biosynthesis though inhibiting the caspase and ubiquitin proteasome system and promoting the mTOR-4EBP1 pathway. In conclusion, dietary SeMet supplementation increases the expression of several key selenoproteins, alleviates mitochondrial dysfunction and ER stress, improves protein biosynthesis, suppresses protein degradation, thus increases the body weight and improves meat quality of broilers exposed to CHS.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiayi Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoyu Xiang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shenggang Yin
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
4
|
An J, Yi Y, Jiang J, Yao W, Ren G, Shang Y. Metabolic disturbance and transcriptomic changes induced by methyl triclosan in human hepatocyte L02 cells. Toxicol Res (Camb) 2023; 12:863-872. [PMID: 37915488 PMCID: PMC10615820 DOI: 10.1093/toxres/tfad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE Methyl triclosan (MTCS) is one of the biomethylated by-products of triclosan (TCS). With the increasing use of TCS, the adverse effects of MTCS have attracted extensive attention in recent years. The purpose of this study was to investigate the cytotoxicity of MTCS and to explore the underlining mechanism using human hepatocyte L02 cells as in vitro model. RESULTS The cytotoxicity results revealed that MTCS could inhibit cell viability, disturb the ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG), and reduce the mitochondrial membrane potential (MMP) in a dose-dependent manner. In addition, MTCS exposure significantly promoted the cellular metabolic process, including enhanced conversion of glucose to lactic acid, and elevated content of intracellular triglyceride (TG) and total cholesterol (TC). RNA-sequencing and bioinformatics analysis indicated disorder of glucose and lipid metabolism was significantly induced after MTCS exposure. Protein-protein interaction network analysis and node identification suggested that Serine hydroxy methyltransferase 2 (SHMT2), Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), Asparagine synthetase (ASNS) and Phosphoglycerate dehydrogenase (PHGDH) are potential molecular markers of metabolism imbalance induced by MTCS. CONCLUSION These results demonstrated that oxidative stress and metabolism dysregulation might be involved in the cytotoxicity of MTCS in L02 cells.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Yuting Yi
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Jingjing Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Weiwei Yao
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Yu Shang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| |
Collapse
|
5
|
He Y, Shen A, Salam M, Liu M, Wei Y, Yang Y, Li H. Microcystins-Loaded Aged Nanoplastics Provoke a Metabolic Shift in Human Liver Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10521-10531. [PMID: 37449315 DOI: 10.1021/acs.est.3c00990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Studies concerning the toxicity of pollutant-loaded nanoplastics (NPs) toward humans are still in their infancy. Here, we evaluated the adsorption of microcystins (MCs) by pristine and aged polystyrene nanoplastics (PSNPs), prepared MCs-loaded aged PSNPS (1, 5, 10, 15, and 19 μg/mg), and systematically mapped the key molecular changes induced by aged and MCs-loaded PSNPs to human hepatoblastoma (HepG2) cells. According to the results, MC-LR adsorption is increased 2.64-fold by aging, and PSNP accumulation is detected in HepG2 cells. The cytotoxicity of the MC-LR-loaded aged PSNPs showed a positive relationship with the MC-LR amount, as the cell viability in the 19 μg/mg loading treatment (aPS-MC19) was 10.84% lower than aged PSNPs; meanwhile, more severe oxidative damage was observed. Primary approaches involved stressing the endoplasmic reticulum and reducing protein synthesis that the aged PSNPs posed for HepG2 cells, while the aggravated cytotoxicity in aPS-MC19 treatment was a combined result of the metabolic energy disorder, oxidative damage, endoplasmic reticulum stress, and downregulation of the MC-LR target protein. Our results confirm that the aged PSNPs could bring more MC-LR into the HepG2 cells, significantly interfere with biological processes, and provide new insight into deciphering the risk of NPs to humans.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Ai Shen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400045, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| |
Collapse
|
6
|
Li X, Gao X, Li A, Xu S, Zhou Q, Zhang L, Pan Y, Shi W, Song M, Shi P. Comparative cytotoxicity, endocrine-disrupting effects, oxidative stress of halophenolic disinfection byproducts and the underlying molecular mechanisms revealed by transcriptome analysis. WATER RESEARCH 2023; 229:119458. [PMID: 36516492 DOI: 10.1016/j.watres.2022.119458] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Halophenolic disinfection byproducts (DBPs) are a class of emerging pollutants whose adverse effects on human cells and the underlying molecular mechanisms still need further exploration. In this study, we found that when halophenolic DBPs were substituted with the same halogen, the more substitution sites, the more cytotoxic, while when they were substituted at the same sites, the most toxic chemical was iodophenols, followed by bromophenols and chlorophenols. In addition, several of them exerted significant endocrine-disrupting effects at sublethal concentrations. 2,4,6-triiodophenol (TIP) and 2,4-dichlorophenol (2,4-DCP) showed the highest estradiol equivalent factor (EEF) of 4.41 × 10-8 and flutamide equivalent factor (FEF) of 0.4, respectively. Furthermore, all of the halophenolic DBPs except for 2-chlorophenol (2-CP) and 2-bromophenol (2-BP) significantly increased the levels of reactive oxygen species (ROS) or 8-hydroxydeoxyguanosine (8-OHdG) in HepG2 cells. The lowest cytotoxicity and unchanged ROS and 8-OHdG levels after 2-CP exposure may result from the activation of the transporters of the adenosine triphosphate (ATP) binding cassette in cells. Transcriptome analysis revealed distinct grouping patterns of 2-CP, 2,6-dibromophenol (2,6-DBP), and TIP at the concentrations of EC20, and the top differentially expressed genes (DEGs) were involved in the antioxidant-, immune-, and endocrine-associated systems. The weighted gene correlation network analysis well connected the phenotypes (EC50, EEF, FEF, ROS, 8-OHdG, and ABC transporters) with the DEGs and revealed that the MAPK signaling pathway played a vital role in regulating the biological response after exposure to halophenolic DBPs. This study provides deep insights into the underlying mechanisms of the toxic effects induced by halophenolic DBPs.
Collapse
Affiliation(s)
- Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xinran Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shuhui Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| | - Lulu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
7
|
Szychowski KA, Skóra B, Bar M, Piechowiak T. Triclosan (TCS) affects the level of DNA methylation in the human oral squamous cell carcinoma (SCC-15) cell line in a nontoxic concentration. Biomed Pharmacother 2022; 149:112815. [PMID: 35286965 DOI: 10.1016/j.biopha.2022.112815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
The oral cancer is presumably caused by genetic factors and exposure to substances derived from cosmetics and disinfectants. Triclosan (TCS) is widely spread in many consumer products and oral care products. Since TCS can affect DNA methylation, which is one of the key mechanisms of gene expression that may lead to cancerogenesis, it is necessary to study this mechanism in oral cell carcinoma. The aim of the present study was to evaluate the impact of TCS on metabolic parameters, oxidative stress, gene expression, and DNA methylation and hydroxymethylation in the SCC-15 cell line. The experiments have shown TCS toxicity to SCC-15 cells only in the highest concentrations of 50 and 100 µM. TCS in a wide range of concentrations increases ROS production and caspase-3 activity. Our experiments have shown that TCS in the nontoxic concentrations of 10 µM exerts an impact on SOD2 mRNA expression and SOD activity in the SCC-15 cell line. Finally, our experiments have demonstrated that 6-h treatment with TCS decreases the mRNA expression of DNMT3A and DNMT3B. After 72-h exposure to TCS, an increased level of 5-methylcytosine and 5-hydroxymethylcytosine was observed in the SCC-15 cell line, but it was abolished by the NAC treatment. However, it is very likely that these results can be an effect of TET enzyme activity, especially in the case of the decrease in 5mC and the increase in 5hmC after the 48-h exposure to TCS, which was accompanied with a decrease in the mRNA expression of DNMT3A and DNMT3B.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Monika Bar
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1a, 35-601 Rzeszow, Poland
| |
Collapse
|
8
|
Nasab H, Rajabi S, Mirzaee M, Hashemi M. Association of urinary triclosan, methyl triclosan, triclocarban, and 2,4-dichlorophenol levels with anthropometric and demographic parameters in children and adolescents in 2020 (case study: Kerman, Iran). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30754-30763. [PMID: 34993832 PMCID: PMC8739350 DOI: 10.1007/s11356-021-18466-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/29/2021] [Indexed: 05/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can be a major risk factor for noncommunicable illnesses, especially when children are exposed to them. The purpose of this study was to assess the urine concentrations of triclosan (TCS), methyl triclosan (MTCS), triclocarban (TCC), and 2,4-dichlorophenol (2,4-DCP) and its association with anthropometric and demographic parameters in children and adolescents aged 6-18 living in Kerman, Iran, in 2020. A GC/MS instrument was used to measure the concentrations of the analytes. TCS, MTCS, TCC, and 2,4-DCP geometric mean concentrations (µg/L) were 4.32 ± 2.08, 1.73 ± 0.88, 4.66 ± 10.25, and 0.19 ± 0.14, respectively. TCS, MTCS, TCC, and 2,4-DCP were shown to have a positive and significant association with BMI z-score and BMI (p-value < 0.01). TCS and MTCS have a positive, strong, and substantial association (p-value < 0.01, r = 0.74). There was no significant association between the waist circumference (WC) and the analytes studied. In addition, there was a close association between analyte concentration and demographic parameters (smoking, education, income, etc.) overall. In Kerman, Iran, the current study was the first to look into the association between TCS, MTCS, TCC, and 2,4-DCP analytes and anthropometric and demographic data. The levels of urinary TCS, MTCS, TCC, 2,4-DCP, and anthropometric parameters in children and adolescents are shown to have a significant association in this study. However, because the current study is cross-sectional and it is uncertain if a single experiment accurately reflects long-term exposure to these analytes, more research is needed to determine the impact of these analyses on the health of children and adolescents.
Collapse
Affiliation(s)
- Habibeh Nasab
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Liu D, Cheng Y, Chen J, Mei X, Tang Z, Cao X, Liu J. Exploring the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity by luteolin using network pharmacology and cell biology technology. Food Chem Toxicol 2021; 160:112779. [PMID: 34958803 DOI: 10.1016/j.fct.2021.112779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Acrolein is a highly reactive unsaturated hazardous air pollutant, which is extremely irritating to the respiratory tract. Luteolin, an active flavonoid compound, possesses multiple biological activities. The purpose of this study was to evaluate the mechanism of the inhibition of acrolein-induced human bronchial epithelial (BEAS-2B) cells cytotoxicity by luteolin using network pharmacology and cell biology technology. Firstly, network pharmacology results indicated that oxidative stress processes might play an important role in luteolin inhibiting lung injury. Next, it was verified at the cellular level. Reactive oxygen species (ROS) generation increased, glutathione (GSH) level decreased after exposure to acrolein. MAPK signaling pathways were activated, which activated downstream IκBα/NF-κB signaling pathways. Meanwhile, acrolein caused oxidative DNA damage and double-strand breaks, induced DNA damage response (DDR) and apoptosis. These adverse effects were significantly reversed by luteolin, which inhibited the activation of MAPK/IκBα/NF-κB and DDR pathways, and reduced the ratio of Bax/Bcl-2. Moreover, luteolin also had a similar effect to antioxidant N-acetyl cysteine (NAC) in the regulation of signaling transduction mechanisms, which indicated that the regulation of oxidative stress played an important role in the process. These results provide an experimental basis for elucidating the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity with luteolin.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Junliang Chen
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|
10
|
Liu D, Cheng Y, Tang Z, Mei X, Cao X, Liu J. Toxicity mechanism of acrolein on DNA damage and apoptosis in BEAS-2B cells: Insights from cell biology and molecular docking analyses. Toxicology 2021; 466:153083. [PMID: 34958888 DOI: 10.1016/j.tox.2021.153083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023]
Abstract
Acrolein is a hazardous air pollutant for humans and is responsible for many pulmonary diseases, but the underlying mechanisms have not been completely elucidated. This work is focused on the genotoxicity effects of human bronchial epithelial (BEAS-2B) cells induced by acrolein (20, 40, 80 μM). The molecular mechanism was investigated base on DNA damage and mitochondrial apoptosis pathways. The results showed that after exposure to acrolein, the cell viability, glutathione (GSH) of BEAS-2B cells were reduced. Reactive oxygen species (ROS) level significantly increased, accompanied by increased levels of DNA damage-related indicators 8-hydroxy-2 deoxyguanosine (8-OHdG), DNA content of comet tail (Tail DNA%), olive tail moment (OTM), and nucleus morphology. Cell arrested at the G2/M phase. Then, the DNA damage response (DDR) signaling pathway (Ataxia-telangiectasia-mutated (ATM) and Rad-3-related (ATR)/Chk1 and ATM/Chk2) and the consequent cell cycle checkpoints were activated. The expression of γ-H2AX was significantly increased, indicating that acrolein induced DNA double-strand breaks. Molecular docking assay showed that acrolein bound to DNA in a spontaneous process. Moreover, mitochondrial apoptosis pathway involved in apoptosis, mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) content of BEAS-2B cells were significantly reduced, and the apoptosis rate was significantly increased. The protein expression of Bax/Bcl-2 and Cleaved Caspase-3 were increased, and JNK signaling pathway was activated. All the results indicated that acrolein induced DNA damage, activated DDR and mitochondrial apoptosis pathways, which might be the pivotal factors to mediate cytotoxicity in BEAS-2B cells.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|
11
|
An J, Yao W, Tang W, Jiang J, Shang Y. Hormesis Effect of Methyl Triclosan on Cell Proliferation and Migration in Human Hepatocyte L02 Cells. ACS OMEGA 2021; 6:18904-18913. [PMID: 34337230 PMCID: PMC8320140 DOI: 10.1021/acsomega.1c02127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/01/2021] [Indexed: 05/26/2023]
Abstract
Methyl triclosan (mTCS) is a methylated derivative of triclosan (TCS), which is extensively used as an antimicrobial component of various nursing products and disinfectants. Current research studies of mTCS mainly focused on the environmental persistence and bioaccumulation potential. Knowledge regarding the toxicity and carcinogenicity of mTCS is limited until now. In this study, the human hepatocyte L02 cells were used to investigate the cellular effects of mTCS under different concentrations (0.1-60 μM). The hormesis effect was observed where a low dose of mTCS (≤5 μM) exposure stimulated the cell proliferation ability, while high-dose exposure (≥20 μM) inhibited cell proliferation. In the same time, low doses of mTCS (0.5 and 1 μM) induced enhanced anchorage-independent proliferation ability and cell migration ability, indicating a positive effect on malignant transformation in L02 cells. Moreover, reactive oxygen species productions were significantly increased after mTCS exposure (≥1 μM), as compared with the control group. Furthermore, expressions of tumor-related genes, mouse double minute 2 (MDM2), matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen (PCNA), and proto-oncogene MYC (c-Myc), Jun, and FosB were significantly upregulated, while no significant changes were observed on expressions of apoptosis-related and cell cycle-related genes in L02 cells after exposure of low-dose mTCS. In conclusion, these results indicated that a low dose of mTCS had a hormesis effect in L02 cells on cell proliferation and malignant transformation in vitro, which might be mediated through oxidative stress response.
Collapse
|
12
|
Khalid M, Abdollahi M. Environmental Distribution of Personal Care Products and Their Effects on Human Health. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:216-253. [PMID: 34400954 PMCID: PMC8170769 DOI: 10.22037/ijpr.2021.114891.15088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Personal care products (PCPs) are generally used for personal hygiene, cleaning, grooming, and beautification. These include hair and skin care products, baby care products, UV blocking creams, facial cleansers, insect repellents, perfumes, fragrances, soap, detergents, shampoos, conditioners, toothpaste, etc., thus exposing humans easily. Personal preferences related to PCPs usage frequency are highly variable and depend on socioeconomic status and lifestyle factors. The increasing availability and diversity of PCPs from the retailer outlets consequently result in higher loading of PCPs into wastewater systems and, therefore, the environment. These compounds persistently and continuously release biologically active and inactive ingredients in the atmosphere, biosphere, geosphere, and demonstrating adverse effects on human, wild, and marine life. Advanced techniques such as granular activated carbon filtration and algae-based system may help biotransformation and remove PCP contaminants from water with improved efficiency. Additionally, harmony among PCPs related regulations of different countries may encourage standard checks to control their manufacturing, sale, and distribution across the borders to ensure consumers' safety. Furthermore, all intended ingredients, their concentrations, and instructions for frequency of use as per age groups may be clearly labeled on packages of PCPs. In conclusion, the emerging environmental contaminants of PCPs and their association with the growing risks of negative effects on human health and globally on the environment emphasize the chemical-free simple lifestyle.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Zhang J, Yao W, Wang S, Li M, Tan G, An J, Xu L, Dong J, Cheng P. Detection of the effects of triclosan (TCS) on the metabolism of VOCs in HepG2 cells by SPI-TOFMS. J Breath Res 2020; 14:046002. [PMID: 32512549 DOI: 10.1088/1752-7163/ab9ab1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Volatile organic compounds (VOCs) emitted by organisms and cell metabolism have demonstrated great physiological and pathological values. At present, there is a great interest in the study of volatile metabolome to determine whether VOCs can serve as potential diagnostic biomarkers. In view of the sensitivity of VOCs to physiological changes, the aim of this study was to investigate alterations in VOC profiles in the in vitro headspace of HepG2 cells after exposure to triclosan (TCS). Since the in vivo biological effects of TCS are clearly defined, several TCS-related VOCs may potentially be traced back to common cellular processes. In this study, HepG2 cells were cultured in TCS-containing medium for 2 h, and the emitted VOCs in the headspace of the culture flask were detected using a single photon ionization time-of-flight mass spectrometry instrument. The control group and the TCS-treated group could be well separated by differential VOC profiles, which were related to the physiological states of the HepG2 cells. Compared to the control group, eleven and ten specific VOCs were identified in the 20 μm and 50 μm TCS-treated groups, respectively. Among them, five specific VOCs (m/z 62, 64, 70, 121 and 146) were commonly observed in these two TCS-treated groups. These results indicate that TCS can cause changes in cellular metabolic VOCs, and different concentrations of TCS lead to different VOCs profiles. Based on the findings of the study, the detection of VOCs in cell metabolism can be used as an auxiliary tool to explore the mechanism of drug action, and also as an exploratory method to determine whether drugs play a role in disease treatment.
Collapse
Affiliation(s)
- Jiyang Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ma R, Chen JT, Ji XY, Xu XL, Mu Q. Hydroxypropyl- β-Cyclodextrin Complexes of Styryllactones Enhance the Anti-Tumor Effect in SW1116 Cell Line. Front Pharmacol 2020; 11:484. [PMID: 32390840 PMCID: PMC7188779 DOI: 10.3389/fphar.2020.00484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Styryllactones, a class of compounds obtained from the genus Goniothalamus (Annonaceae), have demonstrated in vitro antitumor activity. However, the aqueous solubility of these compounds is poor. In this study, we identified the absolute configurations of the previously isolated compounds, which were first isolated in our laboratory, by single-crystal X-ray diffraction analysis using Cu Kα radiation. Subsequently, the antitumor activities of the compounds were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide staining in four tumor cell lines. The induced apoptosis activity of leiocarpin E-7'-Monoacetate was studied by an annexin V fluorescein isothiocyanate/propidium iodide double-staining experiment, and the caspase activity was tested in the SW1116 cell line. The results demonstrated that the antitumor activities of cheliensisin A and goniodiol-7-monoacetate were limited by their poor water solubility. To address this issue, hydroxypropyl-β-cyclodextrin (HP-β-CD) complexes of the compounds were synthesized by the saturated aqueous method. The complexes were then analyzed using a differential scanning calorimeter. The IC50 of cheliensisin A was reduced by 45% and 58% against SW1116 and SMMC-7721 cell lines, respectively. Similarly, the IC50 of goniodiol-7-monoacetate was reduced by 55% and 34% against the two tumor cell lines, respectively. To further evaluate whether the styryllactones and complexes possessed selectivity against cancer cell lines and normal cell lines, toxicity against human normal cell line (HEK293T) was evaluated. The results demonstrated that the HP-β-CD complexes displayed more cytotoxicity than the respective pristine compounds against the HEK293T cell line. However, there existed a therapeutic window when the complexes were applied against cancer cell lines. In summary, the synthesis of several styryllactone compounds complexed with HP-β-CD was reported for the first time. These complexes could significantly enhance the cytotoxic effects of styryllactone compounds.
Collapse
Affiliation(s)
- Ru Ma
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jie-Tao Chen
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao-Yue Ji
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Xiao-Li Xu
- Cancer Hospital, Fudan University, Shanghai, China
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Lu J, Huang Q, Zhang D, Lan T, Zhang Y, Tang X, Xu P, Zhao D, Cong D, Zhao D, Sun L, Li X, Wang J. The Protective Effect of DiDang Tang Against AlCl 3-Induced Oxidative Stress and Apoptosis in PC12 Cells Through the Activation of SIRT1-Mediated Akt/Nrf2/HO-1 Pathway. Front Pharmacol 2020; 11:466. [PMID: 32372957 PMCID: PMC7179660 DOI: 10.3389/fphar.2020.00466] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Aluminum (Al) is considered a pathological factor for various neurological and neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The neurotoxicity of aluminum can cause oxidative brain damage, trigger apoptosis, and ultimately cause irreversible damage to neurons. DiDang Tang (DDT), a classic formula within traditional Chinese medicine for promoting blood circulation and removing blood stasis and collaterals, is widely used for the treatment of stroke and AD. In this study, models of oxidative stress and apoptosis were established using AlCl3, and the effects of DDT were evaluated. We found that DDT treatment for 48 h significantly increased cell viability and reduced the release of lactate dehydrogenase (LDH) in AlCl3-induced PC12 cells. Moreover, DDT attenuated AlCl3-induced oxidative stress damage by increasing antioxidant activities and apoptosis through mitochondrial apoptotic pathways. Additionally, DDT treatment significantly activated the Sirtuin 1 (SIRT1) -mediated Akt/nuclear factor E2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways to limit AlCl3-mediated neurotoxicity. Our data indicated that DDT potently inhibited AlCl3-induced oxidative-stress damage and apoptosis in neural cells by activating the SIRT1-mediated Akt/Nrf2/HO-1 pathway, which provides further support for the beneficial effects of DDT on Al-induced neurotoxicity.
Collapse
Affiliation(s)
- Jing Lu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Dongmei Zhang
- Scientific Research Office, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tianye Lan
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Ying Zhang
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Tang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Xu
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Dexi Zhao
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Deyu Cong
- Department of Tuina, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Xiangyan Li
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Guo J, Zhang J, Liang L, Liu N, Qi M, Zhao S, Su J, Liu J, Peng C, Chen X, Liu H. Potent USP10/13 antagonist spautin-1 suppresses melanoma growth via ROS-mediated DNA damage and exhibits synergy with cisplatin. J Cell Mol Med 2020; 24:4324-4340. [PMID: 32129945 PMCID: PMC7171391 DOI: 10.1111/jcmm.15093] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/04/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is one of the most invasive tumours. However, effective therapeutic strategies are limited, and overall survival rates remain low. By utilizing transcriptomic profiling, tissue array and molecular biology, we revealed that two key ubiquitin-specific proteases (USPs), ubiquitin-specific peptidase10 (USP10) and ubiquitin-specific peptidase10 (USP13), were significantly elevated in melanoma at the mRNA and protein levels. Spautin-1 has been reported as a USP10 and USP13 antagonist, and we demonstrated that spautin-1 has potent anti-tumour effects as reflected by MTS and the colony formation assays in various melanoma cell lines without cytotoxic effects in HaCaT and JB6 cell lines. Mechanistically, we identified apoptosis and ROS-mediated DNA damage as critical mechanisms underlying the spautin-1-mediated anti-tumour effect by utilizing transcriptomics, qRT-PCR validation, flow cytometry, Western blotting and immunofluorescence staining. Importantly, by screening spautin-1 with targeted or chemotherapeutic drugs, we showed that spautin-1 exhibited synergy with cisplatin in the treatment of melanoma. Pre-clinically, we demonstrated that spautin-1 significantly attenuated tumour growth in a cell line-derived xenograft mouse model, and its anti-tumour effect was further enhanced by cotreatment with cisplatin. Taken together, our study revealed a novel molecular mechanism of spautin-1 effecting in melanoma and identified a potential therapeutic strategy in treatment of melanoma patients.
Collapse
Affiliation(s)
- Jia Guo
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
| | - JiangLing Zhang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
| | - Long Liang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Molecular Biology Research Center and Center for Medical GeneticsCentral South UniversityChangshaChina
| | - Nian Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
| | - Min Qi
- Department of Plastic and Cosmetic SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Shuang Zhao
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Juan Su
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical GeneticsCentral South UniversityChangshaChina
| | - Cong Peng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Hong Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
- Research Center of Molecular MetabolomicsXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
17
|
PTP4A3, A Novel Target Gene of HIF-1alpha, Participates in Benzene-Induced Cell Proliferation Inhibition and Apoptosis through PI3K/AKT Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030910. [PMID: 32024182 PMCID: PMC7037067 DOI: 10.3390/ijerph17030910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Benzene, a commonly used chemical, has been confirmed to specifically affect the hematopoietic system as well as overall human health. PTP4A3 is overexpressed in leukemia cells and is related to cell proliferation. We previously found that HIF-1alpha was involved in benzene toxicity and PTP4A3 may be the target gene of HIF-1alpha via ChIP-seq. The aim of this study is to confirm the relationship between HIF-1alpha and PTP4A3 in benzene toxicity, as well as the function of PTP4A3 on cell toxicity induced by 1,4-benzoquinone (1,4-BQ). Our results indicate that HIF-1alpha could regulate PTP4A3 with in vivo and in vitro experiments. A cell line with suppressed PTP4A3 was established to investigate the function of PTP4A3 in 1,4-BQ toxicity in vitro. The results revealed that cell proliferation inhibition was more aggravated in PTP4A3 low-expression cells than in the control cells after 1,4-BQ treatment. The relative oxygen species (ROS) significantly increased in cells with inhibited PTP4A3, while the rise was inferior to the control cells at the 20 μM 1,4-BQ group. An increase in DNA damage was seen in PTP4A3 down-regulated cells at the 10 μM 1,4-BQ group, whereas the results reversed at the concentration of 20 μM. Moreover, the apoptosis rate increased higher in down-regulated PTP4A3 cells after 1,4-BQ exposure. In addition, PI3K/AKT pathway was significantly restrained in cells with inhibited PTP4A3 after 1,4-BQ treatment. Our results indicate that HIF-1alpha may regulate PTP4A3 to be involved in benzene toxicity. Inhibition of PTP4A3 could aggravate cell proliferation suppression and apoptosis by regulating PI3K/AKT pathway after 1,4-BQ treatment.
Collapse
|
18
|
Shrestha P, Zhang Y, Chen WJ, Wong TY. Triclosan: antimicrobial mechanisms, antibiotics interactions, clinical applications, and human health. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:245-268. [PMID: 32955413 DOI: 10.1080/26896583.2020.1809286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The large-scale applications of Triclosan in industrial and household products have created many health and environmental concerns. Despite the fears of its drug-resistance and other issues, Triclosan is still an effective drug against many infectious organisms. Knowing the cross-interactions of Triclosan with different antibiotics, bacteria, and humans can provide much-needed information for the risk assessment of this drug. We review the current understanding of the antimicrobial mechanisms of Triclosan, how microbes become resistant to Triclosan, and the synergistic and antagonistic effects of Triclosan with different antibiotics. Current literature on the clinical applications of Triclosan and its effect on fetus/child development are also summarized.
Collapse
Affiliation(s)
- Prabin Shrestha
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | | | - Wen-Jen Chen
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | - Tit-Yee Wong
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|