1
|
Xie S, Yin M, Xiang M, Shao L, Zhang N, Shi L, Zhang J, Yu G. Lead (Pb) Induces Osteotoxicity Through the Activation of Mutually Reinforced ER Stress and ROS in MC3T3-E1 Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04427-7. [PMID: 39643796 DOI: 10.1007/s12011-024-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/17/2024] [Indexed: 12/09/2024]
Abstract
Lead (Pb) is the most common contaminant of heavy metals and is widely present in the environment. Destruction of bone structure, malformation of bone development, and loss of bone mass are important pathological features of lead-exposed individuals. However, the exact molecular mechanisms associated with lead exposure and osteogenic injury are still not fully understood. MC3T3-E1 mouse embryonic osteoblast is a cell line widely used in osteoblast cytology. It can differentiate into mature osteoblasts and express bone-specific genes in cell culture. The doses of 1, 2, and 4 mM Pb were adopted to study the toxicity of Pb on MC3T3-E1 proliferation and differentiation. In this study, the results show that Pb increases the expression of apoptosis-related proteins, including PARP1, cleaved caspase-3, Bax, and cleaved caspase-9. More importantly, Pb activated endoplasmic reticulum stress and oxidative stress, as evident by elevated PERK/ATF4/CHOP and ROS/NRF2 signaling pathway. Pb induced ROS production in MC3T3-E1 cells through endoplasmic reticulum stress and produced a lethal effect. NAC mitigated these effects. Endoplasmic reticulum stress inhibitor 4-PBA can block the ER stress pathway, reduce ROS production, and enhance cell viability. In addition, studies have shown that ERO1 activation in the ER stress pathway is responsible for inducing ROS production. ROS produced by the mitochondrial pathway also aggravates ER stress. This study suggests that Pb induces MC3T3-E1 cell apoptosis by inducing PERK-mediated ER stress and NRF2-mediated oxidative stress via mutual enhancement, which may be an important mechanism leading to skeletal toxicity.
Collapse
Affiliation(s)
- Siwen Xie
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengting Xiang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Litao Shao
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Nan Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liang Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Anwar A, Ramis De Ayreflor Reyes S, John AA, Breiling E, O'Connor AM, Reis S, Shim JH, Shah AA, Srinivasan J, Farny NG. Nucleic acid aptamers protect against lead (Pb(II)) toxicity. N Biotechnol 2024; 83:36-45. [PMID: 38925526 DOI: 10.1016/j.nbt.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced neurotoxicity, measured by behavioral assays, are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, India
| | | | - Aijaz Ahmad John
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik Breiling
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Abigail M O'Connor
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Stephanie Reis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, India
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| |
Collapse
|
3
|
He B, Wang X, Luo H, Zhou Q. Association between blood lead levels and parathyroid hormone among United States adolescents aged 12-19: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1383058. [PMID: 39045271 PMCID: PMC11263011 DOI: 10.3389/fendo.2024.1383058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Aims Studies on the association between serum lead levels and parathyroid function in adolescents are lacking. Therefore, in this study, we elucidated the possible association between blood lead levels (BLLs) and the parathyroid hormone (PTH) in adolescents aged 12-19 years in the United States. Methods In this study, information from the database of the National Health and Nutrition Examination Survey was utilized. The study included 3919 participants from survey cycles between 2003-2004 and 2005-2006. Multivariable linear regression analysis was performed to determine the correlation between BLLs and PTH. Furthermore, smooth curve fitting was utilized to analyze the dose-response relationship between BLLs and PTH. Results Multivariable linear regression analysis revealed that every 1 μg/dL increase in BLLs was associated with 0.67 pg/mL increase in PTH (β = 0.67, 95% CI: 0.16-1.18, p < 0.01). However, sex-stratified subgroup analysis revealed that this positive association was only observed in males (β = 1.16, 95% CI: 0.50-1.83 p < 0.01). Smooth curve fitting revealed a positive correlation between BLLs and PTH. Conclusions In adolescents in the United States, BLLs are positively correlated with PTH, particularly in males.
Collapse
Affiliation(s)
- Baomei He
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | | | - Huanjun Luo
- Bengbu Medical College, Bengbu, Anhui, China
| | - Qin Zhou
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
4
|
Liang Y, Zhang M, Jin W, Zhao L, Wu Y. Association of heavy metals exposure with lower blood pressure in the population aged 8-17 years: a cross-sectional study based on NHANES. Front Public Health 2024; 12:1411123. [PMID: 39035189 PMCID: PMC11259964 DOI: 10.3389/fpubh.2024.1411123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Background The existing evidence regarding the joint effect of heavy metals on blood pressure (BP) in children and adolescents is insufficient. Furthermore, the impact of factors such as body weight, fish consumption, and age on their association remains unclear. Methods The study utilized original data from the National Health and Nutrition Examination Survey, encompassing 2,224 children and adolescents with complete information on 12 urinary metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, tungsten, uranium, mercury and arsenic), BP, and core covariates. Various statistical methods, including weighted multiple logistic regression, linear regression, and Weighted Quantile Sum regression (WQS), were employed to evaluate the impact of mixed metal exposure on BP. Sensitivity analysis was conducted to confirm the primary analytical findings. Results The findings revealed that children and adolescents with low-level exposure to lead (0.40 μg/L, 95%CI: 0.37, 0.42), mercury (0.38 μg/L, 95%CI: 0.35, 0.42) and molybdenum (73.66 μg/L, 95%CI: 70.65, 76.66) exhibited reduced systolic blood pressure (SBP) and diastolic blood pressure (DBP). Conversely, barium (2.39 μg/L, 95%CI: 2.25, 2.54) showed a positive association with increased SBP. A 25th percentile increase in the WQS index is significantly associated with a decrease in SBP of 0.67 mmHg (95%CI, -1.24, -0.10) and a decrease in DBP of 0.59 mmHg (95% CI, -1.06, -0.12), which remains statistically significant even after adjusting for weight. Furthermore, among individuals who consume fish, heavy metals have a more significant influence on SBP. A 25 percentile increase in the WQS index is significantly associated with a decrease of 3.30 mmHg (95% CI, -4.73, -1.87) in SBP, primarily attributed to mercury (27.61%), cadmium (27.49%), cesium (17.98%), thallium (8.49%). The study also identified a declining trend in SBP among children aged 10-17, whereas children aged 11-18 exhibited lower levels of systolic and diastolic blood pressure, along with a reduced risk of hypertension. Conclusion Some heavy metals demonstrate an inverse association with the BP of children and adolescents, particularly notable in groups with fish consumption and older children and adolescents. Future studies are warranted to validate these findings and delve deeper into the interplay of heavy metals.
Collapse
Affiliation(s)
| | | | | | - Liqing Zhao
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Anwar A, De Ayreflor Reyes SR, John AA, Breiling E, O’Connor AM, Reis S, Shim JH, Shah AA, Srinivasan J, Farny NG. Nucleic Acid Aptamers Protect Against Lead (Pb(II)) Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587288. [PMID: 38585880 PMCID: PMC10996642 DOI: 10.1101/2024.03.28.587288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced behavioral anomalies are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (J&K), India
| | | | - Aijaz Ahmad John
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik Breiling
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Abigail M. O’Connor
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Stephanie Reis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (J&K), India
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Natalie G. Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| |
Collapse
|
6
|
Lu AX, Lin Y, Li J, Liu JX, Yan CH, Zhang L. Effects of food-borne docosahexaenoic acid supplementation on bone lead mobilisation, mitochondrial function and serum metabolomics in pre-pregnancy lead-exposed lactating rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122613. [PMID: 37757928 DOI: 10.1016/j.envpol.2023.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Large bone lead (Pb) resulting from high environmental exposure during childhood is an important source of endogenous Pb during pregnancy and lactation. Docosahexaenoic acid (DHA) attenuates Pb toxicity, however, the effect of DHA on bone Pb mobilisation during lactation has not been investigated. We aimed to study the effects of DHA supplementation during pregnancy and lactation on bone Pb mobilisation during lactation and its potential mechanisms. Weaning female rats were randomly divided into control (0.05% sodium acetate) and Pb-exposed (0.05% Pb acetate) groups, after a 4-week exposure by ad libitum drinking and a subsequent 4-week washout period, all female rats were mated with healthy males until pregnancy. Then exposed rats were randomly divided into Pb and Pb + DHA groups, and the latter was given a 0.14% DHA diet, while the remaining groups were given normal feed until the end of lactation. Pb and calcium levels, bone microarchitecture, bone turnover markers, mitochondrial function and serum metabolomics were analyzed. The results showed that higher blood and bone Pb levels were observed in the Pb group compared to the control, and there was a significant negative correlation between blood and bone Pb. Also, Pb increased trabecular bone loss along with slightly elevated serum C-telopeptide of type I collagen (CTX-I) levels. However, DHA reduced CTX-I levels and improved trabecular bone microarchitecture. Metabolomics showed that Pb affected mitochondrial function, which was further demonstrated in bone tissue by significant reductions in ATP levels, Na+-K+-ATPase, Ca2+-Mg2+-ATPase and CAT activities, and elevated levels of MDA, IL-1β and IL-18. However, these alterations were partially mitigated by DHA. In conclusion, DHA supplementation during pregnancy and lactation improved bone Pb mobilisation and mitochondrial dysfunction in lactating rats induced by pre-pregnancy Pb exposure, providing potential means of mitigating bone Pb mobilisation levels during lactation, but the mechanism still needs further study.
Collapse
Affiliation(s)
- An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Zhang L, Lin Y, Lu AX, Liu JX, Li J, Yan CH. Metabolomics insights into the effects of pre-pregnancy lead exposure on bone metabolism in pregnant rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122468. [PMID: 37652228 DOI: 10.1016/j.envpol.2023.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Today's women of childbearing age with a history of high lead (Pb) exposure in childhood have large Pb body burdens, which increases Pb release during pregnancy by promoting bone Pb mobilisation. The purpose of this study was to investigate the metabolic mechanisms underlying bone Pb mobilisation and explore the bone metabolism-related pathways during pregnancy. Drinking water containing 0.05% sodium acetate or Pb acetate was provided to weaned female rats for 4 weeks followed by a 4-week washout period, and then rats were co-caged with healthy males of the same age until pregnancy. Blood and bone tissues of the female rats were collected at gestational day (GD) 3 (early pregnancy), GD 10 (middle pregnancy), and GD 17 (late pregnancy), respectively. Pb and calcium concentrations, biomarkers for bone turnover, bone microstructure, serum metabolomics, and metabolic indicators were intensively analyzed. The results demonstrated that pre-pregnancy Pb exposure elevated blood lead levels (BLLs) at GD17, accompanied by a negative correlation between BLLs and trabecular bone Pb levels. Meanwhile, Pb-exposed rats had low bone mass and aberrant bone architecture with a larger number of mature osteoclasts (OCs) compared to the control group. Moreover, the metabolomics uncovered that Pb exposure caused mitochondrial dysfunction, such as enhanced oxidative stress and inflammatory response, and suppressed energy metabolism. Additionally, the levels of ROS, MDA, IL-1β, and IL-18 involved in redox and inflammatory pathways of bone tissues were significantly increased in the Pb-exposed group, while antioxidant SOD and energy metabolism-related indicators including ATP levels, Na+-K+-ATPase, and Ca2+-Mg2+-ATPase activities were significantly decreased. In conclusion, pre-pregnancy Pb exposure promotes bone Pb mobilisation and affects bone microstructure in the third trimester of pregnancy, which may be attributed to OC activation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lin Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Lin
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - An-Xin Lu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun-Xia Liu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
8
|
Yan R, Ding J, Yang Q, Zhang X, Han J, Jin T, Shi S, Wang X, Zheng Y, Li H, Zhang H, An Y. Lead acetate induces cartilage defects and bone loss in zebrafish embryos by disrupting the GH/IGF-1 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114666. [PMID: 36812871 DOI: 10.1016/j.ecoenv.2023.114666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Skeletal system toxicity due to lead exposure has attracted extensive attention in recent years, but few studies focus on the skeletal toxicity of lead in the early life stages of zebrafish. The endocrine system, especially the GH/IGF-1 axis, plays an important role in bone development and bone health of zebrafish in the early life. In the present study, we investigated whether lead acetate (PbAc) affected the GH/IGF-1 axis, thereby causing skeletal toxicity in zebrafish embryos. Zebrafish embryos were exposed to lead PbAc between 2 and 120 h post fertilization (hpf). At 120 hpf, we measured developmental indices, such as survival, deformity, heart rate, and body length, and assessed skeletal development by Alcian Blue and Alizarin Red staining and the expression levels of bone-related genes. The levels of GH and IGF-1 and the expression levels of GH/IGF-1 axis-related genes were also detected. Our data showed that the LC50 of PbAc for 120 h was 41 mg/L. Compared with the control group (0 mg/L PbAc), after PbAc exposure, the deformity rate increased, the heart rate decreased, and the body length was shortened at various time periods, in the 20-mg/L group at 120 hpf, the deformity rate increased by 50 fold, the heart rate decreased by 34%, and the body length shortened by 17%. PbAc altered cartilage structures and exacerbated bone loss in zebrafish embryos; in addition, PbAc exposure down-regulated the expression of chondrocyte (sox9a, sox9b), osteoblast (bmp2, runx2) and bone mineralization-related genes (sparc, bglap), and up-regulated the expression of osteoclast marker genes (rankl, mcsf). The GH level increased and the IGF-1 level declined significantly. The GH/IGF-1 axis related genes (ghra, ghrb, igf1ra, igf1rb, igf2r, igfbp2a, igfbp3, igfbp5b) were all decreased. These results suggested that PbAc inhibited the differentiation and maturation of osteoblasts and cartilage matrix, promoted the formation of osteoclasts, and ultimately induced cartilage defects and bone loss by disrupting the GH/IGF-1 axis.
Collapse
Affiliation(s)
- Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Jie Ding
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Xiaoyun Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Junyu Han
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Shudi Shi
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Xirui Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Yu Zheng
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Heran Li
- Microwants International LTD, 999077, Hong Kong, China.
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; Jiangsu Preventive Medicine Association, Nanjing 210009, China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Wang H, Yao Q, Zhu W, Yang Y, Gao C, Han C, Chu X. Biomimetic Antidote Nanoparticles: a Novel Strategy for Chronic Heavy Metal Poisoning. AAPS PharmSciTech 2022; 24:12. [PMID: 36451071 DOI: 10.1208/s12249-022-02466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic lead poisoning has become a major factor in global public health. Chelation therapy is usually used to manage lead poisoning. Dimercaptosuccinic acid (DMSA) is a widely used heavy metal chelation agent. However, DMSA has the characteristics of poor water solubility, low oral bioavailability, and short half-life, which limit its clinical application. Herein, a long-cycle slow-release nanodrug delivery system was constructed. We successfully coated the red blood cell membrane (RBCM) onto the surface of dimercaptosuccinic acid polylactic acid glycolic acid copolymer (PLGA) nanoparticles (RBCM-DMSA-NPs), which have a long cycle and detoxification capabilities. The NPs were characterized and observed by particle size meters and transmission electron microscopy. The results showed that the particle size of RBCM-DMSA-NPs was approximately 146.66 ± 2.41 nm, and the zeta potential was - 15.34 ± 1.60 mV. The homogeneous spherical shape and clear core-shell structure of the bionic nanoparticles were observed by transmission electron microscopy. In the animal tests, the area under the administration time curve of RBCM-DMSA-NPs was 156.52 ± 2.63 (mg/L·h), which was 5.21-fold and 2.36-fold that of free DMSA and DMSA-NPs, respectively. Furthermore, the median survival of the RBCM-DMSA-NP treatment group (47 days) was 3.61-fold, 1.32-fold, and 1.16-fold for the lead poisoning group, free DMSA, and DMSA-NP groups, respectively. The RBCM-DMSA-NP treatment significantly extended the cycle time of the drug in the body and improved the survival rate of mice with chronic lead poisoning. Histological analyses showed that RBCM-DMSA-NPs did not cause significant systemic toxicity. These results indicated that RBCM-DMSA-NPs could be a potential candidate for long-term chronic lead exposure treatment.
Collapse
Affiliation(s)
- Hao Wang
- College of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qing Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, China.
| | - Xiaoyang Chu
- Department of Stomatology, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 10071, China.
| |
Collapse
|
10
|
Davis LL, Aragão WAB, de Oliveira Lopes G, Eiró LG, Freire AR, Prado FB, Rossi AC, da Silva Cruz A, das Graças Fernandes Dantas K, Albuquerque ARL, Paz SPA, Angélica RS, Lima RR. Chronic exposure to lead acetate promotes changes in the alveolar bone of rats: microstructural and physical-chemical characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13930-13940. [PMID: 34599710 DOI: 10.1007/s11356-021-16723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
There are a few data relating to the effects of lead (Pb) exposure on the alveolar bone, which has very distinct morphophysiological characteristics and is of great importance in the oral cavity. In this context, the aim of this study was to investigate the changes promoted after long-term exposure to Pb in the microstructure of the alveolar bone of rats. Twenty adult Wistar rats were exposed to 50 mg/kg/day of lead acetate for 55 days. These animals were euthanized and had their mandible removed. Each mandible was divided into hemimandibles, and the alveolar bone was used for bone lead quantification, crystallinity analysis, microstructure evaluation by the percentage of bone volume (BV/TV), number of trabeculae (Tb.N), thickness of the trabecular (Tb.Th), and trabecular space (Tb.Sp). Morphometric analysis of the exposed root area was also performed. Long-term exposure to Pb resulted in high levels of Pb in the alveolar bone but showed no changes in the organization of crystallinity. The microstructural analyses showed a reduction of BV/TV, Tb.Th, and Tb.N and increase of Tb.Sp parameters, resulting in an increase in the exposed root area and an alveolar bone loss in height. The findings of this study reveal the ability of Pb to alter the alveolar bone microstructure after long-term exposure to the metal, possibly due to changes in tissue homeostasis, contributing to the reduction of bone quality.
Collapse
Affiliation(s)
- Lodinikki Lemoy Davis
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Géssica de Oliveira Lopes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Luciana Guimaraes Eiró
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Alexandre Rodrigues Freire
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Felippe Bevilacqua Prado
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Ana Cláudia Rossi
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Allan da Silva Cruz
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Alan Rodrigo Leal Albuquerque
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Simone Patricia Aranha Paz
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rômulo Simões Angélica
- Laboratory of Mineral Characterization, Institute of Geology and Geochemistry, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
11
|
Liu N, Huang Y, Zhang H, Wang T, Tao C, Zhang A, Chen B, Yin Y, Song M, Qu G, Liang Y, Shi J, He B, Hu L, Jiang G. Unified Probability Distribution and Dynamics of Lead Contents in Human Erythrocytes Revealed by Single-Cell Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3819-3826. [PMID: 33660988 DOI: 10.1021/acs.est.0c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the presence and dynamics of chemical pollutants in individual cells is fundamentally important for their trafficking, fate, and toxicity in humans. The presence of molecular components (i.e., proteins and mRNA) in individual cells of higher organisms is considered a stochastic event. The characteristics of chemical pollutants, as extrinsic compounds, in subpopulation of human cells on single-cell basis have not been explored yet. Here, we demonstrated the lead (Pb) content in individual mature erythrocytes (m-erythrocytes) of Pb-intoxicated patients, and healthy subjects exhibited a unified pattern in probability distribution (gamma distribution) and dynamics, despite being highly heterogeneous. The Pb content in individual m-erythrocytes decreased with the lifetime of m-erythrocytes. Meanwhile, the distribution and dynamics were found to be highly related to the Pb content in m-erythrocytes and was independent of patients and their status. This is the first study to analyze the distribution pattern of chemical pollutants at a single-cell level in higher organisms. This study sheds light on the molecular mechanism of Pb trafficking and fate in humans and the search for an efficient strategy to improve Pb excretion during Pb treatment.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshun Huang
- Department of Occupational Medicine, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- Huizhou City Occupational Disease Prevention and Control Hospital, Huizhou, Guangdong 516008, China
| | - Chen Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|