1
|
Gao Y, Long X, Liao Y, Lin Y, He Z, Kong Q, Kong X, He X. Influence of Arbuscular Mycorrhizal Fungi on Nitrogen Dynamics During Cinnamomum camphora Litter Decomposition. Microorganisms 2025; 13:151. [PMID: 39858918 PMCID: PMC11768061 DOI: 10.3390/microorganisms13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can preferentially absorb the released ammonium (NH4+) over nitrate (NO3-) during litter decomposition. However, the impact of AMF's absorption of NH4+ on litter nitrogen (N) decomposition is still unclear. In this study, we investigated the effects of AMF uptake for NH4+ on litter N metabolic characteristics by enriching NH4+ via AMF suppression and nitrification inhibition in a subtropical Cinnamomum camphora forest. The results showed that AMF suppression and nitrification inhibition significantly decelerated litter decomposition in the early stage due to the repression of NH4+ in extracellular enzyme activity. In the late stage, when soil NH4+ content was low, in contrast, they promoted litter decomposition by increasing the extracellular enzyme activities. Nitrification inhibition mainly promoted the utilization of plant-derived N by promoting the degradation of the amide I, amide II, and III bands by increasing protease activity, and it promoted ammonification by increasing urease activities, whereas it reduced the utilization of microbial-derived N by decreasing chitinase activity. On the contrary, AMF suppression, which significantly reduced the ammonification rate and increased the nitrification rate, only facilitated the degradation of the amide II band. Moreover, it intensified the microbial-derived N decomposition by increasing chitinase activity. The degradation of the amide I and II bands still relied on the priming effects of AMF on soil saprotrophs. This was likely driven by AMF-mediated phosphorus (P) mineralization. Nutrient acquiring, especially P by phosphatase, were the main factors in predicting litter decomposition and protein degradation. Thus, AMF could relieve the end-product repression of locally enriched NH4+ in extracellular enzyme activity and promote early-stage litter decomposition. However, the promotive effects of AMF on litter protein degradation and NH4+ release rely on P mineralization. Our results demonstrated that AMF could alleviate the N limitation for net primary production via accelerating litter N decomposition and reducing N loss. Moreover, they could restrict the decomposition of recalcitrant components by competing with saprotrophs for nutrients. Both pathways will contribute to C sequestration in forest ecosystems, which advances our understanding of AMF's contribution to nutrient cycling and ecosystem processes in subtropical forests.
Collapse
Affiliation(s)
- Yuehong Gao
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Xiaoyu Long
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Yiqi Liao
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism, Jishou University, Jishou 416000, China;
| | - Yonghui Lin
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Zaihua He
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Qin Kong
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Xiangshi Kong
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism, Jishou University, Jishou 416000, China;
| | - Xingbing He
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| |
Collapse
|
2
|
Liu Y, Qian J, Lu B, Hu J, He Y, Shen J, Tang S. Arbuscular mycorrhizal symbiosis enhances the accumulation of plant-derived carbon in soil organic carbon by regulating the biosynthesis of plant biopolymers and soil metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109230. [PMID: 39461054 DOI: 10.1016/j.plaphy.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Plant-derived carbon (C) is a critical constituent of particulate organic carbon (POC) and plays an essential role in soil organic carbon (SOC) sequestration. Yet, how arbuscular mycorrhizal fungi (AMF) control the contribution of plant-derived C to SOC storage through two processes (biosynthesis of plant biopolymers and soil metabolism) remains poorly understood. Here, we utilized transcriptome analysis to examine the effects of AMF on P. communis roots. Under the AM symbiosis, root morphological growth and tolerance to stress were strengthened, and the biosynthetic pathways of key plant biopolymers (long-chain fatty acids, cutin, suberin, and lignin) contributing to the plant-derived C were enhanced. In the subsequent metabolic processes, AMF increased soil metabolites contributing to plant-derived C (such as syringic acid) and altered soil metabolic pathways, including carbohydrate metabolism. Additionally, C-acquiring soil extracellular enzyme activities were enhanced by AMF, which could affect the stabilization of plant-derived C in soil. The contents of POC (21.71 g kg-1 soil), MAOC (10.75 g kg-1 soil), and TOC (32.47 g kg-1 soil) in soil were significantly increased by AMF. The concentrations of plant-derived C and microbial-derived C were quantified based on biomarker analysis. AMF enhanced the content of plant-derived C in both POC and MAOC fractions. What's more, plant-derived C presented the highest level in the POC fraction under the AMF treatment. This research broadens our understanding of the mechanism through which plant-derived C contributes to the accumulation of POC and SOC induced by AM symbiosis, and evidences the benefits of AMF application in SOC sequestration.
Collapse
Affiliation(s)
- Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China.
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jing Hu
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, 32816, Orlando, Fl, USA
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Wen Y, Wu R, Qi D, Xu T, Chang W, Li K, Fang X, Song F. The effect of AMF combined with biochar on plant growth and soil quality under saline-alkali stress: Insights from microbial community analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116592. [PMID: 38901167 DOI: 10.1016/j.ecoenv.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and biochar application individually can enhance plant tolerance to saline-alkali stress and promote plant growth efficiency. However, little is known about the potential synergistic effects of their combination on improving plant growth and soil quality under saline-alkali stress. This experiment adopted the potted method to explore the effects of four treatments on switchgrass growth and soil quality: biochar (BC), Rhizophagus irregularis (Ri), biochar + Ri (BR) and a control without biochar or Ri (CK). Compared to the CK treatment, the switchgrass biomass increased by 92.4 %, 148.6 %, and 177.3 % in the BC, Ri, and BR treatment groups, respectively. Similarly, the rhizosphere soil quality index increased by 29.33 %, 22.7 %, and 49.1 % in the respective treatment groups. The BR treatment significantly altered the rhizosphere soil microbial composition and diversity. Notably, compared to the other treatments, the archaeal α-diversity in the BR group showed a significant decrease. BR treatment significantly increased the relative abundance of bacteria, fungi and archaea at the genus level (e.g., Bacillus, Trichome and candidatus_methanopenens). Network analysis showed that the complexity and closeness of interactions between different microbial taxa were stronger in the BC, Ri and BR treatments than in the CK treatment, with BR being the more prominent. In summary, biochar combined with Ri has a better effect on promoting the growth of switchgrass under saline-alkali stress, improving the quality of saline-alkali soil, and increasing soil microbial diversity. This study provides a new approach for the efficient development and utilization of saline-alkali land.
Collapse
Affiliation(s)
- Yuqiang Wen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China
| | - Ruotong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dandan Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Tianle Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China.
| | - Kun Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xiaoxu Fang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China.
| |
Collapse
|
4
|
Abrar M, Zhu Y, Maqsood Ur Rehman M, Batool A, Duan HX, Ashraf U, Aqeel M, Gong XF, Peng YN, Khan W, Wang ZY, Xiong YC. Functionality of arbuscular mycorrhizal fungi varies across different growth stages of maize under drought conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108839. [PMID: 38879986 DOI: 10.1016/j.plaphy.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.
Collapse
Affiliation(s)
- Muhammad Abrar
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, Gansu, China.
| | - Muhammad Maqsood Ur Rehman
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Asfa Batool
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Hai-Xia Duan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiao-Fang Gong
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Yi-Nan Peng
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Wasim Khan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhi-Ye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - You-Cai Xiong
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
5
|
Song T, Liu J, Han S, Li Y, Xu T, Xi J, Hou L, Lin Y. Effect of conventional and biodegradable microplastics on the soil-soybean system: A perspective on rhizosphere microbial community and soil element cycling. ENVIRONMENT INTERNATIONAL 2024; 190:108781. [PMID: 38880060 DOI: 10.1016/j.envint.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
As an exogenous carbon input, microplastics (MPs), especially biodegradable MPs, may significantly disrupt soil microbial communities and soil element cycling (CNPS cycling), but few studies have focused on this. Here, we focused on assessing the effects of conventional low-density polyethylene (LDPE), biodegradable polybutylene adipate terephthalate (PBAT), and polylactic acid (PLA) MPs on rhizosphere microbial communities and CNPS cycling in a soil-soybean system. The results showed that PBAT-MPs and PLA-MPs were more detrimental to soybean growth than LDPE-MPs, resulting in a reduction in shoot nitrogen (14.05% and 11.84%) and shoot biomass (33.80% and 28.09%) at the podding stage. In addition, dissolved organic carbon (DOC) increased by 20.91% and 66.59%, while nitrate nitrogen (NO3--N) significantly decreased by 56.91% and 69.65% in soils treated with PBAT-MPs and PLA-MPs, respectively. PBAT-MPs and PLA-MPs mainly enhanced copiotrophic bacteria (Proteobacteria) and suppressed oligotrophic bacteria (Verrucomicrobiota, Gemmatimonadota, etc.), increasing the abundance of CNPS cycling-related functional genes. LDPE-MPs tended to enrich oligotrophic bacteria (Verrucomicrobiota, etc.) and decrease the abundance of CNPS cycling-related functional genes. Correlation analysis revealed that MPs with different degradation properties selectively affected the composition and function of the bacterial community, resulting in changes in the availability of soil nutrients (especially NO3--N). Redundancy analysis further indicated that NO3--N was the primary constraining factor for soybean growth. This study provides a new perspective for revealing the underlying ecological effects of MPs on soil-plant systems.
Collapse
Affiliation(s)
- Tianjiao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Xi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Hou
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Jing T, Li J, He Y, Shankar A, Saxena A, Tiwari A, Maturi KC, Solanki MK, Singh V, Eissa MA, Ding Z, Xie J, Awasthi MK. Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions - A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108602. [PMID: 38608506 DOI: 10.1016/j.plaphy.2024.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.
Collapse
Affiliation(s)
- Tao Jing
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jingyang Li
- Tropical Crops Genetic and Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yingdui He
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Alka Shankar
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Krishna Chaitanya Maturi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Mamdouh A Eissa
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Zheli Ding
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jianghui Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
7
|
Khan W, Zhu Y, Khan A, Zhao L, Yang YM, Wang N, Hao M, Ma Y, Nepal J, Ullah F, Rehman MMU, Abrar M, Xiong YC. Above-and below-ground feedback loop of maize is jointly enhanced by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170417. [PMID: 38280611 DOI: 10.1016/j.scitotenv.2024.170417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Drought is a potent abiotic stressor that arrests crop growth, significantly affecting crop health and yields. The arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR) can offer to protect plants from stressful environments through improving water, and nutrient use efficiency by strengthening plant root structure and harnessing favorable rhizosphere environments. When Acaulospora laevis (AMF) and Bacillus subtilus (PGPR) are introduced in combination, enhanced root growth and beneficial microbial colonization can mitigate drought stress. To assess this potential, a pot experiment was done with maize (Zea mays L.) to explore the effects of A. laevis and B. subtilus under different water levels (well-watered = 80 %; moderate water stress = 55 %; and severe water stress = 35 %) on maize yield, soil microbial activities, nutrients contents, root, and leaf functioning. Plants exposed to severe drought stress hampered their root and leaf functioning, and reduced grain yield compared with control plants. Combined use of AMF and PGPR increased root colonization (104.6 %-113.2 %) and microbial biomass carbon (36.38 %-40.23 %) under moderate to severe drought conditions over control. Higher root colonization was strongly linked with elevated ACC (aminocyclopropane-1-carboxylic acid) production, subsequently enhancing water use efficiency (21.62 %-12.77 %), root hydraulic conductivity (1.9 %-1.4 %) and root nutrient uptake under moderate to severe drought conditions. Enhanced nutrient uptake further promoted leaf photosynthetic rate by 27.3 %-29.8 % under moderate and severe drought stress. Improving leaf and root physiological functioning enhanced maize grain yield under stressful environments. Furthermore, co-inoculation with AMF-PGPR reduced cellular damage by lowering oxidative enzyme levels and increasing antioxidative enzyme activities, improving plant performance and grain yield under stressful environments. Conclusively, the synergistic interaction of AMF with PGPR ensured plant stress tolerance by reducing cellular injury, facilitating root-leaf functioning, enhancing nutrient-water-use-efficiencies, and increasing yield under drought stress.
Collapse
Affiliation(s)
- Wasim Khan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application, Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China.
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Miao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ning Wang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Meng Hao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yue Ma
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jaya Nepal
- Department of Soil, Water & Ecosystem Sciences, Indian River Research Center, University of Florida, Fort Pierce, FL, USA
| | - Fazal Ullah
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Muhammad Maqsood Ur Rehman
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Muhammad Abrar
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
8
|
Mitra D, Panneerselvam P, Senapati A, Chidambaranathan P, Nayak AK, Mohapatra PKD. Arbuscular Mycorrhizal Fungi Response on Soil Phosphorus Utilization and Enzymes Activities in Aerobic Rice under Phosphorus-Deficient Conditions. Life (Basel) 2023; 13:life13051118. [PMID: 37240763 DOI: 10.3390/life13051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The prominence of arbuscular mycorrhizal fungi (AMF) in sustainable rice production has long been recognized. However, there is little information about AMF response in aerobic rice cultivation under phosphorus (P)-deficient conditions. The aim of this experiment was to compare and determine the preeminent AMF effects on rice mycorrhizal colonization, responsiveness, P utilization, and different growth-promoting traits under P-deficient conditions. Different AMF genera viz. (Funneliformis sp., Rhizophagus sp., Glomus sp., Acaulospora sp., and Claroideoglomus sp.) in four different aerobic rice varieties developed by ICAR-NRRI, India (CR Dhan 201, CR Dhan 204, CR Dhan 205, and CR Dhan 207) were investigated using the check P-susceptible variety (IR 36) and the P-tolerant variety (Kasalath IC459373). Data analyzed through linear modeling approaches and bivariate associations found that AMF colonization was highly correlated with soil enzymes, particularly fluorescein diacetate (FDA) and plant P uptake. The microbial biomass carbon (MBC) and FDA content were significantly changed among rice varieties treated with AMF compared to uninoculated control. Out of four different rice varieties, CR Dhan 207 inoculated with AMF showed higher plant P uptake compared to other varieties. In all the rice varieties, AMF colonization had higher correlation coefficients with soil enzymes (FDA), MBC, and plant P uptake than uninoculated control. The present study indicates that AMF intervention in aerobic rice cultivation under P-deficient conditions significantly increased plant P uptake, soil enzymes activities and plant growth promotion. Thus, the information gathered from this study will help us to develop a viable AMF package for sustainable aerobic rice cultivation.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj 733134, West Bengal, India
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | | | - Ansuman Senapati
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | | | | | | |
Collapse
|
9
|
Fallopia japonica and Impatiens glandulifera are colonized by species-poor root-associated fungal communities but have minor impacts on soil properties in riparian habitats. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractFallopia japonica and Impatiens glandulifera are major plant invaders on a global scale that often become dominant in riparian areas. However, little is known about how these species affect interactions in soil–plant systems. The aim of this study was to investigate the impact of both species on abiotic and biotic soil properties, with a special focus on fungi. We investigated eight sites along small streams invaded by F. japonica and I. glandulifera, respectively, and compared each with nearby sites dominated by the native species Urtica dioica. Three different types of samples were collected: bulk soil, rhizosphere soil and roots from invasive and native stands at each site. Bulk soil samples were analysed for soil physicochemical, microbial properties (soil microbial respiration and ergosterol) and soil arthropod abundance (Acari and Collembola). Soil respiration was also evaluated in rhizosphere samples. The fungal community composition of both bulk soil and roots were analysed using a metabarcoding approach. Soil physicochemical properties as well as soil microbial activity, fungal biomass and soil fungal operational unit taxonomic unit (OTU) richness did not differ between invaded and native riparian habitats, indicating only minor belowground impacts of the two invasive plant species. Soil microbial activity, fungal biomass and soil fungal OTU richness were rather related to the soil physicochemical properties. In contrast, Acari abundance decreased by 68% in the presence of F. japonica, while Collembola abundance increased by 11% in I. glandulifera sites. Moreover, root-associated fungal communities differed between the invasive and native plants. In F. japonica roots, fungal OTU richness of all investigated ecological groups (mycorrhiza, endophytes, parasites, saprobes) were lower compared to U. dioica. However, in I. glandulifera roots only the OTU richness of mycorrhiza and saprobic fungi was lower. Overall, our findings show that F. japonica and I. glandulifera can influence the abundance of soil arthropods and are characterized by lower OTU richness of root-associated fungi.
Collapse
|
10
|
Hu L, Huang R, Zhou L, Qin R, He X, Deng H, Li K. Effects of magnesium-modified biochar on soil organic carbon mineralization in citrus orchard. Front Microbiol 2023; 14:1109272. [PMID: 36778847 PMCID: PMC9911438 DOI: 10.3389/fmicb.2023.1109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
In order to investigate the carbon sequestration potential of biochar on soil, citrus orchard soils with a forest age of 5 years was taken as the research object, citrus peel biochar (OBC) and magnesium-modified citrus peel biochar (OBC-mg) were selected as additive materials, and organic carbon mineralization experiments were carried out in citrus orchard soil. OBC and OBC-Mg were applied to citrus orchard soils at four application rates (0, 1, 2, and 4%), and incubated at a constant temperature for 100 days. Compared with CK, the cumulative mineralization of soil organic carbon decreased by 5.11% with 1% OBC and 2.14% with 1% OBC-Mg. The application of OBC and OBC-Mg significantly increased the content of soil organic carbon fraction, while the content of soil organic carbon fraction was higher in OBC-Mg treated soil than in OBC treated soil. Meanwhile, the cumulative mineralization of soil organic carbon was significantly and positively correlated with the activities of soil catalase, urease and sucrase. The enzyme activities increased with the cumulative mineralization of organic carbon, and the enzyme activities of the OBC-Mg treated soil were significantly higher than those of the OBC treated soil. The results indicated that the OBC-Mg treatment inhibited the organic carbon mineralization in citrus orchard soils and was more favorable to the increase of soil organic carbon fraction. The Mg-modified approach improved the carbon sequestration potential of biochar for citrus orchard soils and provided favorable support for the theory of soil carbon sink in orchards.
Collapse
Affiliation(s)
- Lening Hu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China,College of Environment and Resources, Guangxi Normal University, Guilin, China,Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China,*Correspondence: Hua Deng, ✉
| | - Rui Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China,College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Liming Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China,College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Rui Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China,College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Xunyang He
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, China
| | - Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China,College of Environment and Resources, Guangxi Normal University, Guilin, China,*Correspondence: Hua Deng, ✉
| | - Ke Li
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin, China,Ke Li, ✉
| |
Collapse
|
11
|
Pop-Moldovan V, Corcoz L, Stoian V, Moldovan C, Pleșa A, Vâtcă S, Stoian V, Vidican R. Models of mycorrhizal colonization patterns and strategies induced by biostimulator treatments in Zea mays roots. FRONTIERS IN PLANT SCIENCE 2022; 13:1052066. [PMID: 36466252 PMCID: PMC9713310 DOI: 10.3389/fpls.2022.1052066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Agronomic inputs and technologies, especially fertilizers, act on the evolution of the symbiotic partnership between arbuscular mycorrhizal fungi and cultivated plants. The use of the MycoPatt method for the assessment of mycorrhizas in maize roots leads to the extraction of large parameter databases with an increased resolution over the colonization mechanism. The application of a biostimulator treatment on plants acted toward a reduction of root permissiveness for mycorrhizas. The phenomenon was noticeable through an increased colonization variability that overlapped with plant nutritional needs. The annual characteristic of the plant was highlighted by the simultaneous presence of arbuscules and vesicles, with a high share of arbuscules in the advanced phenophases. Colonized root parts presented numerous arbuscule-dominated areas in all phenophases, which indicated a continuous formation of these structures and an intense nutrient transfer between partners. Mycorrhizal maps showed the slowing effect of the biostimulators on colonization, with one phenophase delay in the case of biostimulated plants compared to the ones without biostimulators. The forecast models presented gradual colonization in plants without biostimulators, with the expansion of new hyphal networks. The use of biostimulators on plants exhibited a lower permissiveness for new colonization areas, and the mechanism relies on hyphae developed in the former phenophases.
Collapse
Affiliation(s)
- Victoria Pop-Moldovan
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Larisa Corcoz
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Valentina Stoian
- Department of Plant Physiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristina Moldovan
- Department of Crop Plant, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anca Pleșa
- Department of Grasslands and Forage Crops, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Sorin Vâtcă
- Department of Plant Physiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Stoian
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Roxana Vidican
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Ma J, Wang W, Yang J, Qin S, Yang Y, Sun C, Pei G, Zeeshan M, Liao H, Liu L, Huang J. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC PLANT BIOLOGY 2022; 22:64. [PMID: 35123400 PMCID: PMC8817564 DOI: 10.1186/s12870-021-03370-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) are a group of important symbiotic microorganisms found in ecosystems. Maize is the second most produced food crop globally. To investigate the mechanisms by which mycorrhizal symbiosis improves maize yields, the effects of mycorrhizal symbiosis on root vigor, nutrient accumulation in various tissues, and root exudates were investigated. We propose the following hypothesis: The secretion of organic acids in root exudates has antagonistic or synergistic effects, which are related to the rhizosphere environment. AMF symbiosis will enhance this effect. RESULT Rhizophagus aggreatus, Claroideoglomus etunicatum, and Funneliformis mosseae were used to inoculate maize plants separately; meanwhile, maize was inoculated with the above three fungi together for another processing. The plant tissues were sampled at five growth stages: V12 (twelve-leaf), VT (Tassel), R1 (Silking), R2 (Blister), and R4 (Dough stage). The root vigor, and nutrient content in different maize organs and organic acids in root exudates were determined in these stages. The results show that mycorrhizal symbiosis significantly improved the root vigor of maize, especially for plants inoculated with F. mosseae. AMF symbiosis significantly increased N, P, and K accumulation. Mixed inoculation with arbuscular mycorrhizal fungi significantly promoted the accumulation of N and K in maize. P accumulation was significantly promoted by C. etunicatum inoculation. Mycorrhizal symbiosis reduced the levels of protocatechuic, vanillic, citric, and ferulic acid in maize root exudates and increased the levels of p-hydroxybenzoic and caffeic acid. Except for syringic, chlorogenic and succinic acid, the levels of other organic acids in root exudates were higher in plants inoculated with F. mosseae than in other treatments. CONCLUSION This study demonstrates that mycorrhizal symbiosis improves root vigor and promotes nutrient accumulation at various sites; in addition, mycorrhizal symbiosis affects the content of organic acids in root exudates.
Collapse
Affiliation(s)
- Junqing Ma
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Wenqi Wang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Juan Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004 Guangxi China
| | - Shengfeng Qin
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Yisen Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Chenyu Sun
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Gen Pei
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Muhammad Zeeshan
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Honglin Liao
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Lu Liu
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Jinghua Huang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004 Guangxi China
| |
Collapse
|
13
|
Aspects, problems and utilization of Arbuscular Mycorrhizal (AM) Application as Bio-fertilizer in sustainable Agriculture. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100107. [PMID: 35169758 PMCID: PMC8829076 DOI: 10.1016/j.crmicr.2022.100107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
|
14
|
Li J, Chen B, Zhang X, Hao Z, Zhang X, Zhu Y. Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125390. [PMID: 33611032 DOI: 10.1016/j.jhazmat.2021.125390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/27/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
It is well known that arbuscular mycorrhizal (AM) fungi can enhance plant arsenic (As) resistance by influencing As uptake, translocation, and speciation; however, As transformation and volatilization by an entire plant inoculated with AM fungus remains uninvestigated. In the present study, AM symbiosis of Rhizophagus irregularis with unbroken Medicago sativa was successfully established in vitro. Afterwards, five concentrations of arsenate were applied to the culture media. The results showed that AM inoculation could methylate inorganic As into dimethylarsinic acid (DMA), dimethylarsine (DMAsH), and trimethylarsine (TMAs), which were detected in the plants, media, or air. Volatile As, accounting for a small proportion of total organic As, appeared under high arsenate exposure, accompanied by remarkable upregulation of root RiMT-11, an arsenite methyltransferase gene in R. irregularis. In addition, AM colonization significantly increased arsenite percentages in plant tissues and external media. Regardless of As species, AM inoculation tended to release the transformed As into the environment rather than transfer them to plant tissues. Our present study, for the first time, comprehensively verified As methylation, volatilization, and reduction by AM fungus associated with the entire plant under absolute axenic conditions and gained a deeper insight into As metabolism in AM symbionts.
Collapse
Affiliation(s)
- Jinglong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuemeng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
15
|
Effects of Mineral-Solubilizing Microorganisms on Root Growth, Soil Nutrient Content, and Enzyme Activities in the Rhizosphere Soil of Robinia pseudoacacia. FORESTS 2021. [DOI: 10.3390/f12010060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Abandoned mining sites are becoming increasingly common due to anthropogenic activities. Consequently, external-soil spray seeding technology has attracted increasing attention as a strategy to remediate them. However, significant challenges remain that greatly inhibit the efficacy of such technologies, such as insufficient nutrients available for plants. Methods: For this study, we designed an experiment, which involved the addition of mineral-solubilizing microorganisms and R. pseudoacacia seedlings to the external-soil spray seeding (ESSS) substrate, and measured the soil nutrients, enzyme activities, and root growth of R. pseudoacacia. Results: First, the combination of certain mineral-solubilizing microorganisms with ESSS advanced its efficiency by increasing the availability of soil nutrients and soil enzymatic activities in association with R. pseudoacacia. Furthermore, the improvement of root growth of R. pseudoacacia was intimately related to soil nutrients, particularly for soil total nitrogen (TN) and total sulfur (TS). In general, the effects of the J2 (combined Bacillus thuringiensis and Gongronella butleri) treatment for soil nutrients, enzyme activities, and plant growth were the strongest. Conclusion: In summary, the results of our experiment revealed that these mineral-solubilizing microorganisms conveyed a promotional effect on R. pseudoacacia seedlings by increasing the soil nutrient content. These results provide basic data and microbial resources for the development and applications of mineral-solubilizing microorganisms for abandoned mine remediation.
Collapse
|