1
|
Liu X, Fan Q, Li F, Wu C, Yi S, Lu H, Wu Y, Liu Y, Tian J. Assessing foodborne health risks from dietary exposure to antibiotic resistance genes and opportunistic pathogens in three types of vegetables: An in vitro simulation of gastrointestinal digestion. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136731. [PMID: 39644844 DOI: 10.1016/j.jhazmat.2024.136731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Foodborne health risks posed by antibiotic resistant genes (ARGs) and pathogenic bacteria have garnered increasing global attention. However, the patterns of their propagation and reduction, as well as the resulting health risks in the human gastrointestinal tract, remain unknown. We employed leafy vegetables (water spinach), solanaceous vegetables (pepper), and root vegetables (radish) to investigate the propagation and reduction patterns of ARGs and pathogenic bacteria within an in vitro simulated digestion system. This system mimicked the soil-vegetable-stomach-small intestine (SVSTI) transmission chain. We found that kan, oqxA, and multidrug resistance genes were enriched by 1.10-fold, 11.2-fold, and 2.21-fold, respectively, along the transmission chain. The succession of bacterial communities and horizontal gene transfer mediated by intl1 were identified as the primary drivers of ARG accumulation. Notably, certain pathogenic bacteria (Bacillus cereus, Klebsiella pneumoniae) accumulated in the intestinal environment. According to our proposed health risk assessment system, Bacillus species, as potential ARG hosts, and multidrug ARGs are at a higher risk of exposure to intestinal environment through the transmission chain. Our findings highlight the significant health risks associated with the intake of ARGs and pathogenic bacteria carried by vegetables, emphasizing an urgent need to implement effective biological control measures in vegetable production and consumption.
Collapse
Affiliation(s)
- Xingang Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Qingqing Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China.
| | - Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Hainan Lu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
2
|
Qin J, Cao H, Xu Y, He F, Zhang F, Wang W. Efficient removal of Cr(iii) by microbially induced calcium carbonate precipitation. RSC Adv 2025; 15:2840-2849. [PMID: 39882011 PMCID: PMC11775500 DOI: 10.1039/d4ra05829a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025] Open
Abstract
Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising technique for environmental remediation, particularly for heavy metal removal. This study explores the potential of MICP for Cr(iii) removal, analyzing the effects of temperature, pH, calcium source addition, and initial Cr(iii) concentration on removal efficiency. The results show that Cr(iii) can be efficiently removed with a removal rate approaching 100% under optimal conditions (25 °C, pH 7.0, 1.0 g CaCl2). The presence of Cr(iii) induces the transformation of CaCO3 crystals from calcite to spherulitic aragonite, forming Cr-bearing carbonate compounds and hydroxides. This study provides insights into the mechanisms and optimal conditions for MICP-mediated Cr(iii) removal, highlighting its feasibility and effectiveness for large-scale environmental remediation and offering an economical and environmentally friendly solution to Cr contamination.
Collapse
Affiliation(s)
- Jia Qin
- College of optoelectronic manufacturing, Zhejiang Industry and Trade Vocational College Wenzhou 325002 China
- School of Materials Science and Engineering, Lanzhou University of Technology Lanzhou Gansu 730050 China
| | - Huan Cao
- School of Materials Science and Engineering, Lanzhou University of Technology Lanzhou Gansu 730050 China
| | - Yang Xu
- China Railway Heavy Machinery Co. Ltd Wuhan 430077 China
| | - Fei He
- College of optoelectronic manufacturing, Zhejiang Industry and Trade Vocational College Wenzhou 325002 China
| | - Fengji Zhang
- School of Materials Science and Engineering, Lanzhou University of Technology Lanzhou Gansu 730050 China
| | - Wenqiang Wang
- School of Materials Science and Engineering, Lanzhou University of Technology Lanzhou Gansu 730050 China
| |
Collapse
|
3
|
Zainab N, Glick BR, Bose A, Amna, Ali J, Rehman FU, Paker NP, Rengasamy K, Kamran MA, Hayat K, Munis MFH, Sultan T, Imran M, Chaudhary HJ. Deciphering the mechanistic role of Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) in bio-sorption and phyto-assimilation of Cadmium via Linum usitatissimum L. Seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108652. [PMID: 38723488 DOI: 10.1016/j.plaphy.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bernard R Glick
- Department of Biology, University of Water Loo, Ontario, Canada
| | - Arpita Bose
- Department of Biology Washington University in St. Louis (WUSTL), United States
| | - Amna
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Botany, Rawalpindi Women University, 6th Road Sattellite Town, Rawalpindi, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fazal Ur Rehman
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, Tasmania, Australia
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Muhammad Aqeel Kamran
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou China, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
4
|
Wu C, Wu Y, Li F, Ding X, Yi S, Hang S, Ge F, Zhang M. Reducing the accumulation of cadmium and phenanthrene in rice by optimizing planting spacing: Role of low-abundance but core rhizobacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171856. [PMID: 38522531 DOI: 10.1016/j.scitotenv.2024.171856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Optimizing planting spacing is a common agricultural practice for enhancing rice growth. However, its effect on the accumulation of cadmium (Cd) and phenanthrene (Phen) in soil-rice systems and the response mechanisms of rhizobacteria to co-contaminants remain unclear. This study found that reducing rice planting spacing to 5 cm and 10 cm significantly decreased the bioavailability of Cd (by 7.9 %-29.5 %) and Phen (by 12.9 %-47.6 %) in the rhizosphere soil by converting them into insoluble forms. The increased accumulation of Cd and Phen in roots and iron plaques (IPs) ultimately led to decreased Cd (by 32.2 %-39.9 %) and Phen (by 4.2 %-17.3 %) levels in brown rice, and also significantly affected the composition of rhizobacteria. Specifically, reducing rice planting spacing increased the abundance of low-abundance but core rhizobacteria in the rhizosphere soil and IPs, including Bacillus, Clostridium, Sphingomonas, Paenibacillus, and Leifsonia. These low-abundance but core rhizobacteria exhibited enhanced metabolic capacities for Cd and Phen, accompanied by increased abundances of Cd-resistance genes (e.g., czcC and czcB) and Phen-degradation genes (e.g., pahE4 and pahE1) within the rhizosphere soil and IPs. Reduced planting spacing had no noticeable impact on rice biomass. These findings provide new insights into the role of low-abundance but core rhizobacterial communities in Cd and Phen uptake by rice, highlighting the potential of reduced planting spacing as an eco-friendly strategy for ensuring the safety of rice production on contaminated paddy soils.
Collapse
Affiliation(s)
- Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Xiangxi Ding
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Sicheng Hang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
5
|
Huang H, Lei L, Shangguan Y, Jian J, Dai J, Wang Y, Xu H, Liu H. Comprehensive bioremediation effect of phosphorus-mineralized bacterium Enterobacter sp. PMB-5 on cadmium contaminated soil-crop system. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134227. [PMID: 38581879 DOI: 10.1016/j.jhazmat.2024.134227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Phosphate-mineralizing bacteria (PMBs) have been widely studied by inducing phosphate heavy metal precipitation, but current researches neglect to study their effects on soil-microbe-crop systems on cadmium (Cd) contaminated. Based on this, a strain PMB, Enterobacter sp. PMB-5, was inoculated into Cd contaminated pots to detect soil characteristics, Cd occurrence forms, soil biological activities, plant physiological and biochemical indicators. The results showed that the inoculation of strain PMB-5 significantly increased the available phosphorus content (85.97%-138.64%), Cd-residual fraction (11.04%-29.73%), soil enzyme activities (31.94%-304.63%), plant biomass (6.10%-59.81%), while decreased the state of Cd-HOAc (11.50%-31.17%) and plant bioconcentration factor (23.76%-44.24%). These findings indicated that strain PMB-5 could perform the function of phosphorus solubilization to realize the immobilization of Cd in the complex soil environment. Moreover, SEM-EDS, FTIR, XPS, and XRD analysis revealed that strain PMB-5 does not significantly alter the soil morphology, structure, elemental distribution, and chemical composition, which suggested that remediation of Cd contamination using strain PMB-5 would not further burden the soil. This research implies that PMB-5 could be a safe and effective bioinoculant for remediating Cd-contaminated soils, contributing to the sustainable management of soil health in contaminated environments.
Collapse
Affiliation(s)
- Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yuxian Shangguan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Jiannan Jian
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jingtong Dai
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yang Wang
- Pengzhou Bureau of Agriculture and Rural Affairs, Chengdu 610066, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
6
|
Lei K, Li Y, Zhang Y, Wang S, Yu E, Li F, Xiao F, Xia F. Development of a new method framework to estimate the nonlinear and interaction relationship between environmental factors and soil heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167133. [PMID: 37730041 DOI: 10.1016/j.scitotenv.2023.167133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The intricate and multifaceted nature of soil system profoundly influences the highly complex and often nonlinear changes that soil heavy metals (HM) undergo. Spatial heterogeneity, location and scale variability, and the interaction and superposition among environmental drivers challenged researchers to determine the sophisticated nature of soil HMs changes at the regional scale. This study aims to develop a new method framework and selects Ningbo as the case study to apportion the environmental factors responsible for soil HMs pollution that include Cd, Cr, Pb, Hg, As, Cu, Zn and Ni, focusing on nonlinearity and interaction. We harnessed the Random Forest model to apportion the environmental drivers of soil HM change. The directionality and shape of the nonlinear relationship between HMs and their individual contributors were derived by Partial Dependence Plots. The interactions of multiple drivers were quantitatively assessed by the Conditional Inference Tree. Our results demonstrated that soil HMs in the study area varied spatially. Soil HMs pollution was mitigated by natural factors and anthropogenic factors. The main influencing factors were pH, soil parent material type, enterprise activities, and agricultural application. The effects of some factors on soil HMs showed a monotonic linear trend, but some have apparent threshold effects. The direction of influence on soil HMs will shift when pH and phosphate fertilizer reach a specific value. The addition of enterprises in the area would rarely have an impact on the HMs pollution once it reached around 2 per km2 because of the industrial agglomeration. Soil HM concentrations were mainly from multi-pollutants and were governed by a combination of environmental factors. Our study provided managers and policymakers with site-specific and definite guidelines for preventing and controlling soil HM pollution.
Collapse
Affiliation(s)
- Kaige Lei
- Institute of Land Science and Property, School of Public Affairs, Zhejiang University, Hangzhou 310058, China
| | - Yan Li
- Institute of Land Science and Property, School of Public Affairs, Zhejiang University, Hangzhou 310058, China.
| | - Yanbin Zhang
- Zhejiang Land Consolidation and Rehabilitation Center, Hangzhou 310007, China
| | - Shiyi Wang
- Institute of Land Science and Property, School of Public Affairs, Zhejiang University, Hangzhou 310058, China
| | - Er Yu
- Institute of Land Science and Property, School of Public Affairs, Zhejiang University, Hangzhou 310058, China
| | - Feng Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Fen Xiao
- Institute of Land Science and Property, School of Public Affairs, Zhejiang University, Hangzhou 310058, China
| | - Fang Xia
- College of Economics and Management, Zhejiang A&F University, Hangzhou 311302, China
| |
Collapse
|
7
|
Zhang L, Hu Y, Chen Y, Qi D, Cai B, Zhao Y, Li Z, Wang Y, Nie Z, Xie J, Wang W. Cadmium-tolerant Bacillus cereus 2-7 alleviates the phytotoxicity of cadmium exposure in banana plantlets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166645. [PMID: 37657542 DOI: 10.1016/j.scitotenv.2023.166645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/05/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Bananas are the world's important fruit and staple crop in the developing countries. Cadmium (Cd) contamination in soils results in the decrease of crop yield and food safety. Bioremediation is an environmental-friendly and effective measure using Cd-tolerant plant growth promoting rhizobacteria (PGPR). In our study, a Cd-resistant PGPR Bacillus cereus 2-7 was isolated and identified from a discarded gold mine. It could produce multiple plant growth promoting biomolecules such as siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC)-deaminase and phosphatase. The extracellular accumulation was a main manner of Cd removal. Surplus Cd induced the expression of Cd resistance/transport genes of B. cereus 2-7 to maintain the intracellular Cd homeostasis. The pot experiment showed that Cd contents decreased by 50.31 % in soil, 45.43 % in roots, 56.42 % in stems and 79.69 % in leaves after the strain 2-7 inoculation for 40 d. Bacterial inoculation alleviated the Cd-induced oxidative stress to banana plantlets, supporting by the increase of chlorophyll contents, plant height and total protein contents. The Cd remediation mechanism revealed that B. cereus 2-7 could remodel the rhizosphere bacterial community structure and improve soil enzyme activities to enhance the immobilization of Cd. Our study provides a Cd-bioremediation strategy using Cd-resistant PGPR in tropical and subtropical area.
Collapse
Affiliation(s)
- Lu Zhang
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Yulin Hu
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangzhou 524091, China
| | - Yufeng Chen
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dengfeng Qi
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Bingyu Cai
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yankun Zhao
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zhuoyang Li
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Zongyu Nie
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Jianghui Xie
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Wei Wang
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| |
Collapse
|
8
|
Yi S, Li F, Wu C, Ge F, Feng C, Zhang M, Liu Y, Lu H. Co-transformation of HMs-PAHs in rhizosphere soils and adaptive responses of rhizobacteria during whole growth period of rice (Oryza sativa L.). J Environ Sci (China) 2023; 132:71-82. [PMID: 37336611 DOI: 10.1016/j.jes.2022.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/21/2023]
Abstract
This study investigated the transformations of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in rhizosphere soils and adaptive responses of rhizobacterial community under the real field conditions during four growth stages (e.g., greening, tillering, heading, and maturity) of early rice (Zhongjiazao 17) and late rice (Zhongyou 9918) in Jiangshe village (JSV) and Yangji village (YJV). Results showed that rhizosphere soils of YJV were mildly polluted by Cd and PAHs compared to that of JSV. The relative abundance of bioavailable Cd (bio-Cd) and bioavailable As (bio-As) in rhizosphere soil increased before the heading stage but decreased at the subsequent growth stage, but the content of ΣPAHs in rhizosphere soil decreased gradually during whole growth period. The dominant rhizobacteria genera at YJV (e.g., Bacillus, Massilia, Sphingomonas, and Geobacter) increased at an abundance level from the tillering to heading stage. Rhizobacteria interacted with the above co-pollutant more intensely at the tillering and heading stage, where genes involved in HM-resistance and PAH-degradation appeared to have a significant enhancement. The contents of bio-Cd and bio-As in rhizosphere soil of early rice were higher than that of late rice at each growth stage, especially at the heading stage. Bio-Cd, ΣPAHs, and organic matter were key factors influencing the community structure of rhizobacteria. Results of this study provide valuable insights about the interactions between HM-PAH co-pollutant and rhizobacterial community under real field conditions and thus develop in-situ rhizosphere remediation techniques for contaminated paddy fields.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Chuang Feng
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yun Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Hainan Lu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
9
|
Zhang B, Hou H, Liu L, Huang Z, Zhao L. Spatial prediction and influencing factors identification of potential toxic element contamination in soil of different karst landform regions using integration model. CHEMOSPHERE 2023; 327:138404. [PMID: 36931406 DOI: 10.1016/j.chemosphere.2023.138404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The prediction of contamination distribution of potentially toxic elements (PTEs) in soils of Guangxi province, China and the identification of their controlling factors pose great challenges due to diverse bedrock types, intense leaching and weathering, and discontinuous terrain distributions. Herein, we integrated the random forest (RF) and empirical Bayesian kriging (EBK) to interpret and predict complex PTEs contamination distribution from three different karst landform regions (fenglin, fengcong, isolated peak plain) in Guangxi province. The modeling results are compared with the commonly used ordinary kriging and regression-kriging. In this study, our developed RF-EBK model combines the advantages of the RF and EBK model to promote the prediction accurately and efficiently. In this study, it was shown that the integration RF-EBK model exhibited desirable for Cd and As concentrations, with R2 of 0.89 and 0.83, respectively. The average RMSE and MAE of integration RF-EBK model decreased by 39% and 44%, respectively, relative to the regression-kriging with the second highest accuracy. Furthermore, the modeling results showed that approximately 41.96% and 18.96% of total area was classified as Cd and As polluted and above regions (Igeo >0) in Guangxi province, respectively. Higher Cd concentration was observed in the soil of fenglin and fengcong regions than that in isolated peak plain region due to the secondary enrichment and parent rock inheritance, while the As concentration exhibited no significant difference among the three regions. The modeling results indicated that the elevated Cd concentration might be associated with soil CaO concentration and alkaline soil environment, whereas As concentration tended to be increased with the elevating Fe2O3 concentrations in weakly acidic soil environment. This result confirmed the applicability and effectiveness of integration model in predicting complex spatial patterns of soil PTEs and identifying their controlling factors.
Collapse
Affiliation(s)
- Bolun Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Lingling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhanbin Huang
- School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
10
|
Yan K, Wei M, Li F, Wu C, Yi S, Tian J, Liu Y, Lu H. Diffusion and enrichment of high-risk antibiotic resistance genes (ARGs) via the transmission chain (mulberry leave, guts and feces of silkworm, and soil) in an ecological restoration area of manganese mining, China: Role of heavy metals. ENVIRONMENTAL RESEARCH 2023; 225:115616. [PMID: 36871940 DOI: 10.1016/j.envres.2023.115616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the diffusion and enrichment of antibiotic resistance genes (ARGs) and pathogens via the transmission chain (mulberry leaves - silkworm guts - silkworm feces - soil) near a manganese mine restoration area (RA) and control area (CA, away from RA). Horizontal gene transfer (HGT) of ARGs was testified by an IncP a-type broad host range plasmid RP4 harboring ARGs (tetA) and conjugative genes (e.g., korB, trbA, and trbB) as an indicator. Compared to leaves, the abundances of ARGs and pathogens in feces after silkworms ingested leaves from RA increased by 10.8% and 52.3%, respectively, whereas their abundance in feces from CA dropped by 17.1% and 97.7%, respectively. The predominant ARG types in feces involved the resistances to β-lactam, quinolone, multidrug, peptide, and rifamycin. Therein, several high-risk ARGs (e.g., qnrB, oqxA, and rpoB) carried by pathogens were more enriched in feces. However, HGT mediated by plasmid RP4 in this transmission chain was not a main factor to promote the enrichment of ARGs due to the harsh survival environment of silkworm guts for the plasmid RP4 host E. coli. Notably, Zn, Mn, and As in feces and guts promoted the enrichment of qnrB and oqxA. Worriedly, the abundance of qnrB and oqxA in soil increased by over 4-fold after feces from RA were added into soil for 30 days regardless of feces with or without E. coli RP4. Overall, ARGs and pathogens could diffuse and enrich in environment via the sericulture transmission chain developed at RA, especially some high-risk ARGs carried by pathogens. Thus, greater attentions should be paid to dispel such high-risk ARGs to support benign development of sericulture industry in the safe utilization of some RAs.
Collapse
Affiliation(s)
- Kanxuan Yan
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Ming Wei
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Jiang Tian
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Yun Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Hainan Lu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| |
Collapse
|
11
|
Huang C, Guo Z, Peng C, Anaman R, Zhang P. Immobilization of Cd in the soil of mining areas by FeMn oxidizing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162306. [PMID: 36801403 DOI: 10.1016/j.scitotenv.2023.162306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms are widely used in large-scale pollution remediation due to their rapid reproduction and low cost. In this study, bioremediation batch experiments and characterization methods were adopted to investigate the mechanism of FeMn oxidizing bacteria on the immobilization of Cd in mining soil. The results showed that the FeMn oxidizing bacteria successfully reduced 36.84 % of the extractable Cd in the soil. The exchangeable forms, carbonate-bound forms, and organic-bound forms of Cd in the soil decreased by 11.4 %, 8 %, and 7.4 %, respectively, due to the addition of FeMn oxidizing bacteria, while FeMn oxides-bound and residual forms of Cd increased by 19.3 % and 7.5 %, as compared to the control treatments. The bacteria promotes the formation of amorphous FeMn precipitates such as lepidocrocite and goethite, which have high adsorption capacity on soil Cd. The oxidation rates of Fe and Mn in the soil treated with the oxidizing bacteria reached 70.32 % and 63.15 %, respectively. Meanwhile, the FeMn oxidizing bacteria increased soil pH and decreased soil organic matter content, further decreasing the extractable Cd in the soil. The FeMn oxidizing bacteria have the potential to be used in large mining areas to assist in the immobilization of heavy metals.
Collapse
Affiliation(s)
- Chiyue Huang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Richmond Anaman
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Pan Zhang
- Department of Environment Ecology, School of Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
12
|
Ali Q, Ayaz M, Yu C, Wang Y, Gu Q, Wu H, Gao X. Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. CHEMOSPHERE 2022; 303:135206. [PMID: 35660052 DOI: 10.1016/j.chemosphere.2022.135206] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal remediation, such as cadmium (Cd2+) by microbial strains is efficient and environment-friendly. In this current study, we exploited the potential of Bacillus strains (Cd2+-tolerant; NMTD17, GBSW22, and LLTC96) to regulate Cd2+ biosorption mechanisms and improve rice seedling growth. The results showed that initial concentration and contact time affected Cd2+ biosorption, and the kinetic models of pseudo orders were effective in the elaborate biosorption process. Mainly, the bacterial cell wall had the potential for Cd2+ biosorption, and we found non-significant biosorption alterations among bacterial strains' inner and outer surfaces of cell membranes. Furthermore, the Fourier transform infrared (FTIR) spectroscopy analysis identified the differences in functional groups, such as C-N, PO2, -SO3, CO, COOH, C-O, C-N, -OH, and -NH that interact in biosorption by Bacillus strains. The scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) examination revealed that the binding of Cd2+ to microbes was mostly based on ion exchange pathways. Moreover, the Bacillus strains responded to Cd2+ stress in rice under pot experiment at various concentrations (0, 0.25, and 0.50 mg kg-1), and they also influenced the chlorophyll contents and antioxidants activities were studied. The analysis of physio-morphological parameters was observed to be increased, which indicated that all Bacillus strains showed significant effects on rice growth under Cd2+ stress. These results revealed that the selected strains had the capability for additional use in the development of Cd2+ bioremediation methods. These strains also provided plant growth-promoting (PGP) traits that can alleviate the harmful effects of Cd2+ in rice plants.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujie Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Pande V, Pandey SC, Sati D, Bhatt P, Samant M. Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Front Microbiol 2022; 13:824084. [PMID: 35602036 PMCID: PMC9120775 DOI: 10.3389/fmicb.2022.824084] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023] Open
Abstract
Soil naturally comprises heavy metals but due to the rapid industrialization and anthropogenic events such as uncontrolled use of agrochemicals their concentration is heightened up to a large extent across the world. Heavy metals are non-biodegradable and persistent in nature thereby disrupting the environment and causing huge health threats to humans. Exploiting microorganisms for the removal of heavy metal is a promising approach to combat these adverse consequences. The microbial remediation is very crucial to prevent the leaching of heavy metal or mobilization into the ecosystem, as well as to make heavy metal extraction simpler. In this scenario, technological breakthroughs in microbes-based heavy metals have pushed bioremediation as a promising alternative to standard approaches. So, to counteract the deleterious effects of these toxic metals, some microorganisms have evolved different mechanisms of detoxification. This review aims to scrutinize the routes that are responsible for the heavy metal(loid)s contamination of agricultural land, provides a vital assessment of microorganism bioremediation capability. We have summarized various processes of heavy metal bioremediation, such as biosorption, bioleaching, biomineralization, biotransformation, and intracellular accumulation, as well as the use of genetically modified microbes and immobilized microbial cells for heavy metal removal.
Collapse
Affiliation(s)
- Veni Pande
- Cell and Molecular Biology Laboratory, Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University Campus, Almora, India
- Department of Biotechnology, Sir J C Bose Technical Campus, Kumaun University, Bhimtal, India
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University Campus, Almora, India
| | - Diksha Sati
- Cell and Molecular Biology Laboratory, Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University Campus, Almora, India
- Department of Zoology, Kumaun University, Nainital, India
| | - Pankaj Bhatt
- Department of Agricultural and Biological Engineering, PurdueUniversity, West Lafayette, IN, United States
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University Campus, Almora, India
| |
Collapse
|
14
|
Yang W, Ali A, Su J, Liu J, Wang Z, Zhang L. Microbial induced calcium precipitation based anaerobic immobilized biofilm reactor for fluoride, calcium, and nitrate removal from groundwater. CHEMOSPHERE 2022; 295:133955. [PMID: 35157876 DOI: 10.1016/j.chemosphere.2022.133955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, the anaerobic quartz sand fixed biofilm reactor containing Cupriavidus sp. W12 was established to simultaneously remove calcium (Ca2+), fluoride (F-) and nitrate (NO3-N) from groundwater. After 84 days of continuous operation, the optimum operating parameters and defluoridation mechanism were explored, and the microbial community structure under different pH environments were compared and analyzed. Under the optimal operation conditions (HRT of 6 h, initial Ca2+ concentration of 180 mg L-1, and pH of 7.0), the removal efficiencies of Ca2+, F-, and NO3-N were 58.97%, 91.93%, and 100%, respectively. Gas chromatography (GC) results indicate that N2 is the main gas produced by the bioreactor. Three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) showed that extracellular polymers (EPS) are produced during bacterial growth and metabolism. The results of Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR) demonstrated that the defluoridation mechanism is attributed to the synergetic effects of ion exchange, co-precipitation, and chemisorption. The comparative analysis of the microbial community structure under different pH conditions show that Cupriavidus is the dominant bacteria in the bioreactor throughout the experiment, and it shows a prominent advantage at pH of 7.0. This research provides an application foundation for anaerobic microbial induced calcium precipitation (MICP) bioremediation of Ca2+, F-, and NO3-N from groundwater.
Collapse
Affiliation(s)
- Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
15
|
Yi S, Li F, Wu C, Wei M, Tian J, Ge F. Synergistic leaching of heavy metal-polycyclic aromatic hydrocarbon in co-contaminated soil by hydroxamate siderophore: Role of cation-π and chelation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127514. [PMID: 34879514 DOI: 10.1016/j.jhazmat.2021.127514] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Exploring a novel green efficient bioeluant is a golden key to unlock the ex-situ scale remediation of soil contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs). Hydroxamate siderophore (HDS) produced by Pseudomonas fluorescens HMP01, with certain hydrophobicity and strong coordination because of its special chemical structure (e.g., hydroxamic acid and dihydroxy quinoline chromophore), was used to investigate the bioleaching efficiency of HMs and PAHs from actual contaminated soils and underlying mechanisms. Results showed that leaching efficiency for HMs and PAHs from the co-contaminated soil was higher than that of single contaminated soil due to the cation-π interaction and coordination, which was closely related to the spacial configuration changes of the complex. HDS not only increased the bioleaching efficiency of cationic HMs by chelation (the leaching amount of Cd2+, Pb2+, Hg2+, Cu2+, Zn2+, and Ni2+ achieved 27.5, 110.4, 6.9, 477.7, 10,606.9, and 137.4 mg/kg HDS, respectively) but also enhanced the bioleaching amount of PAHs by solubilization (the leaching amount of phenanthrene reached 90.2 mg/kg HDS. Also, the residual HDS in soils caused no significant ecological risk. As expected, HDS is a desirable bioeluant to promote the scale application of the ex-situ remediation of soil contaminated with HMs and PAHs.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Ming Wei
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Jiang Tian
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| |
Collapse
|
16
|
Zhang L, Xue L, Wang H, Chang S, He YY, Liu Y, Xu Y. Immobilization of Pb and Cd by two strains and their bioremediation effect to an iron tailings soil. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Zhang B, Liu L, Huang Z, Hou H, Zhao L, Sun Z. Application of stochastic model to assessment of heavy metal(loid)s source apportionment and bio-availability in rice fields of karst area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148614. [PMID: 34328992 DOI: 10.1016/j.scitotenv.2021.148614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Mining activities and high geological background are considered the important factors causing heavy metal(loid)s accumulation in rice fields of karst area. In this study, the contents, main sources, and the factors influencing bio-availability of heavy metal(loid)s were determined using conditional inference tree (CIT), random forest (RF), and geostatistical analyses with 105 soil samples collected from rice fields in karst area. Contamination by Cd, Hg, As, and Pb in soil was relatively serious in the study area in which the compound pollution was highly similar to that in the flooded area. CIT and RF effectively identified the contributions of natural and anthropogenic inputs of soil heavy metal(loid)s. Concentrations of Pb, As, and Hg were closely associated with human inputs whose cumulative contribution rates reached 68%, 87%, and 86%, respectively. Industrial activities (28%) and geogenic characteristics (44%) were primary sources of Cd accumulation. The soil pH, soil organic matter (SOM), distance from city center, the contents of heavy metal(loid)s in soil, and industry type were the most important factors influencing bio-availability of heavy metal(loid)s. Combined effect of multiple metals could not be ignored, in which As and Cd contributed over 80% to total non-carcinogenic risks for adults and children.
Collapse
Affiliation(s)
- Bolun Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Lingling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanbin Huang
- School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zaijin Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Yan D, Guo Z, Xiao X, Peng C, He Y, Yang A, Wang X, Hu Y, Li Z. Cleanup of arsenic, cadmium, and lead in the soil from a smelting site using N,N-bis(carboxymethyl)-L-glutamic acid combined with ascorbic acid: A lab-scale experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113174. [PMID: 34237673 DOI: 10.1016/j.jenvman.2021.113174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/05/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Chemical washing has been carried out to remediate soil contaminated with heavy metals. In this study, the appropriate washing conditions for N,N-bis(carboxymethyl)-L-glutamic acid (GLDA) combined with ascorbic acid were determined to remove As, Cd, and Pb in the soil from the smelting site. The mechanism of heavy metal removal by the washing agent was also clarified. The results showed that heavy metals in the soil from the smelting site can be effectively removed. The removal percentages of As, Cd, and Pb in the soil from the smelting site were found to be 34.49%, 63.26%, and 62.93%, respectively, under optimal conditions (GLDA and ascorbic acid concentration ratio of 5:20, pH of 3, washing for 60 min, and the liquid-to-solid ratio of 10). GLDA combined with ascorbic acid efficiently removes As, Cd, and Pb from the soil through synergistic proton obstruction, chelation, and reduction. GLDA can chelate with iron and aluminum oxides while directly chelate with Cd and Pb. Ascorbic acid can reduce both Fe(III) to Fe(II) and As(III) to As0. The dissolution of As was promoted by indirectly preempting the binding sites of iron and aluminum in the soil while those of Cd and Pb were improved by directly interrupting the binding sites. This study suggested that GLDA combined with ascorbic acid is an effective cleanup technology to remove As, Cd, and Pb simultaneously from contaminated smelting site soils.
Collapse
Affiliation(s)
- Demei Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yalei He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Andi Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiaoyan Wang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yulian Hu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhihui Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
19
|
Wu C, Li F, Yi S, Ge F. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113185. [PMID: 34243092 DOI: 10.1016/j.jenvman.2021.113185] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Soils contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have been becoming a worldwide concerned environmental problem because of threatening public healthy via food chain exposure. Thus soils polluted by HMs and PAHs need to be remediated urgently. Physical and chemical remediation methods usually have some disadvantages, e.g., cost-expensiveness and incomplete removal, easily causing secondary pollution, which are hence not environmental-friendly. Conventional microbial approaches are mostly used to treat a single contaminant in soils and lack high efficiency and specificity for combined contaminants. Genetically engineered microorganisms (GEMs) have emerged as a desired requirement of higher bioremediation efficiency for soils polluted with HMs and PAHs and environmental sustainability, which can provide a more eco-friendly and cost-effective strategy in comparison with some conventional techniques. This review comments the recent advances about successful bioremediation techniques and approaches for soil contaminated with HMs and/or PAHs by GEMs, and discusses some challenges in the simultaneous removal of HMs and PAHs from soil by designing multi-functional genetic engineering microorganisms (MFGEMs), such as improvement of higher efficiency, strict environmental conditions, and possible ecological risks. Also, the modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade combined contaminants at a faster rate are introduced, such as reasonable gene editing, metabolic pathway modification, and protoplast fusion. Although MFGEMs are more potent than the native microbes and can quickly adapt to combined contaminants in soils, the ecological risk of MFGEMs needs to be evaluated under a regulatory, safety, or costs benefit-driving system in a way of stratified regulation. Nevertheless, the innovation of genetic engineering to produce MFGEMs should be inspired for the welfare of successful bioremediation for soils contaminated with HMs and PAHs but it must be supervised by the public, authorities, and laws.
Collapse
Affiliation(s)
- Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China.
| | - Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| |
Collapse
|
20
|
Wang Y, Zheng X, He X, Lü Q, Qian X, Xiao Q, Lin R. Effects of Pseudomonas TCd-1 on rice (Oryza sativa) cadmium uptake, rhizosphere soils enzyme activities and cadmium bioavailability under cadmium contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112249. [PMID: 33975222 DOI: 10.1016/j.ecoenv.2021.112249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/09/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Microbial remediation is a promising technique to reduce Cd accumulation in rice (Oryza sativa). In present study, a set of pot experiments were conducted to evaluate the effects of Cd-tolerate Pseudomonas TCd-1 inoculation on rice Cd uptake, soil enzyme activities and Cd bioavailability in the rhizosphere soils under Cd contaminated conditions. The results showed that at the ripening stage, with the inoculation of TCd-1, Cd contents in root, culm, leaf, hull and brown rice significantly reduced by 60.7%, 47.7%, 50.6%, 58.1% and 47.9%, respectively, and the cadmium bioconcentration factor (BCF) of rice lowered by 66.2% under 5 mg kg-1 Cd treatment. At the meantime, in the rhizosphere soils, pH increased by 0.05, the contents of exchangeable Cd (EX-Cd) and Fe-Mn oxides (OX-Cd) increased by 107.8% and 33.5%, whereas organic matter (OM-Cd) and residual (Res-Cd) decreased by 31.9% and 60.0%, respectively. The activity of acid phosphatase (ACP) increased by 28.3%, catalase (CAT), saccharase (SUC) activity decreased by 28.5% and 26.0%. Similarly, the Cd contents in root, culm, leaf, hull and brown rice reduced by 42.1%, 42.5%, 58.0%, 50.3%, and 68.8%, respectively, and the BCF lowered by 57.1%, under 10 mg kg-1 Cd treatment. Simultaneously, the soil pH increased by 0.06, the activities of CAT, SUC, urease (URE), ACP decreased by 26.4%, 34.6%, 63.8% and 15.3%, respectively. Furthermore, the correlation analysis showed that the inoculation of TCd-1 changed the correlation between rice Cd content and the biomass of roots, leaves, soil pH, CAT, PPO, URE activities, OM-Cd in rhizosphere soils. It suggested that Pseudomonas TCd-1 effectively reduced Cd uptake and Cd accumulation in rice was closely linked to the changes of soil pH, enzyme activities and Cd availability.
Collapse
Affiliation(s)
- Yujie Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaosan He
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qixin Lü
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Qian
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingtie Xiao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ruiyu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
21
|
Hussain B, Ashraf MN, Abbas A, Li J, Farooq M. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142188. [PMID: 33254942 DOI: 10.1016/j.scitotenv.2020.142188] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) toxicity in paddy soil and accumulation in rice plants and grains have got global concern due to its health effects. This review highlights the effects of soil factors including soil organic matter, soil pH, redox potential, and soil microbes which influencing Cd uptake by rice plant. Therefore, a comprehensive review of innovative and environmentally friendly management practices for managing Cd stress in rice is lacking. Thus, this review discusses the effect of Cd toxicity in rice and describes management strategies to offset its effects. Moreover, future research thrusts to reduce its uptake by rice has also been highlighted. Through phytoremediation, Cd may be extracted and stabilized in the soil while through microbes Cd can be sequestrated inside the microbial bodies. Increased Cd uptake in hyperaccumulator plants to remediate and convert the toxic form of Cd into non-toxic forms. While in chemical remediation, Cd can be washed out, immobilized and stabilized in the soil through chemical amendments. The organic amendments may help through an increase in soil pH, adsorption in its functional groups, the formation of complexations, and the conversion of exchangeable to residual forms. Developing rice genotypes with restricted Cd uptake and reduced accumulation in grain through conventional and marker-assisted breeding are fundamental keys for safe rice production. In this regard, the use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics may be quite helpful.
Collapse
Affiliation(s)
- Babar Hussain
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Nadeem Ashraf
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aqleem Abbas
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jumei Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural, Marine Sciences Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
22
|
Mujtaba Munir MA, Liu G, Yousaf B, Ali MU, Cheema AI, Rashid MS, Rehman A. Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114816. [PMID: 32473507 DOI: 10.1016/j.envpol.2020.114816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, polymetal(iod)s-contaminated mining soil from the Huainan coalfield, Anhui, China, was used to investigate the synergistic effects of biochar (BC), raw coal (RC), and hydrothermally treated coal (HTC) on the immobilization, speciation, transformation, and accumulation of Cd, Cr, and Pb in a soil-plant system via geochemical speciation and advanced spectroscopic approaches. The results revealed that the BC-2% and BC-HTC amendments were more effective than the individual RC, and/or HTC amendments to reduce ethylene-diamine-tetraacetic acid (EDTA)-extractable Cd, Cr, and Pb concentrations by elevating soil pH and soil organic carbon content. Soil pH increased by 1.5 and 2.5 units after BC-2% and BC-HTC amendments, respectively, which reduced EDTA-extractable Cd, Cr, and Pb to more stabilized forms. Metal speciation and X-ray photoelectron spectroscopy analyses suggested that the BC-HTC amendment stimulated the transformation of reactive Cd, Cr, and Pb (exchangeable and carbonate-bound) states to less reachable (oxide and residual) states to decrease the toxicity of these heavy metals. Fourier transform infrared spectroscopy and X-ray diffraction analyses suggested that reduction and adsorption by soil colloids may be involved in the mechanism of Cd(II), Cr(VI), and Pb(II) immobilization via hydroxyl, carbonyl, carboxyl, and amide groups in the BC and HTC. Additionally, the BC-2% and BC-HTC amendments reduced Cd and Pb accumulation in maize shoots, which could mainly be ascribed to the reduction of EDTA-extractable heavy metals in the soil and more functional groups in the roots, thus inhibiting metal ion translocation by providing the electrons necessary for immobilization, compared to those in roots grown in the unamended soil. Therefore, the combined application of BC and HTC was more effective than the individual application of these amendments to minimize the leaching, availability, and exchangeable states of Cd, Cr, and Pb in polymetal(iod)s-contaminated mining soil and accumulation in maize.
Collapse
Affiliation(s)
- Mehr Ahmed Mujtaba Munir
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, And State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Ayesha Imtiyaz Cheema
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Muhammad Saqib Rashid
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Abdul Rehman
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| |
Collapse
|