1
|
Liu Z, Cai Y, Chen X, Cang Y, Yu J, Shaaban M, Cai Y, Peng QA. Functional genomic analysis of Bacillus cereus BC4 strain for chromium remediation in contaminated soil. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100388. [PMID: 40276017 PMCID: PMC12018047 DOI: 10.1016/j.crmicr.2025.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Soil provides a habitat for microorganisms that can mitigate metal contamination. This study presents Bacillus cereus BC4 strain, which shows significant potential for metal pollution remediation. This bacterium achieved a 98.6 % reduction in Chromium (VI) concentrations from 300 mg/L to negligible levels under specific conditions (pH 8, 37 °C, and 120 rpm agitation) in LB medium. The complete genome of Bacillus cereus BC4 was sequenced using Oxford Nanopore Technology, revealing a circular chromosome and a plasmid with a total of 5537,675 base pairs and a G + C content of 35.44 %. Fourteen genes critical for Cr metabolism were identified. qRT-PCR demonstrated that under low Cr(VI) stress, two genes, chrA and nitR1, were up-regulated, indicating their role in Cr resistance. The genome revealed gene clusters essential for resilience against various metals, including chromium, arsenic, copper, manganese, and cadmium, as well as for synthesizing secondary metabolites crucial for survival and adaptation. Additionally, genes associated with biopolymer synthesis were identified, emphasizing the organism's diverse genetic capabilities. This genomic study led to the submission of the complete genome to GenBank (CP101135), enhancing the understanding and potential of Bacillus cereus BC4 in chromium remediation and environmental restoration.
Collapse
Affiliation(s)
- Zhiyi Liu
- School of Resources and Environment, Wuhan Textile University, Wuhan 430200, China
| | - Yubing Cai
- School of Resources and Environment, Wuhan Textile University, Wuhan 430200, China
| | - Xu Chen
- School of Resources and Environment, Wuhan Textile University, Wuhan 430200, China
| | - Yan Cang
- School of Resources and Environment, Wuhan Textile University, Wuhan 430200, China
| | - Jialiang Yu
- School of Resources and Environment, Wuhan Textile University, Wuhan 430200, China
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Yajun Cai
- School of Resources and Environment, Wuhan Textile University, Wuhan 430200, China
- Clean Production of Textile Printing and Dyeing Engineering Research Center of the Ministry of Education, Wuhan 430200, China
| | - Qi-an Peng
- School of Resources and Environment, Wuhan Textile University, Wuhan 430200, China
- Clean Production of Textile Printing and Dyeing Engineering Research Center of the Ministry of Education, Wuhan 430200, China
| |
Collapse
|
2
|
Wang W, Sun P, Li J, Chen M, Guo J, Lin Z, Chen J. Simultaneous Removal of Ammonium and Cr(VI) by the Newly Isolated Marine Bacterium Sulfitobacter dubius PT04 in Tannery Wastewater. Curr Microbiol 2025; 82:165. [PMID: 40029392 DOI: 10.1007/s00284-025-04066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Biological ammonium nitrogen removal in tannery wastewater is significantly hindered by hexavalent chromium (Cr(VI)) and high salinity. In this study, Sulfitobacter dubius PT04, a newly isolated, salt-tolerant marine bacterium from deep-sea hydrothermal vent sediment in the South Atlantic Ocean, was characterized for its ability to simultaneously remove total ammonia nitrogen (TAN) and Cr(VI). This strain demonstrated effective removal across a pH range of 6-8, temperatures of 25-35 °C, and salinity levels of 0-6%.Optimal conditions identified using Response Surface Methodology (RSM) were pH 6.92, 27.69 °C, and 3.78% salinity. Most TAN was assimilated into biological nitrogen, effectively reducing inorganic nitrogen pollutants. Additionally, Cr(VI) removal was facilitated by enzymatic reactions with reduction activity predominantly in the cell membrane, followed by extracellular release of Cr(III) with minimal surface adsorption. After 7 days of treatment, strain PT04 achieved removal rates of 90.66% for TAN and 74.81% for Cr(VI), highlighting its bioremediation potential for TAN and Cr(VI) in tannery wastewater.
Collapse
Affiliation(s)
- Wei Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350028, Fujian, China
| | - Pingyu Sun
- MCC Capital Engineering & Research Incorporation Limited, Beijing, 100176, China
| | - Jiankang Li
- MCC Capital Engineering & Research Incorporation Limited, Beijing, 100176, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, China
| | - Jiabao Guo
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350028, Fujian, China
| | - Zhenyue Lin
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350028, Fujian, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350028, Fujian, China.
| |
Collapse
|
3
|
Khan MTA, Al-Battashi H, Al-Hinai M, Almdawi M, Pracejus B, Elshafey ESI, Abed RMM. Isolation of Aerobic Heterotrophic Bacteria from a Microbial Mat with the Ability to Grow on and Remove Hexavalent Chromium through Biosorption and Bioreduction. Appl Biochem Biotechnol 2025; 197:94-112. [PMID: 39102082 DOI: 10.1007/s12010-024-05023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Water pollution with toxic hexavalent chromium, Cr(VI), is an environmental threat that has a direct impact on living organisms. The use of microorganisms from microbial mats to remove Cr(VI) has scarcely been investigated. Here, we isolated aerobic heterotrophic bacteria from a Cr-polluted microbial mat found in a mining site in Oman, and investigated their ability to remove Cr(VI), and the underlying mechanism(s) of removal. All isolates fell phylogenetically into the genera Enterobacter, Bacillus, and Cupriavidus, and could completely remove 1 mg L-1 Cr(VI) in 6 days. The strains could tolerate up to 2000 mg L-1 Cr(VI), and exhibited the highest Cr(VI) removal rate at 100 ± 9 mg L-1 d-1. Using scanning electron microscopy (SEM) coupled with elemental analysis, the strains were shown to adsorb Cr(VI) at their cell surfaces. The functional groups OH, NH2, Alkyl, Metal-O, and Cr(VI)-O were involved in the biosorption process. In addition, the strains were shown to reduce Cr(VI) to Cr(III) with the involvement of chromate reductase enzyme. We conclude that the aerobic heterotrophic bacteria isolated from Cr-polluted microbial mats use biosorption and bioreduction processes to remove Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Mohammad Tariq Ali Khan
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Huda Al-Battashi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Mahmood Al-Hinai
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Malak Almdawi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Bernhard Pracejus
- Department of Earth Sciences, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - El-Said I Elshafey
- Chemistry Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman.
| |
Collapse
|
4
|
Pandey K, Saharan BS, Kumar R, Jabborova D, Duhan JS. Modern-Day Green Strategies for the Removal of Chromium from Wastewater. J Xenobiot 2024; 14:1670-1696. [PMID: 39584954 PMCID: PMC11587030 DOI: 10.3390/jox14040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Chromium is an essential element in various industrial processes, including stainless steel production, electroplating, metal finishing, leather tanning, photography, and textile manufacturing. However, it is also a well-documented contaminant of aquatic systems and agricultural land, posing significant economic and health challenges. The hexavalent form of chromium [Cr(VI)] is particularly toxic and carcinogenic, linked to severe health issues such as cancer, kidney disorders, liver failure, and environmental biomagnification. Due to the high risks associated with chromium contamination in potable water, researchers have focused on developing effective removal strategies. Among these strategies, biosorption has emerged as a promising, cost-effective, and energy-efficient method for eliminating toxic metals, especially chromium. This process utilizes agricultural waste, plants, algae, bacteria, fungi, and other biomass as adsorbents, demonstrating substantial potential for the remediation of heavy metals from contaminated environments at minimal cost. This review paper provides a comprehensive analysis of various strategies, materials, and mechanisms involved in the bioremediation of chromium, along with their commercial viability. It also highlights the advantages of biosorption over traditional chemical and physical methods, offering a thorough understanding of its applications and effectiveness.
Collapse
Affiliation(s)
- Komal Pandey
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India;
| | - Baljeet Singh Saharan
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India;
- Department of Microbiology, Kurukshetra University, Kurukshetra 136 119, India
- USDA-ARS Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA 99164-6430, USA
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Biotechnology, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125 055, India;
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Qibray 111 208, Uzbekistan;
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125 055, India;
| |
Collapse
|
5
|
Wang W, Chen C, Huang X, Jiang S, Xiong J, Li J, Hong M, Zhang J, Guan Y, Feng X, Tan W, Liu F, Ding LJ, Yin H. Chromium(VI) Adsorption and Reduction in Soils under Anoxic Conditions: The Relative Roles of Iron (oxyhr)oxides, Iron(II), Organic Matters, and Microbes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18391-18403. [PMID: 39360895 DOI: 10.1021/acs.est.4c08677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Chromium (Cr) transformation in soils mediated by iron (Fe) (oxyhr)oxides, Fe(II), organic matter (OM), and microbes is largely unexplored. Here, their coupling processes and mechanisms were investigated during anoxic incubation experiments of four Cr(VI) spiked soil samples with distinct physicochemical properties from the tropical and subtropical regions of China. It demonstrates that easily oxidizable organic carbon (EOC, 55-84%) and microbes (16-48%) drive Cr(VI) reduction in soils enriched with goethite and/or hematite, among which in dryland soils microbial sulfate reduction may also be involved. In contrast, EOC (38 ± 1%), microbes (33 ± 1%), and exchangeable and poorly crystalline Fe (oxyhr)oxide-associated Fe(II) (29 ± 3%) contribute to Cr(VI) reduction in paddy soils enriched with ferrihydrite. Additionally, exogenous Fe(II) and microbes significantly enhance Cr(VI) reduction in ferrihydrite- and goethite-rich soils, and Fe(II) greatly promotes but microbes slightly inhibit Cr passivation. Both Fe(II) and microbes, especially the latter, promote OM mineralization and result in the most substantial OM loss in ferrihydrite-rich paddy soils. During the incubation, part of the ferrihydrite converts to goethite but microbes may hinder the transformation. These results provide deep insights into the geochemical fates of redox-sensitive heavy metals mediated by the complicated effects of Fe, OM, and microbes in natural and engineered environments.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Chunmei Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaopeng Huang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shuqi Jiang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430070, China
| | - Juan Xiong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mei Hong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Long-Jun Ding
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| |
Collapse
|
6
|
Harboul K, El Aabedy A, Hammani K, El-Karkouri A. Reduction of hexavalent chromium using Bacillus safensis isolated from an abandoned mine. ENVIRONMENTAL TECHNOLOGY 2024; 45:4495-4511. [PMID: 37671659 DOI: 10.1080/09593330.2023.2256457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
The present work focused on the isolation of a bacterial strain multi-resistant to heavy metals with a high potential for reducing hexavalent chromium (Cr(VI)) and studied its Cr(VI) removal performance in immobilized state and the mechanisms involved. Bacterial isolate was identified as Bacillus safensis CCMM B629 (B. safensis), is able to completely reduce 50, 100 and 200 mg/L of Cr(VI) after 24, 48 and 120 h, respectively under optimized conditions of pH 7 and 30°C. The coexistence of nitrates, cadmium and mercury inhibits reduction, while copper and iron significantly improve removal efficiencies. Additionally, the presence of electron donors such as glycerol, glucose and citrate significantly increases bioreduction rate. Cells immobilized in alginate beads successfully reduced Cr(VI) compared to free cells, showing the performance of biobeads in Cr(VI) reduction. Membrane fraction exhibited highest rate of Cr(VI) reduction (65%) compared to other cellular components, indicating that Cr(VI) reduction occurred primarily in cell membrane. Further characterization of Cr(VI) removal by B. safensis cells using scanning electron microscopy and energy-dispersive X-ray (SEM-EDX) analysis showed its ability to reduce and adsorb Cr(VI), confirming that hexavalent chromium was taken up successfully on bacterial cell surfaces. Based on Fourier transform infrared spectroscopy analysis (FTIR), hydroxyl, carboxyl, amide, and phosphoryl functional groups participated in combination with Cr(III). In conclusion, B. safensis is a bacterium with great potential for Cr(VI) removal, and it is a promising and competitive strain for use in bioremediation of Cr(VI) contaminated industrial effluents.
Collapse
Affiliation(s)
- Kaoutar Harboul
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Amal El Aabedy
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Khalil Hammani
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdenbi El-Karkouri
- Biotechnology, Environment, Agri-Food and Health Laboratory, Faculty of Sciences Dhar el Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
7
|
Mishra S, Dubey P, Naseem M, Rishi S, Patel A, Srivastava PK. A kinetic modelling approach to explore mechanism of Cr(VI) detoxification by a novel strain Pseudochrobactrum saccharolyticum NBRI-CRB 13 using response surface methodology. World J Microbiol Biotechnol 2024; 40:288. [PMID: 39101971 DOI: 10.1007/s11274-024-04099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
A novel Pseudochrobactrum saccharolyticum strain NBRI-CRB 13, isolated from tannery sludge, was studied to grow up to 500 mgL-1 of Cr(VI) and showed Cr(VI) detoxification by reducing > 90% of Cr(VI) at different concentrations 25, 50 and 100 mgL-1. Kinetic studies showed that first-order models were fitted (R2 = 0.998) to the time-dependent Cr(VI) reduction with degradation rate constant (k) (1.03-0.429 h-1). Cr(VI) detoxification was primarily related to the extracellular fraction of microbial cells, which showed a maximum extracellular reductase enzyme activity led to 94.6% reduction of Cr(VI). Moreover, the strain showed maximum extracellular polymeric substances (EPS) production at 100 mgL-1 Cr(VI), which is presumably the reason for Cr(VI) removal as EPS serves as the metal binding site for Cr(VI) ions. Further, an optimization study using Box-Behnken design was conducted considering parameters viz., pH, temperature, and initial concentration of Cr(VI). The maximum percent reduction of Cr(VI) was obtained at pH 6.5, temperature 30 °C with 62.5 mgL-1Cr(VI) concentration. Further, the Cr(VI) reduction and adsorption ability of strain P. saccharolyticum NBRI-CRB13 were confirmed by SEM-EDS, FTIR, and XRD analyses. FTIR analysis confirmed the presence of functional groups (-OH, -COOH, -PO4) on bacterial cell walls, which were more likely to interact with positively charged chromium ions. The study elucidated the reduction of Cr(VI) by the novel bacterium within 24 h using the response surface methodology approach and advocated its application in real-time situations.
Collapse
Affiliation(s)
- Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Priya Dubey
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Mariya Naseem
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Saloni Rishi
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Anju Patel
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Pankaj Kumar Srivastava
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India.
| |
Collapse
|
8
|
Sujiritha PB, Vikash VL, Ponesakki G, Ayyadurai N, Kamini NR. Microbially induced carbonate precipitation with Arthrobacter creatinolyticus: An eco-friendly strategy for mitigation of chromium contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121300. [PMID: 38955041 DOI: 10.1016/j.jenvman.2024.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100 ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54 ± 0.11% and increased the carbonate bound fraction to 26.1 ± 1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.
Collapse
Affiliation(s)
- Parthasarathy Baskaran Sujiritha
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India; University of Madras, Chennai, 600005, Tamil Nadu, India
| | - Vijan Lal Vikash
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Ganesan Ponesakki
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India.
| |
Collapse
|
9
|
Saikat TA, Sayem Khan MA, Islam MS, Tasnim Z, Ahmed S. Characterization and genome mining of Bacillus subtilis BDSA1 isolated from river water in Bangladesh: A promising bacterium with diverse biotechnological applications. Heliyon 2024; 10:e34369. [PMID: 39114027 PMCID: PMC11305188 DOI: 10.1016/j.heliyon.2024.e34369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.
Collapse
Affiliation(s)
| | - Md Abu Sayem Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zarin Tasnim
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
10
|
Aké AHJ, Rochdi N, Jemo M, Hafidi M, Ouhdouch Y, El Fels L. Cr(VI) removal performance from wastewater by microflora isolated from tannery effluents in a semi-arid environment: a SEM, EDX, FTIR and zeta potential study. Front Microbiol 2024; 15:1423741. [PMID: 39011144 PMCID: PMC11246972 DOI: 10.3389/fmicb.2024.1423741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Hexavalent chromium removal from the environment remains a crucial worldwide challenge. To address this issue, microbiological approaches are amongst the straightforward strategies that rely mainly on the bacteria's and fungi's survival mechanisms upon exposure to toxic metals, such as reduction, efflux system, uptake, and biosorption. In this work, scanning electron microscopy, energy-dispersive X-ray spectrophotometry, Fourier transform infrared spectroscopy, and zeta potential measurements were used to investigate the ability of chromium adsorption by Bacillus licheniformis, Bacillus megaterium, Byssochlamys sp., and Candida maltosa strains isolated from tannery wastewater. Scanning electron microscopy combined with energy dispersive X-ray spectroscopy revealed alterations in the cells treated with hexavalent chromium. When exposed to 50 mg/L Cr6+, Bacillus licheniformis and Candida maltosa cells become rough, extracellular secretions are reduced in Bacillus megaterium, and Byssochlamys sp. cells are tightly bound and exhibit the greatest Cr weight percentage. In-depth analysis of Fourier transform infrared spectra of control and Cr-treated cells unveiled Cr-microbial interactions involving proteins, lipids, amino acids, and carbohydrates. These findings were supported by zeta potential measurements highlighting significant variations in charge after treatment with Cr(VI) with an adsorption limit of 100 mg/L Cr6+ for all the strains. Byssochlamys sp. showed the best performance in Cr adsorption, making it the most promising candidate for treating Cr-laden wastewater.
Collapse
Affiliation(s)
- Aké Henri Joël Aké
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
| | - Nabil Rochdi
- Laboratory of Innovative Materials, Energy and Sustainable Development (IMED-Lab), Cadi Ayyad University, Marrakesh, Morocco
- Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Martin Jemo
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Laâyoune, Morocco
| | - Yedir Ouhdouch
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
| |
Collapse
|
11
|
Feng L, Liu B, Yao J, Li M, Zhu J, Zhao Y, Wu Y. Extracellular bioreduction is the main Cr(VI) detoxification strategy of Bacillus sp. HL1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120870. [PMID: 38640757 DOI: 10.1016/j.jenvman.2024.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
Bacterium with high Cr(VI) detoxification capability belonged to the genus Bacillus have been largely explored, yet their reduction strategies are still in debate. Cr(VI) removal performance and mechanism of Bacillus sp. HL1 isolated from tailings a site was comprehensively investigated in this study. Approximately 88.31% of 100 mg/L Cr(VI) was continuously removed within 72 h, while it could resist up to 300 mg/L Cr(VI). Metal ions Mn2+ and Cu2+ could effectively improve the Cr(VI) removal performance to 14.41% and 3.41% under the optimal conditions, respectively. Cr(VI) removal performances by subcellular extracts showed that nearly 45.28% of 100 mg/L extracellular Cr(VI) was efficaciously reduced to Cr(III), while only 14.27%, 6.40%, and 2.73% of the cell-free extract, resting cells, and cell debris were reduced, respectively. This suggested that extracellular bioreduction was the primary Cr(VI) detoxification strategy despite a small part of Cr(VI) reduction took place intracellularly. In particular, the reduction products of the intracellular and extracellular compounds significantly differed, with organo-Cr(III) complex outside the cell and crystalline Cr(III) precipitate inside. Such observation was also evidenced by the intracellular black precipitate observed in the TEM image. XRD, XPS, and EPR analysis showed different Cr(III) compositions of intracellular and extracellular products. This study deepens our insights into the different fates of microorganisms that reduce Cr(VI) intracellularly and extracellularly.
Collapse
Affiliation(s)
- Lingyun Feng
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China.
| | - Bang Liu
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Jun Yao
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China.
| | - Miaomiao Li
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Junjie Zhu
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Yan Zhao
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Yingjian Wu
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| |
Collapse
|
12
|
Li W, Feng Z, Zhu X, Gong W. Efficient removal of Cr (VI) from coal gangue by indigenous bacteria-YZ1 bacteria: Adsorption mechanism and reduction characteristics of extracellular polymer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116047. [PMID: 38301582 DOI: 10.1016/j.ecoenv.2024.116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
The existence of heavy metals (especially Cr (VI)) in coal gangue has brought great safety risks to the environment. The indigenous bacteria (YZ1 bacteria) were separated and applied for removing Cr (VI) from the coal gangue, in which its tolerance to Cr (VI) was explored. The removal mechanism of Cr (VI) was investigated with pyrite in coal gangue, metabolite organic acids and extracellular polymer of YZ1 bacteria. The concentration of Cr (VI) could be stabilized around 0.012 mg/L by the treatment with YZ1 bacteria. The Cr (VI) tolerance of YZ1 bacteria reached 60 mg/L, and the removal efficiency of Cr (VI) was more than 95% by using YZ1 bacteria combined with pyrite. The organic acids had a certain reducing ability to Cr (VI) (removal efficiency of less than 10%). The extracellular polymers (EPS) were protective for the YZ1 bacteria resisting to Cr (VI). The polysaccharides and Humic-like substances in the soluble extracellular polymers (S-EPS) had strong adsorption and reduction effect on Cr (VI), in which the tryptophan and tyrosine proteins in the bound extracellular polymers (LB-EPS and TB-EPS) could effectively promote the reduction of Cr (VI). YZ1 bacteria could obviously reduce the damage of Cr (VI) from coal gangue to the environment.
Collapse
Affiliation(s)
- Wang Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China
| | - Zhaoxiang Feng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China
| | - Xiaobo Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China.
| | - Wenhui Gong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| |
Collapse
|
13
|
Wang Y, Zhou Z, Zhang W, Guo J, Li N, Zhang Y, Gong D, Lyu Y. Metabolic mechanism of Cr(VI) pollution remediation by Alicycliphilus denitrificans Ylb10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169135. [PMID: 38070572 DOI: 10.1016/j.scitotenv.2023.169135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Cr(VI) is a well-known toxic pollutant and its remediation has attracted great attention. It is important to continuously discover and explore new high-efficiency Cr(VI) reducing bacteria to further improve the efficiency of Cr(VI) pollution remediation. In this paper, metabolic mechanism of Cr(VI) reduction in a new highly efficient Cr(VI) reducing bacterium, Alicycliphilus denitrificans Ylb10, was investigated. The results showed that Ylb10 could tolerate and completely reduce 450 mg/L Cr(VI). Cr(VI) can be reduced in the intracellular compartment, membrane and the extracellular compartment, with the plasma membrane being the main active site for Cr(VI) reduction. With the addition of NADH, the reduction efficiency of cell membrane components for Cr(VI) increased 2.3-fold. The omics data analysis showed that sulfite reductase CysJ, thiosulfate dehydrogenase TsdA, nitrite reductase NrfA, nitric oxide reductase NorB, and quinone oxidoreductase ChrR play important roles in the reduction of Cr(VI), in the intracellular, and the extracellular compartment, and the membrane of Ylb10, and therefore Cr(VI) was reduced by the combined action of several reductases at these three locations.
Collapse
Affiliation(s)
- Yue Wang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zhiyi Zhou
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Wen Zhang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Jinling Guo
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Ning Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, USA
| | - Dachun Gong
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Yucai Lyu
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
14
|
Cai Y, Chen X, Qi H, Bu F, Shaaban M, Peng QA. Genome analysis of Shewanella putrefaciens 4H revealing the potential mechanisms for the chromium remediation. BMC Genomics 2024; 25:136. [PMID: 38308218 PMCID: PMC10837877 DOI: 10.1186/s12864-024-10031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Microbial remediation of heavy metal polluted environment is ecofriendly and cost effective. Therefore, in the present study, Shewanella putrefaciens stain 4H was previously isolated by our group from the activated sludge of secondary sedimentation tank in a dyeing wastewater treatment plant. The bacterium was able to reduce chromate effectively. The strains showed significant ability to reduce Cr(VI) in the pH range of 8.0 to 10.0 (optimum pH 9.0) and 25-42 ℃ (optimum 30 ℃) and were able to reduce 300 mg/L of Cr(VI) in 72 h under parthenogenetic anaerobic conditions. In this paper, the complete genome sequence was obtained by Nanopore sequencing technology and analyzed chromium metabolism-related genes by comparative genomics The genomic sequence of S. putrefaciens 4H has a length of 4,631,110 bp with a G + C content of 44.66% and contains 4015 protein-coding genes and 3223, 2414, 2343 genes were correspondingly annotated into the COG, KEGG, and GO databases. The qRT-PCR analysis showed that the expression of chrA, mtrC, and undA genes was up-regulated under Cr(VI) stress. This study explores the Chromium Metabolism-Related Genes of S. putrefaciens 4H and will help to deepen our understanding of the mechanisms of Cr(VI) tolerance and reduction in this strain, thus contributing to the better application of S. putrefaciens 4H in the field of remediation of chromium-contaminated environments.
Collapse
Affiliation(s)
- Yajun Cai
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
- Clean Production of Textile Printing and Dyeing Engineering Research Center of Ministry of Education, Wuhan, 430200, China
| | - Xu Chen
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Hanghang Qi
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Fantong Bu
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Qi-An Peng
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
- Clean Production of Textile Printing and Dyeing Engineering Research Center of Ministry of Education, Wuhan, 430200, China.
| |
Collapse
|
15
|
Shi XC, Wang K, Xue M, Mao W, Xu K, Tremblay PL, Zhang T. Ultrafast removal of toxic Cr(VI) by the marine bacterium Vibrio natriegens. CHEMOSPHERE 2024; 350:141177. [PMID: 38211787 DOI: 10.1016/j.chemosphere.2024.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The fastest-growing microbe Vibrio natriegens is an excellent platform for bioproduction processes. Until now, this marine bacterium has not been examined for bioremediation applications, where the production of substantial amounts of biomass would be beneficial. V. natriegens can perform extracellular electron transfer (EET) to Fe(III) via a single porin-cytochrome circuit conserved in Vibrionaceae. Electroactive microbes capable of EET to Fe(III) usually also reduce toxic metals such as carcinogenic Cr(VI), which is converted to Cr(III), thus decreasing its toxicity and mobility. Here, the performance of V. natriegens was explored for the bioremediation of Cr(VI). At a density of 100 mg/mL, V. natriegens removed 5-20 mg/L Cr(VI) within 30 s and 100 mg/L Cr(VI) within 10 min. In comparison, the model bacterium Escherichia coli grown to a comparable cell density removed Cr(VI) 36 times slower. To eliminate Cr(VI), V. natriegens had to be metabolically active, and functional outer-membrane c-type cytochromes were required. At the end of the Cr(VI) removal process, V. natriegens had reduced all of it into Cr(III) while adsorbing more than half of the metallic ions. These results demonstrate that V. natriegens, with its fast metabolism, is a viable option for the rapid treatment of aqueous pollution with Cr.
Collapse
Affiliation(s)
- Xiao-Chen Shi
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, 528437, PR China
| | - Kefan Wang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Miao Xue
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weijia Mao
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Kai Xu
- Center for Material Research and Analysis, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| |
Collapse
|
16
|
Zhao K, Zhang W, Liang Z, Zhao H, Chai J, Yang Y, Teng T, Zhang D. Facilitating New Chromium Reducing Microbes to Enhance Hexavalent Chromium Reduction by In Situ Sonoporation-Mediated Gene Transfer in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15123-15133. [PMID: 37747805 DOI: 10.1021/acs.est.3c04655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Chromium (Cr) is a heavy metal with a high toxicity and pathogenicity. Microbial reduction is an effective strategy to remove Cr(VI) at contaminated sites but suffers from the low populations and activities of Cr-reducing microorganisms in soils. This study proposed an in situ sonoporation-mediated gene transfer approach, which improved soil Cr(VI) reduction performance by delivering exogenous Cr-transporter chrA genes and Cr-reducing yieF genes into soil microorganisms with the aid of ultrasound. Besides the increasing populations of Cr-resistant bacteria and elevated copy numbers of chrA and yieF genes after sonoporation-mediated gene transfer, three new Cr-reducing strains were isolated, among which Comamonas aquatica was confirmed to obtain Cr-resistant capability. In addition, sonoporation-mediated gene transfer was the main driving force significantly shaping soil microbial communities owing to the predominance of Cr-resistant microbes. This study pioneered and evidenced that in situ soil sonoporation-mediated gene transfer could effectively deliver functional genes into soil indigenous microbes to facilitate microbial functions for enhanced bioremediation, e.g., Cr-reduction in this study, showing its feasibility as a chemically green and sustainable remediation strategy for heavy metal contaminated sites.
Collapse
Affiliation(s)
- Kaichao Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Zhentian Liang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Hongyu Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Juanfen Chai
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Yuesuo Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, PR China
| |
Collapse
|
17
|
Song T, Wang S, Gao W, Zhang C, Xu Y, Lin X, Yang M. Construction of UiO-66-NH 2 decorated by MoS 2 QDs as photocatalyst for rapid and effective visible-light driven Cr(VI) reduction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115304. [PMID: 37506441 DOI: 10.1016/j.ecoenv.2023.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
The photoactive metal-organic frameworks (MOFs) are good candidates for photocatalysts, but the quick electron-hole pairs recombination has greatly restricted the photocatalytic ability of MOFs. To improve the photoactivity of MOFs, MOFs-based composite materials have been extensively studied. Here, we successfully integrated MoS2 quantum dots (QDs) with UiO-66-NH2 for the first time under hydrothermal conditions. The as-prepared MoS2 QDs/UiO-66-NH2 (MS-U) had good visible light response ability (absorption edge at 445 nm), and charge separation and transfer ability, which lays the foundation for the photocatalytic Cr(VI) reduction. Photocatalytic studies revealed that MoS2 QDs-5/UiO-66-NH2 (MS-U-5) had superior Cr(VI) reduction activity than pure MoS2 QDs and UiO-66-NH2. MS-U-5 could remove 98% Cr(VI) at pH= 2 with visible light irradiation for 20 min, which is the fastest visible light driven Cr(VI) reduction rate among the reported MOFs-based composite photocatalysts without the presence of any cocatalysts or scavengers as far as we know. Importantly, MS-U-5 could be reused at least three times. In the end, the possible electron transfer path and mechanism of Cr(VI) reduction was also investigated.
Collapse
Affiliation(s)
- Tianqun Song
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China; Tianjin University of Technology, Tianjin 300384, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shuang Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Wanting Gao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Chudi Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Yixin Xu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Xin Lin
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
18
|
Huang Y, Tang J, Zhang B, Long ZE, Ni H, Fu X, Zou L. Influencing factors and mechanism of Cr(VI) reduction by facultative anaerobic Exiguobacterium sp. PY14. Front Microbiol 2023; 14:1242410. [PMID: 37637125 PMCID: PMC10449125 DOI: 10.3389/fmicb.2023.1242410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Microbial reduction is an effective way to deal with hexavalent chromium [Cr(VI)] contamination in the environment, which can significantly mitigate the biotoxicity and migration of this pollutant. The present study investigated the influence of environmental factors on aqueous Cr(VI) removal by a newly isolated facultative anaerobic bacterium, Exiguobacterium sp. PY14, and revealed the reduction mechanism. This strain with a minimum inhibitory concentration of 400 mg/L showed the strongest Cr(VI) removal capacity at pH 8.0 because of its basophilic nature, which was obviously depressed by increasing the Cr(VI) initial concentration under both aerobic and anaerobic conditions. In contrast, the removal rate constant for 50 mg/L of Cr(VI) under anaerobic conditions (1.82 × 10-2 h-1) was 3.3 times that under aerobic conditions. The co-existence of Fe(III) and Cu(II) significantly promoted the removal of Cr(VI), while Ag(I), Pb(II), Zn(II), and Cd(II) inhibited it. Electron-shuttling organics such as riboflavin, humic acid, and anthraquinone-2,6-disulfonate promoted the Cr(VI) removal to varying degrees, and the enhancement was more significant under anaerobic conditions. The removal of aqueous Cr(VI) by strain PY14 was demonstrated to be due to cytoplasmic rather than extracellular reduction by analyzing the contributions of different cell components, and the end products existed in the aqueous solution in the form of organo-Cr(III) complexes. Several possible genes involved in Cr(VI) metabolism, including chrR and chrA that encode well-known Chr family proteins responsible for chromate reduction and transport, respectively, were identified in the genome of PY14, which further clarified the Cr(VI) reduction pathway of this strain. The research progress in the influence of crucial environmental factors and biological reduction mechanisms will help promote the potential application of Exiguobacterium sp. PY14 with high adaptability to environmental stress in Cr(VI) removal in the actual environment.
Collapse
Affiliation(s)
- Yunhong Huang
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Jie Tang
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Bei Zhang
- College of Art and Design, Jiangxi Institute of Fashion Technology, Nanchang, China
| | - Zhong-Er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Haiyan Ni
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Xueqin Fu
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
19
|
Rahman Z, Thomas L, Chetri SPK, Bodhankar S, Kumar V, Naidu R. A comprehensive review on chromium (Cr) contamination and Cr(VI)-resistant extremophiles in diverse extreme environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59163-59193. [PMID: 37046169 DOI: 10.1007/s11356-023-26624-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Chromium (Cr) compounds are usually toxins and exist abundantly in two different forms, Cr(VI) and Cr(III), in nature. Their contamination in any environment is a major problem. Many extreme environments including cold climate, warm climate, acidic environment, basic/alkaline environment, hypersaline environment, radiation, drought, high pressure, and anaerobic conditions have accumulated elevated Cr contamination. These harsh physicochemical conditions associated with Cr(VI) contamination damage biological systems in various ways. However, several unique microorganisms belonging to phylogenetically distant taxa (bacteria, fungi, and microalgae) owing to different and very distinct physiological characteristics can withstand extremities of Cr(VI) in different physicochemical environments. These challenging situations offer great potential and extended proficiencies in extremophiles for environmental and biotechnological applications. On these issues, the present review draws attention to Cr(VI) contamination from diverse extreme environmental regions. The study gives a detailed account on the ecology and biogeography of Cr(VI)-resistant microorganisms in inhospitable environments, and their use for detoxifying Cr(VI) and other applications. The study also focuses on physiological, multi-omics, and genetic engineering approaches of Cr(VI)-resistant extremophiles.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India.
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Siva P K Chetri
- Department of Botany, Dimoria College, Gauhati University, Guwahati, Assam, India
| | - Shrey Bodhankar
- Department of Agriculture Microbiology, School of Agriculture Sciences, Anurag University, Hyderabad, Telangana, India
| | - Vikas Kumar
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, Australia
| |
Collapse
|
20
|
Yang Y, Yang Y, Jiang G, Yang L, Chen J, Xu Z, Zheng B, Tian Y. Biosynthesis, characterization, and determination of trace hydrogen peroxide of Organo-Cr(III) nanoparticles by Lysinibacillus sp. 4H. AIP ADVANCES 2023; 13. [DOI: 10.1063/5.0151141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The mechanism of microbial reduction of Cr(VI) has been widely reported; however, only a few studies have focused on Cr(VI) reduction products. In this study, a green synthetic pathway for the biosynthesis of Organo-Cr(III) nanoparticles using Lysinibacillus sp. 4H was investigated, and some properties of these nanoparticles were characterized, based on analysis using X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy, among other techniques. The analyses revealed that the reduction product induced by Lysinibacillus sp. 4H may be amorphous Organo-Cr(III) nanoparticles with an irregular spherical structure (20–90 nm). Thermal characterization of the nanoparticles showed that they maintain a high residual mass (50.45%) at 700 °C, indicating high stability. In addition, the nanoparticles were capable of detecting trace amounts of hydrogen peroxide (H2O2), owing to their redox properties, such that the corresponding H2O2 concentrations could be accurately determined in a range of concentrations. This study provided novel insights and strategies regarding the use of nanoparticles to detect trace hydrogen peroxide concentrations in multiple fields.
Collapse
Affiliation(s)
- Yichen Yang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Yi Yang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Jia Chen
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Bijun Zheng
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| |
Collapse
|
21
|
Saldarriaga JF, López JE, Díaz-García L, Montoya-Ruiz C. Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49498-49511. [PMID: 36781665 PMCID: PMC10104932 DOI: 10.1007/s11356-023-25501-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 04/16/2023]
Abstract
The contamination of soil and water by metals such as mercury (Hg) and cadmium (Cd) has been increasing in recent years, because of anthropogenic activities such as mining and agriculture, respectively. In this work, the changes in the rhizosphere microbiome of Lolium perenne L. during the phytoremediation of soils contaminated with Hg and Cd were evaluated. For this, two soil types were sampled, one inoculated with mycorrhizae and one without. The soils were contaminated with Hg and Cd, and L. perenne seeds were sown and harvested after 30 days. To assess changes in the microbiome, DNA isolation tests were performed, for which samples were subjected to two-step PCR amplification with specific 16S rDNA V3-V4 primers (337F and 805R). With mycorrhizae, changes had been found in the absorption processes of metals and a new distribution. While with respect to microorganisms, families such as the Enterobacteriaceae have been shown to have biosorption and efflux effects on metals such as Hg and Cd. Mycorrhizae then improve the efficiency of removal and allow the plant to better distribute the absorbed concentrations. Overall, L. perenne is a species with a high potential for phytoremediation of Cd- and Hg-contaminated soils in the tropics. Inoculation with mycorrhizae modifies the phytoremediation mechanisms of the plant and the composition of microorganisms in the rhizosphere. Mycorrhizal inoculation and changes in the microbiome were associated with increased plant tolerance to Cd and Hg. Microorganism-assisted phytoremediation is an appropriate alternative for L. perenne.
Collapse
Affiliation(s)
- Juan F Saldarriaga
- Dept. of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este, #19A-40, 111711, Bogotá, Colombia.
| | - Julián E López
- Facultad de Arquitectura E Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Laura Díaz-García
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Carolina Montoya-Ruiz
- Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín Calle, 59A #63-20, 050034, Medellín, Colombia
| |
Collapse
|
22
|
Ramli NN, Othman AR, Kurniawan SB, Abdullah SRS, Hasan HA. Metabolic pathway of Cr(VI) reduction by bacteria: A review. Microbiol Res 2023; 268:127288. [PMID: 36571921 DOI: 10.1016/j.micres.2022.127288] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Heavy metal wastes, particularly hexavalent chromium [Cr(VI)], are generated from anthropogenic activities, and their increasing abundance has been a research concern due to their toxicity, genotoxicity, carcinogenicity and mutagenicity. Exposure to these dangerous pollutants could lead to chronic infections and even mortality in humans and animals. Bioremediation using microorganisms, particularly bacteria, has gained considerable interest because it can remove contaminants naturally and is safe to the surrounding environment. Bacteria, such as Pseudomonas putida and Bacillus subtilis, can reduce the toxic Cr(VI) to the less toxic trivalent chromium Cr(III) through mechanisms including biotransformation, biosorption and bioaccumulation. These mechanisms are mostly linked to chromium reductase and nitroreductase enzymes, which are involved in the Cr(VI) reduction pathway. However, relevant data on the nitroreductase route remain insufficient. Thus, this work proposes an alternative metabolic pathway of nitroreductase, wherein nitrate activates the reaction and indirectly reduces toxic chromium. This nitroreductase pathway occurs concurrently with the chromium reduction pathway.
Collapse
Affiliation(s)
- Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
23
|
Ataabadi M, Hoodaji M, Tahmourespour A. Chromium (VI) bioremoval from contaminated wastewater using Pseudomonas aeruginosa ATHA23 producing biofilm supported on clinoptilolite. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:427-442. [PMID: 35947311 DOI: 10.1007/s10653-022-01345-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
More has yet to be investigated on the increased efficiency of microbes for the removal of heavy metals from industrial wastewaters. The objective was to determine the Cr (VI) bioabsorption and bioreduction ability of biofilm-producing bacteria supported on clinoptilolite from contaminated aqueous solutions. Chromium (VI)-tolerant bacteria, namely Pseudomonas aeruginosa ATHA23, were identified by biochemical methods and 16S rDNA sequencing and were deposited in NCBI (accession number: KF680991). Preparation of clinoptilolite, bacterial growth and isolation, biofilm production including extracellular polysaccharides (EPS) and Cr (VI) removal efficiency, affected by the experimental treatments, were investigated. The use of FTIR characterized clinoptilolite properties with and without biofilm in the presence and absence of Cr (IV). Higher Cr (VI) levels in the bacterial growth medium, increased EPS production with the highest value (0.171 mg L-1), produced 18 h after treating the bacteria with Cr (VI) (100 mg L-1). However, in the absence of Cr (VI), EPS significantly decreased to 0.117 mg L-1. Plackett-Burman and Taguchi statistical analyses were used to optimize the experimental treatments affecting the removal efficiency of Cr (VI). Among the anions (nitrate, sulfate, and chloride), sulfate decreased Cr removal efficiency. The absorption data were best fitted to the pseudo-second order, and the data of Cr adsorption by clinoptilolite-biofilm were also better fitted to Freundlich isotherm model. The Cr (VI) bioremediation potential of P. aeruginosa ATHA23 by the production of biofilm supported on clinoptilolite has been shown for the first time, which is of significance for the environment and the industry.
Collapse
Affiliation(s)
- Mitra Ataabadi
- Department of Soil Science, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran.
| | - Mehran Hoodaji
- Department of Soil Science, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Arezoo Tahmourespour
- Department of Basic Medical Sciences, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| |
Collapse
|
24
|
Li X, Li J, Zhao Q, Qiao L, Wang L, Yu C. Physiological, biochemical, and genomic elucidation of the Ensifer adhaerens M8 strain with simultaneous arsenic oxidation and chromium reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129862. [PMID: 36084460 DOI: 10.1016/j.jhazmat.2022.129862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study reports the simultaneous oxidation of As(III) and reduction of the Cr(VI) strain Ensifer adhaerens M8 screened from soils around abandoned gold tailings contaminated with highly complex metals (loids). Physiological, biochemical, and genomic techniques were used to explore the mechanism. The strain M8 could simultaneously oxidize 1 mM As(III) and reduce 45.3 % 0.1 mM Cr(VI) in 16 h, and the Cr(VI) reduction rate was increased by 5.8 % compared with the addition of Cr(VI) alone. Cellular debris was the main site of M8 arsenic oxidation. Chromium reduction was dominated by the reduction of extracellular hexavalent chromium (23.80-35.67 %). The genome of M8 included one chromosome and four plasmids, and a comparison of the genomes showed that M8 had two more plasmids than strains of the same genus, which may be related to strong environmental adaptations. M8 had 10 heavy metal resistance genes (HMRs), and plasmid D had a complete cluster of arsenic resistance-oxidation-transport genes (arsOHBCCR-aioSR-aioBA-cytCmoeA-phoBBU-PstBACS-phnCDEE). The genes involved in Cr(VI) detoxification include DNA repair (RecG, ruvABC, and UvrD), Cr(VI) transport (chrA, TonB, and CysAPTW) and Cr(VI) reduction. In summary, this study provides a molecular basis for As (III) and Cr (VI) remediation.
Collapse
Affiliation(s)
- Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Jingru Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Qiancheng Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Longkai Qiao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Limin Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
25
|
Sahoo H, Kisku K, Varadwaj KSK, Acharya P, Naik UC. Mechanism of Cr(VI) reduction by an indigenous Rhizobium pusense CR02 isolated from chromite mining quarry water (CMQW) at Sukinda Valley, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3490-3511. [PMID: 35948793 DOI: 10.1007/s11356-022-22264-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Toxicological assessment of CMQW generated due to chromite mining activities at Sukinda Valley has revealed high chromium contamination along with Zn and Fe. The present study focused on the mechanism of chromate reduction by an indigenous multi-metal tolerant bacterium, Rhizobium pusense CR02, isolated from CMQW. The isolated strain has shown resistance up to 520 mg/L of Cr(VI) with an IC50 value of 385.4 mg/L. The highest reduction rate 8.6 × 10-2/h was recorded with 20 mg/L of initial concentration of Cr(VI). Extracellular (3.06 ± 0.012 U/mL), intracellular (3.60 ± 0.13 U/mL), and membrane (1.89 ± 0.01 U/mL) associated chromate reductases were found to be involved for reduction. The extracellular polymeric substances (EPS) produced by the isolate also enhanced reduction activity of 46.32 ± 1.69 mg/L after 72 h with an initial concentration of 50 mg/L. FTIR analysis revealed the involvement of functional groups -OH, -CO, and -NH for Cr(VI) biosorption whereas P=O, -CO-NH- and -COOH interacted with Cr(III). Zeta potential with less negative surface charge favored reduction of Cr(VI). Treatment of CMQW by bacterial isolate detoxified Cr(VI) minimizing chromosomal aberrations in root cells of Allium cepa L., suggesting the role of Rhizobium pusense CR02 as a promising bio-agent for Cr(VI) detoxification.
Collapse
Affiliation(s)
- Hrudananda Sahoo
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | - Kanika Kisku
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | | | - Prasannajit Acharya
- Institute of Technical Education and Research, Department of Chemistry, Siksha 'O' Anusandhan (deemed to be University), Bhubaneswar, 751030, India
| | - Umesh Chandra Naik
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India.
| |
Collapse
|
26
|
Wani KI, Naeem M, Aftab T. Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120350. [PMID: 36209933 DOI: 10.1016/j.envpol.2022.120350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal (HM) pollution has become a serious global problem due to the non-biodegradable nature of the HMs and their persistence in the environment. Agricultural soil is a non-renewable resource that requires careful management so that it can fulfill the increasing demand for agricultural food production. However, different anthropogenic activities have resulted in a large-scale accumulation of HMs in soil which is detrimental to soil and plant health. Due to their ubiquity, increased bioavailability, toxicity, and non-biodegradable nature, HM contamination has formed a roadblock in the way of achieving food security, safety, and sustainability in the future. Chromium (Cr), specifically Cr(VI) is a highly bioavailable HM with no proven role in the physiology of plants. Chromium has been found to be highly toxic to plants, with its toxicity also influenced by chemical speciation, which is in turn controlled by different factors, such as soil pH, redox potential, organic matter, and microbial population. In this review, the different factors that influence Cr speciation were analyzed and the relationship between biogeochemical transformations of Cr and its bioavailability which may be beneficial for devising different Cr remediation strategies has been discussed. Also, the uptake and transport mechanism of Cr in plants, with particular reference to sulfate and phosphate transporters has been presented. The biological solutions for the remediation of Cr contaminated sites which offer safe and viable alternatives to old-style physical and chemical remediation strategies have been discussed in detail. This review provides theoretical guidance in developing suitable approaches for the better management of these remediation strategies.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
27
|
Yang X, Qin X, Xie J, Li X, Xu H, Zhao Y. Study on the effect of Cr(VI) removal by stimulating indigenous microorganisms using molasses. CHEMOSPHERE 2022; 308:136229. [PMID: 36041530 DOI: 10.1016/j.chemosphere.2022.136229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Molasses have a prominent effect on the bioremediation of Cr(VI) contaminated groundwater. However, its reaction mechanism is not detailed. In this paper, the removal of Cr(VI) with different carbon sources was compared to explore the effect and mechanism of the molasses. The addition of molasses can completely remove 25 mg/L Cr(VI), while the removal efficiency by glucose or emulsified vegetable oil was only 20%. Molasses could rapidly stimulate the reduction of Cr(VI) by indigenous microorganisms and weakened the toxicity on bacteria. The average removal rate of Cr(VI) was 0.42 mg/L·h, 10 times that of glucose system. Compared with glucose, molasses can remediate Cr(VI) at a higher concentration (50 mg/L), and the carbohydrate acted as microbial nutrients. Direct and indirect reduction acted together, the Fe(II) content in the aquifer medium increased from 1.7% to 4.7%. The addition of molasses extract into glucose system could increased the removal rate of Cr(VI) by 2-3 times, and the ions of molasses had no significant effect on the reduction. Excitation emission matrix fluorescence spectra and electrochemical analysis proved that the molasses contained humic acid-like substances, which had the ability of electron shuttle and improved the reduction rate of Cr(VI). In the process of bioreduction, the composition of molasses changed and the electron transport capacity increased from 104.2 to 446.5 μmol/(g C), but these substances could not be used as electron transport media to continuously enhance the reduction effect. This study is of great significance to fully understand the role and application of molasses.
Collapse
Affiliation(s)
- Xinru Yang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Xueming Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Jiayin Xie
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Xiaoyu Li
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
28
|
Rocha SMB, do Amorim MR, Costa MKL, da Silva Saraiva TC, Costa RM, Antunes JEL, de Souza Oliveira LM, de Alcantara Neto F, de Medeiros EV, de Araujo Pereira AP, Araujo ASF. Tolerance and reduction of chromium by bacterial strains. Arch Microbiol 2022; 204:730. [DOI: 10.1007/s00203-022-03329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
|
29
|
Harboul K, Alouiz I, Hammani K, El-Karkouri A. Isotherm and kinetics modeling of biosorption and bioreduction of the Cr(VI) by Brachybacterium paraconglomeratum ER41. Extremophiles 2022; 26:30. [PMID: 36149604 DOI: 10.1007/s00792-022-01278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
Chromium is one of the most widely used metals in industry. Hexavalent form [Cr(VI)], which is found in industrial discharges, is very toxic and very soluble in water. From soil taken from an abandoned lead and iron mine, a bacterial strain capable of reducing Cr(VI) was isolated and identified as Brachybacterium paraconglomeratum ER41. Objective of this work was to evaluate the power of this bacterium to reduce Cr(VI). Results obtained showed that this bacterium is capable of eliminating 100 mg/L of Cr(VI) after 48 h (pH 8 and temperature 30 °C). For modeling biosorption kinetics, pseudo-first-order and intraparticle diffusion models gave a better fit. Furthermore, the adsorption mechanism conformed well to Langmuir's isothermal model indicating monolayer type sorption. Biomass analysis of this bacterium before and after contact with chromium by scanning electron microscopy-energy-dispersive X-ray and by Fourier transform infrared spectroscopy showed that the surface ligands of bacterial wall are probably responsible for biosorption and bioreduction process. These results suggest a potential application of B. paraconglomeratum ER41 in bioremediation of polluted discharges.
Collapse
Affiliation(s)
- Kaoutar Harboul
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Imad Alouiz
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Khalil Hammani
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdenbi El-Karkouri
- Biotechnology, Environment, Agri-Food and Health Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| |
Collapse
|
30
|
Luo X, Zhou X, Peng C, Shao P, Wei F, Li S, Liu T, Yang L, Ding L, Luo X. Bioreduction performance of Cr(VI) by microbial extracellular polymeric substances (EPS) and the overlooked role of tryptophan. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128822. [PMID: 35390619 DOI: 10.1016/j.jhazmat.2022.128822] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Extracellular polymeric substances (EPS) have exhibited promising advantages in mitigating heavy metal contamination, e.g., single-valent silver (Ag(I)), trivalent gold (Au(III)), and hexavalent chromium (Cr(VI)). However, knowledge of the specific substrate in EPSs that supports Cr(VI) reduction has remained elusive. Here, we isolated a novel Cr(VI)-reducing strain with self-mediating properties in an aquatic environment with various pH values to investigate the mechanisms. After analysis by a batch assay coupled with X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) spectroscopic techniques, it was found that Cr(VI) was reduced by the strain and soluble-EPS (S-EPS), and then, organo-trivalent chromium (organo-Cr(III)) was successfully formed. In addition, compared with other components of the strain, the strain and S-EPS completely removed Cr(VI), and the S-EPS exhibited a positive effect on Cr(VI) reduction with a strong monotonic correlation (R2 = 0.999, p = 9.03 × 10-5), indicating that the reduction is an EPS-dependent process. Specifically, the Cr(VI) reduction efficiency was enhanced to 48.85% and 99.4% after EPS and EPS plus tryptophan were added; their respective efficiencies were 3.94 and 8.02 times higher than that of the control assay in which the reductant was depleted. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed that the tryptophan concentration concomitantly decreased by 61.54%. These findings highlighted the importance of S-EPS and tryptophan and improved our understanding of EPS for Cr(VI) reduction, which might provide a novel strategy for decontaminating targeted heavy metals in future applications.
Collapse
Affiliation(s)
- Xianxin Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiaoyu Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Chengyi Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Feng Wei
- Jiangxi Hongcheng Environment Co., Ltd, Nanchang 330038, PR China
| | - Shujing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
31
|
Lin WH, Chen CC, Ou JH, Sheu YT, Hou D, Kao CM. Bioremediation of hexavalent-chromium contaminated groundwater: Microcosm, column, and microbial diversity studies. CHEMOSPHERE 2022; 295:133877. [PMID: 35131270 DOI: 10.1016/j.chemosphere.2022.133877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Sulfate reducing bacteria (SRB) have the capability of bioreducing hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] under sulfate-reducing conditions for toxicity reduction. However, a high amount of sulfate addition would cause elevated sulfide production, which could inhibit the growth of SRB and result in reduced Cr(VI) bioreduction efficiency. A slow release reagent, viscous carbon and sulfate-releasing colloidal substrates (VCSRCS), was prepared for a long-lasting carbon and sulfate supplement. In the column study, VCSRCS was injected into the column system to form a VCSRCS biobarrier for Cr(VI) containment and bioreduction. A complete Cr(VI) removal was observed via the adsorption and bioreduction mechanisms in the column with VCSRCS addition. Results from X-ray diffractometer analyses indicate that Cr(OH)3(s) and Cr2O3(s) were detected in precipitates, indicating the occurrence of Cr(VI) reduction followed by Cr(III) precipitation. Results from the Fourier-transform infrared spectroscopy analyses show that cell deposits carried functional groups, which could adsorb Cr. Addition of VCSRCS caused increased populations of total bacteria and dsrA, which also enhanced Cr(VI) reduction. Microbial diversity results indicate that VCSRCS addition resulted in the growth of Cr(VI)-reducing bacteria including Exiguobacterium, Citrobacter, Aerococcus, and SRB. Results of this study will be helpful in developing an effective and green VCSRCS biobarrier for the bioremediation of Cr(VI)-polluted groundwater.
Collapse
Affiliation(s)
- Wei-Han Lin
- School of Environment, Tsinghua University, Beijing, China
| | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yih-Terng Sheu
- General Education Center, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
32
|
Ma L, Chen N, Feng C, Yao Y, Wang S, Wang G, Su Y, Zhang Y. Enhanced Cr(VI) reduction in biocathode microbial electrolysis cell using Fenton-derived ferric sludge. WATER RESEARCH 2022; 212:118144. [PMID: 35124562 DOI: 10.1016/j.watres.2022.118144] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/21/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Hexavalent chromium (Cr(VI)) is one of the major concerns for water environment and human health due to its high toxicicity, while ferric sludge produced from Fenton processes is also a tough nut to crack. In this study, the synergetic impact of ferric sludge derived from the Fenton process on the bioreduction of Cr(VI) in biocathode microbial electrolysis cell was investigated for the first time. As a result, Cr(VI) reduction efficiency at biocathode increased by 1.1-2.6 times with 50 mg/L ferric sludge under different operation conditions. Besides, the Cr(VI) reduction enhancement decreased with the increase of pH and initial Cr(VI) concentration or increased with the increase of ferric sludge dosage. Correspondingly, relatively higher power density (1.027 W/m3 with 100 mg/L ferric sludge while 0.827 W/m3 for control) and lower activation energy and resistance were also observed. Besides, the presence of ferric sludge increased biomass protein (1.7 times higher with 100 mg/L ferric sludge) and cytochrome c (1.4 times higher with 100 mg/L ferric sludge). The evolution of microbial community structure for a higher abundance of Cr(VI) and Fe(III)-reducing microorganisms were exhibited, implying the enhancement of Cr(VI) reduction was due to the formation of Fe(II) from the reduction of ferric sludge. These findings provide insights and theoretical support for developing a viable biotechnology platform to realize waste treatment using waste.
Collapse
Affiliation(s)
- Linlin Ma
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yuechao Yao
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Song Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yanyan Su
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark; Carlsberg Research Laboratory, Bjerregaardsvej 5, 2500 Valby, Denmark.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
33
|
Meng Y, Ma X, Luan F, Zhao Z, Li Y, Xiao X, Wang Q, Zhang J, Thandar SM. Sustainable enhancement of Cr(VI) bioreduction by the isolated Cr(VI)-resistant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152433. [PMID: 34942251 DOI: 10.1016/j.scitotenv.2021.152433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Bioreduction of mobile Cr(VI) to sparingly soluble Cr(III) is an effective strategy for in situ remediations of Cr contaminated sites. The key of this technology is to screen Cr(VI)-resistant bacteria and further explore the sustainable enhancement approaches towards their Cr(VI) reduction performance. In this study, a total of ten Cr(VI)-resistant bacteria were isolated from a Cr(VI) contaminated site. All of them could reduce Cr(VI), and the greatest extent of Cr(VI) reduction (98%) was obtained by the isolated CRB6 strain. The isolated CRB6 was able to reduce structural Fe(III) in Nontronite NAu-2 to structural Fe(II). Compared with the slow bioreduction process, the produced structural Fe(II) can rapidly enhance Cr(VI) reduction. The resist dissolution characteristics of NAu-2 in the redox cycling may provide sustainable enhancement of Cr(VI) reduction. However, no enhancement on Cr(VI) bioreduction by the isolated CRB6 was observed in the presence of NAu-2, which was attributed to the inhibition of Cr(VI) on the electron transfer between the isolated CRB6 and NAu-2. AQDS can accelerate the electron transfer between the isolated CRB6 and NAu-2 as an electron shuttle in the presence of Cr(VI). Therefore, the combination of NAu-2 and AQDS generated a synergistic enhancement on Cr(VI) bioreduction compared with the enhancement obtained by NAu-2 and AQDS individually. Our results highlight that structural Fe(III) and electron shuttle can provide a sustainable enhancement of Cr(VI) reduction by Cr(VI)-reducing bacteria, which has great potential for the effective Cr(VI) in-situ remediation.
Collapse
Affiliation(s)
- Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaoxu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziwang Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Geological Exploration and Research Institute, CNACG, Beijing 100039, PR China
| | - Xiao Xiao
- New World Environmental Protection Group, ZhuZhou 412007, PR China
| | - Qianqian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Jianda Zhang
- School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China.
| | - Soe Myat Thandar
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Biotechnology, Mandalay Technological University, Ministry of Education, Mandalay, Myanmar.
| |
Collapse
|
34
|
Su YQ, Yuan S, Guo YC, Tan YY, Mao HT, Cao Y, Chen YE. Highly efficient and sustainable removal of Cr (VI) in aqueous solutions by photosynthetic bacteria supplemented with phosphor salts. CHEMOSPHERE 2021; 283:131031. [PMID: 34134043 DOI: 10.1016/j.chemosphere.2021.131031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/06/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic bacteria have flexible metabolisms and strong environmental adaptability, and require cheap, but plentiful, energy supplements, which all enable their use in Cr(VI)-remediation. In this study, the effects of culture conditions on the total Cr removal rate were investigated for a newly identified strain of Rhodobacter sphaeroides SC01. The subcellular distribution and Cr(VI) reduction ability of four different cellular fractions were evaluated by scanning electron microscopy and transmission electron microscopy. Experiments indicated that the optimal culture conditions for total Cr removal included a culture temperature of 35 °C, pH of 7.20, an NaCl concentration of 5 g L-1, a light intensity of 4000 lx, and an initial cell concentration (OD680) of 0.15. In addition, most Cr was found in the cell membrane in the form of Cr (III) after reduction, while cell membranes had the highest Cr(VI) reduction rate (99%) compared to other cellular components. In addition, the physical and chemical properties of SC01 cells were characterized by FTIR, XPS, and XRD analyses, confirming that Cr was successfully absorbed on bacterial cell surfaces. CrPO4‧6H2O and Cr5(P3O10)3 precipitates were particularly identified by XRD analysis. After screening supplementation with five phosphor salts, Cr(VI) reduction due to bioprecipitation was improved by the addition of Na4P2O7 and (NaPO3)6 salts, with the Cr(VI)-reduction rate combined with Na4P2O7 addition being 15% higher than that of the control. Thus, this study proposes a new Cr(VI)-removal strategy based on the combined use of photosynthetic bacteria and phosphor salts, which importantly increases its potential application in treating wastewater.
Collapse
Affiliation(s)
- Yan-Qiu Su
- College of Life Science, Sichuan Normal University, Chengdu, China.
| | - Shu Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yuan-Cheng Guo
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yong-Yao Tan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Hao-Tian Mao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
35
|
Zhang Y, Lu D, Kumar Kondamareddy K, Zhang B, Wu Q, Zhou M, Zeng Y, Wang J, Pei H, D N, Hao H, Huang C, Fan H. Controllable preparation and efficient visible-light-driven photocatalytic removal of Cr(VI) using optimized Cd0.5Zn0.5S nanoparticles decorated H-Titanate nanotubes. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Li SW, Wen Y, Leng Y. Transcriptome analysis provides new insights into the tolerance and reduction of Lysinibacillus fusiformis 15-4 to hexavalent chromium. Appl Microbiol Biotechnol 2021; 105:7841-7855. [PMID: 34546405 DOI: 10.1007/s00253-021-11586-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Microbial bioremediation of Cr(VI)-contaminated environments has drawn extensive concern. However, the molecular processes underlying the microbial Cr(VI) tolerance and reduction remain unclear. We isolated a Cr(VI)-reducing Lysinibacillus fusiformis strain 15-4 from soil on the Qinghai-Tibet Plateau. When grown in 1 mM and 2 mM Cr(VI)-containing medium, strain 15-4 could reduce 100% and 93.7% of Cr(VI) to Cr(III) after 36 h and 60 h of incubation, respectively. To know the molecular processes in response to Cr(VI), transcriptome sequencing was carried out using RNA-Seq technology. The results annotated a total of 3913 expressed genes in the strain. One thousand ninety-eight genes (28.1%) were significantly (fold change ≥ 2, false discovery rate ≤ 0.05) expressed in response to Cr(VI), of which 605 (55.1%) were upregulated and 493 (44.9%) were downregulated. The enrichment analysis showed that a total of 630 differentially expressed genes (DEGs) were enriched to 122 KEGG pathways, of which 8 pathways were significantly (p < 0.05) enriched in Cr(VI)-treated sample, including ATP-binding cassette (ABC) transporters (97 DEGs), ribosome (40), sulfur metabolism (16), aminoacyl-tRNA biosynthesis (19), porphyrin metabolism (20), quorum sensing (44), oxidative phosphorylation (17), and histidine metabolism (10), suggesting that these pathways play key roles to cope with Cr(VI) in the strain. The highly upregulated DEGs consisted of 29 oxidoreductase, 18 dehydrogenase, 14 cell redox homeostasis and stress response protein, and 10 DNA damage and repair protein genes. However, seven Na+:H+ antiporter complex-coding DEGs and most of transcriptional regulator-coding DEGs were significantly downregulated in the Cr-treated sample. Many of FMN/NAD(P)H-dependent reductase-encoding genes were greatly induced by Cr, suggesting the involvement of these genes in Cr(VI) reduction in strain 15-4. Sulfur and iron ions as well as the thiol-disulfide exchange reactions might play synergistic roles in Cr reduction.Key points• Lysinibacillus fusiformis 15-4 was able to tolerate and reduce Cr(VI) to Cr(III).• Transcriptome analysis revealed that 1098 DEGs and 8 key KEGG pathways significantly responded to Cr(VI).• Sulfur metabolism, protein biosynthesis, and porphyrin metabolism were the key pathways associated with the survival of strain 15-4 in response to Cr(VI).
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, People's Republic of China. .,School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China. .,Key Laboratory of Extreme Environmental Microbial Resources and Engineering in Gansu Province, Lanzhou, 730000, People's Republic of China.
| | - Ya Wen
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Yan Leng
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
37
|
Yang X, Zhao Z, Nguyen BV, Hirayama S, Tian C, Lei Z, Shimizu K, Zhang Z. Cr(VI) bioremediation by active algal-bacterial aerobic granular sludge: Importance of microbial viability, contribution of microalgae and fractionation of loaded Cr. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126342. [PMID: 34329001 DOI: 10.1016/j.jhazmat.2021.126342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, chromium (Cr) was used as an example of the most toxic heavy metals that threaten human health, and Cr(VI) bioremediation was implemented by using a new type of aerobic granular sludge (AGS), i.e., algal-bacterial AGS. Results showed that the total Cr removal efficiency by active algal-bacterial AGS was 85.1 ± 0.6% after 6 h biosorption at pH 6 and room temperature, which could be further improved to 93.8 ± 0.4% with external electron donor (glucose) supply. However, inactivation dramatically decreased the total Cr removal efficiency to 29.6 ± 3.5%, and no effect was noticed when external electron donor was provided. With an antibiotic (levofloxacin) or metabolic inhibitor (NaN3) addition, the total Cr removal efficiency of bacterial AGS was inhibited by 16.0% or 10.1%, but this efficiency was maintained in the case of algal-bacterial AGS. Analysis of extracellular polymeric substances (EPS) composition revealed that under Cr(VI) exposure, more loosely bound EPS were secreted by algal-bacterial AGS, favoring Cr(VI) reduction. Results from chemical fractionation indicated that 90.5 ± 4.2% of the loaded Cr on algal-bacterial AGS was in an immobile form, reflecting the low environmental risk of Cr-loaded algal-bacterial AGS after biosorption of hazardous heavy metals from wastewater.
Collapse
Affiliation(s)
- Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Bach Van Nguyen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shota Hirayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Caixing Tian
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
38
|
Evaluation of Cr(VI) Reduction Using Indigenous Bacterial Consortium Isolated from a Municipal Wastewater Sludge: Batch and Kinetic Studies. Catalysts 2021. [DOI: 10.3390/catal11091100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hexavalent Chromium (Cr(VI)) has long been known to be highly mobile and toxic when compared with the other stable oxidation state, Cr(III). Cr(VI)-soluble environmental pollutants have been detected in soils and water bodies receiving industrial and agricultural waste. The reduction of Cr(VI) by microbial organisms is considered to be an environmentally compatible, less expensive and sustainable remediation alternative when compared to conventional treatment methods, such as chemical neutralization and chemical precipitation of Cr. This study aims to isolate and identify the composition of the microbial consortium culture isolated from waste activated sludge and digested sludge from a local wastewater treatment plant receiving high loads of Cr(VI) from an abandoned chrome foundry in Brits (North Waste Province, South Africa). Furthermore, the Cr(VI) reduction capability and efficiency by the isolated bacteria were investigated under a range of operational conditions, i.e., pH, temperature and Cr(VI) loading. The culture showed great efficiency in reduction capability, with 100% removal in less than 4 h at a nominal loading concentration of 50 mg Cr(VI)/L. The culture showed resilience by achieving total removal at concentrations as high as 400 mg Cr(VI)/L. The consortia exhibited considerable Cr(VI) removal efficiency in the pH range from 2 to 11, with 100% removal being achieved at a pH value of 7 at a 37 ± 1 °C incubation temperature. The time course reduction data fitted well on both first and second-order exponential rate equation yielding first-order rate constants in the range 0.615 to 0.011 h−1 and second order rate constants 0.0532 to 5 × 10−5 L·mg−1·h−1 for Cr(VI) concentration of 50–400 mg/L. This study demonstrated the bacterial consortium from municipal wastewater sludge has a high tolerance and reduction ability over a wide range of experimental conditions. Thus, show promise that bacteria could be used for hexavalent chromium remediate in contaminated sites.
Collapse
|
39
|
Liu P, Wu X, Huang H, Wang H, Shi Y, Gao S. Simulation of natural aging property of microplastics in Yangtze River water samples via a rooftop exposure protocol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147265. [PMID: 33932662 DOI: 10.1016/j.scitotenv.2021.147265] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Due to low aging rate, the environmental behavior of naturally weathered microplastics (MPs) are not fully understood. Here, we systematically investigated the surface property and adsorption behavior of polypropylene (PP), polyethylene (PE) and polystyrene (PS) MPs during outdoor exposure in Yangtze River water for 18 months, and compared their difference from those in laboratory process. Results showed that compared to PE and PS MPs, PP underwent higher changes in surface aging properties such as rapid fragmentation and surface oxidation. Outdoor exposure exhibited different effects on adsorption property of MPs for metal ions, where adsorption capacities of PE and PS MPs for Co(II) were increased with aging degrees, while few change occurred on different aged PP MPs. As for Cr(VI), aging process further decreased the overall adsorption on PP, PE and PS MPs. The difference was mainly ascribed to the surface property (e.g. oxygen-containing groups and size) and the adhered biofilm and charged minerals. We further validated that similar types of oxidation products were formed between natural and laboratory aging of MPs, whereas the reaction order of these products, fragmentation rate and the change in adsorption property of aged MPs might be different in both processes. The findings provide essential information to assess real environmental behavior of MP samples.
Collapse
Affiliation(s)
- Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hanyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
40
|
Banerjee A, Sarkar S, Govil T, González-Faune P, Cabrera-Barjas G, Bandopadhyay R, Salem DR, Sani RK. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation. Front Microbiol 2021; 12:721365. [PMID: 34489911 PMCID: PMC8417407 DOI: 10.3389/fmicb.2021.721365] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.
Collapse
Affiliation(s)
- Aparna Banerjee
- Centro de investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación Y Posgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Shrabana Sarkar
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center, Rapid City, SD, United States
| | - Patricio González-Faune
- Escuela Ingeniería en Biotecnología, Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | | | - Rajib Bandopadhyay
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - David R. Salem
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Department of Materials and Metallurgical Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Rajesh K. Sani
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
41
|
Yang X, Zhao Z, Zhang G, Hirayama S, Nguyen BV, Lei Z, Shimizu K, Zhang Z. Insight into Cr(VI) biosorption onto algal-bacterial granular sludge: Cr(VI) bioreduction and its intracellular accumulation in addition to the effects of environmental factors. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125479. [PMID: 33677316 DOI: 10.1016/j.jhazmat.2021.125479] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr(VI)) is one of the typical heavy metals that pose a great threat to the environment. As a novel biotechnology, algal-bacterial aerobic granular sludge (AGS) possesses the merits of both bacterial AGS and algae. This study firstly evaluated Cr(VI) removal via biosorption by algal-bacterial AGS under different operation conditions and then some environmental factors. Results show that the highest Cr(VI) reduction (99.3%) and total Cr removal (89.1%) were achieved within 6 h at pH 2 and 6, respectively. The coexisting oxyanions exhibited slight effects, while both tested natural organic matters (humic acid and tannic acid) and carbon sources promoted Cr(VI) reduction at some appropriate concentrations. The coexistence of metal cations favored Cr(VI) reduction, achieving the highest enhancement of 8.1% by Cu2+ at 5 mg/L, while the total Cr removal was suppressed to some extent. Salinity > 5 g/L severely inhibited both Cr(VI) reduction and total Cr removal. Moreover, the loaded Cr in algal-bacterial AGS was found to be almost in the form of Cr(III), with 66.8% being contributed by intracellular accumulation. This work suggests that Cr(VI) reduction and intracellular accumulation are the main mechanisms involved in Cr(IV) biosorption onto algal-bacterial AGS.
Collapse
Affiliation(s)
- Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guanghao Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shota Hirayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Bach Van Nguyen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
42
|
Pushkar B, Sevak P, Parab S, Nilkanth N. Chromium pollution and its bioremediation mechanisms in bacteria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112279. [PMID: 33706095 DOI: 10.1016/j.jenvman.2021.112279] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Environment pollution is at its peak and is creating havoc for living beings. Industrial wastes containing toxic pollutants have contributed to a great extent in this disastrous environment pollution. Chromium (Cr3+/Cr6+) is highly toxic and one of the most common environmental pollutants because of its extensive use in industries especially tanneries. Lack of efficient treatment methods has resulted in extensive chromium pollution. Bioremediation of chromium using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. Bacteria possess numerous mechanisms such as biosorption, reduction, efflux or bioaccumulation, naturally or acquired to counter the toxicity of chromium. This review focuses on the bacterial responses against chromium toxicity and scope for their application in bioremediation. The differences and similarities between Gram negative and positive bacteria against chromium are also highlighted. Further, the knowledge gap and future prospects are also discussed in order to fill these gaps and overcome the problem associated with real-time applicability of bacterial bioremediation.
Collapse
Affiliation(s)
- Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India; Global Biotech Forum, Maharashtra, India.
| | - Pooja Sevak
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India; Society for Innovations in Biosciences, Maharashtra, India
| | - Sejal Parab
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Nikita Nilkanth
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| |
Collapse
|
43
|
Yan X, Liu X, Zhang M, Wang J, Zhong J, Ma D, Tang C, Hu X. Lab-scale evaluation of the microbial bioremediation of Cr(VI): contributions of biosorption, bioreduction, and biomineralization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22359-22371. [PMID: 33417128 DOI: 10.1007/s11356-020-11852-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Bioremediation of Cr(VI) by microorganisms has attracted immense research interests. There are three different mechanisms for bioremediation of Cr(VI): biosorption, bioreduction, and biomineralization. Identifying the relative contributions of these different mechanisms to Cr(VI) bioremediation can provide valuable information to enhance the final result. This article explores the corresponding contributions of different mechanisms in the Cr(VI) bioremediation process. To obtain a deeper understanding of each bioremediation mechanism, the corresponding precipitation products were analyzed via different methods. Fourier transform infrared spectrometer (FTIR) analysis showed that Cr(VI) was adsorbed by functional groups in EPS to form a chelate compound. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis determined that the stable Cr(III) compounds and mineral crystals which contain chromium gradually formed during the bioremediation process. High-throughput sequencing technology was applied to monitor microbial community succession. The results showed that the total removal rate of Cr(VI) reached 77.64% in 56 days in 100 mg/L Cr(VI). Bioreduction was the major contributor to the final result, followed by biosorption and biomineralization; their proportions are 69.61%, 19.16%, and 11.23%, respectively. Besides, the high-throughput sequencing data indicated that reductive microorganisms were the dominant flora and that the relative abundance of different reductive microorganism types changes significantly. This work has clarified the contributions of different mechanisms during Cr(VI) bioremediation process and provided a new enhancement strategy for Cr(VI) bioremediation.Graphical abstract.
Collapse
Affiliation(s)
- Xiao Yan
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xingyu Liu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China.
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China.
- GRIMAT Engineering Institute Co., Ltd., Beijing, 101407, China.
| | - Mingjiang Zhang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
| | - Jianlei Wang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
| | - Juan Zhong
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Daozhi Ma
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Chuiyun Tang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xuewu Hu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
44
|
Chen J, Tian Y. Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20981-20997. [PMID: 33689130 DOI: 10.1007/s11356-021-13325-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a common heavy metal, chromium and its compounds are widely used in industrial applications, e.g., leather tanning, electroplating, and in stainless steel, paints and fertilizers. Due to the strong toxicity of Cr(VI), chromium is regarded as a major source of pollution with a serious impact on the environment and biological systems. The disposal of Cr(VI) by biological treatment methods is more favorable than traditional treatment methods because the biological processes are environmentally friendly and cost-efficient. This review describes how bacteria tolerate and reduce Cr(VI) and the effects of some physical and chemical factors on the reduction of Cr(IV). The practical applications for Cr(VI) reduction of bacterial cells are also included in this review.
Collapse
Affiliation(s)
- Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
45
|
Lyu Y, Yang T, Liu H, Qi Z, Li P, Shi Z, Xiang Z, Gong D, Li N, Zhang Y. Enrichment and characterization of an effective hexavalent chromium-reducing microbial community YEM001. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19866-19877. [PMID: 33410044 DOI: 10.1007/s11356-020-11863-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Chromium (Cr) is one of the most widely used heavy metals in industrial processes, resulting in water and soil pollution that seriously threaten environmental safety. In this paper, we have directionally enriched a Cr(VI)-reducing bacterial community YEM001 from no-Cr(VI) polluted pond sedimental sludge by selectively growing it in Cr(VI)-containing media. This community could effectively reduce Cr(VI) in laboratory rich media containing different concentrations of Cr(VI), such as 61% reduction at 435 mg/L Cr(VI), 85% reduction at 355 mg/L Cr(VI), and complete reduction at 269 mg/L Cr(VI) in 93.5 h. It was also able to completely reduce 100 mg/L and 300 mg/L Cr(VI) in landfill leachate and natural sludge in 48 h, respectively. Optimal pH for Cr(VI) reduction of the YEM001 is between 7 and 8 and the best efficiency for Cr(VI) reduction occurs at 30 °C. Metagenomic data demonstrated that the YEM001 community was composed of multiple bacteria, including well-known Cr(VI)-reducing bacteria and non-Cr(VI)-reducing bacteria. Delftia, Comamonas, Alicycliphilus, Acidovorax, Bacillus, and Clostridioides account for 83% of total community abundance. The stability of the composition of the YEM001 community and its Cr(VI)-reducing activity allows for its application in bioremediation of environmental Cr(VI) pollution.
Collapse
Affiliation(s)
- Yucai Lyu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China.
| | - Tao Yang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Herong Liu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Zheng Qi
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ping Li
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ziyao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Zhen Xiang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Dachun Gong
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China
| | - Ning Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yaoping Zhang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
46
|
Huang Y, Zeng Q, Hu L, Xiong D, Zhong H, He Z. Column study of enhanced Cr(Ⅵ) removal and removal mechanisms by Sporosarcina saromensis W5 assisted bio-permeable reactive barrier. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124115. [PMID: 33535357 DOI: 10.1016/j.jhazmat.2020.124115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
In this study, the performances of Sporosarcina saromensis W5 assisted bio-permeable reactive barrier, containing activated carbon (AC) or zero-valent iron (ZVI), were investigated by column experiments in removal of Cr(Ⅵ) from simulated groundwater. The enhanced Cr(Ⅵ) removal performances were observed in biotic columns. Cr(Ⅵ) was first detected in effluent on day 24 and day 85 in Bio-AC and Bio-ZVI columns, respectively whereas it breakthrough only on day 4 and day 15 in AC and ZVI columns. Additionally, Cr(Ⅵ) removal performances induced by biofilm in Bio-QZ columns were promoted with the increase of influent Cr(Ⅵ) concentrations. According to fluorescent images, activated carbon was found to be the best biofilm carrier. Fe0 may not be suitable for microbial colonization because biofilm depolymerization occurred on Fe0 surface. Moreover, high concentration of Cr(Ⅵ) would lag the evolution of biofilm. Magnetite generating was found on the Fe0 surface. X-ray photoelectron spectroscopy (XPS) analysis indicated that the removal mechanism of Cr(Ⅵ) in biotic columns was biotransformation of Cr(Ⅵ) to Cr(Ш) species. Our results may provide a new insight in Cr(Ⅵ) in-situ remediation from groundwater by Bio-PRB system.
Collapse
Affiliation(s)
- Yongji Huang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Qiang Zeng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Daoling Xiong
- Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi 341000, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
47
|
Nguyen QA, Kim B, Chung HY, Nguyen AQK, Kim J, Kim K. Reductive transformation of hexavalent chromium by ferrous ions in a frozen environment: Mechanism, kinetics, and environmental implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111735. [PMID: 33396064 DOI: 10.1016/j.ecoenv.2020.111735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The transformation between hexavalent chromium (Cr6+) and trivalent chromium (Cr3+) has a significant impact on ecosystems, as Cr6+ has higher levels of toxicity than Cr3+. In this regard, a variety of Cr6+ reduction processes occurring in natural environments have been studied extensively. In this work, we investigate the reductive transformation of Cr6+ by ferrous ions (Fe2+) in ice at -20 °C, and compare the same process in water at 25 °C. The Fe2+-mediated reduction of Cr6+ occurred much faster in ice than it did in water. The accelerated reduction of Cr6+ in ice is primarily ascribed to the accumulation of Cr6+, Fe2+, and protons in the grain boundaries formed during freezing, which constitutes favorable conditions for redox reactions between Cr6+ and Fe2+. This freeze concentration phenomenon was verified using UV-visible spectroscopy with o-cresolsulfonephthalein (as a pH indicator) and confocal Raman spectroscopy. The reductive transformation of Cr6+ (20 µM) by Fe2+ in ice proceeded rapidly under various Fe2+ concentrations (20-140 µM), pH values (2.0-5.0), and freezing temperatures (-10 to -30 °C) with a constant molar ratio of oxidized Fe2+ to reduced Cr6+ (3:1). This result implies that the proposed mechanism (i.e., the redox reaction between Cr6+ and Fe2+ in ice) can significantly contribute to the natural conversion of Cr6+ in cold regions. The Fe2+-mediated Cr6+ reduction kinetics in frozen Cr6+-contaminated wastewater was similar to that in frozen Cr6+ solution. This indicates that the variety of substrates typically present in electroplating wastewater have a negligible effect on the redox reaction between Cr6+ and Fe2+ in ice; it also proposes that the Fe2+/freezing process can be used for the treatment of Cr6+-contaminated wastewater.
Collapse
Affiliation(s)
- Quoc Anh Nguyen
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Bomi Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Hyun Young Chung
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Anh Quoc Khuong Nguyen
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jungwon Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea.
| |
Collapse
|
48
|
Han H, Zheng Y, Zhou T, Liu P, Li X. Cu(II) nonspecifically binding chromate reductase NfoR promotes Cr(VI) reduction. Environ Microbiol 2020; 23:415-430. [PMID: 33201569 DOI: 10.1111/1462-2920.15329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 11/26/2022]
Abstract
Cu(II)-enhanced microbial Cr(VI) reduction is common in the environment, yet its mechanism is unknown. The specific activity of chromate reductase, NfoR, from Staphylococcus aureus sp. LZ-01 was augmented 1.5-fold by Cu(II). Isothermal titration calorimetry and spectral data show that Cu(II) binds to NfoR nonspecifically. Further, Cu(II) stimulates the nitrobenzene reduction of NfoR, indicating that Cu(II) promotes electron transfer. The crystal structure of NfoR in complex with CuSO4 (1.46 Å) was determined. The overall structure of NfoR-Cu(II) complex is a dimer that covalently binds with FMN and Cu(II)-binding pocket is located at the interface of the NfoR dimer. Structural superposition revealed that NfoR resembles the structure of class II chromate reductase. Site-directed mutagenesis revealed that Leu46 and Phe123 were involved in NADH binding, whereas Trp70 and Ser45 were the key residues for nitrobenzene binding. Furthermore, His100 and Asp171 were preferential affinity sites for Cu(II) and that Cys163 is an active site for FMN binding. Attenuation reductase activity in C163S can be partially restored to 54% wild type by increasing Cu(II) concentration. Partial restoration indicates dual-channel electron transfer of NfoR via Cu(II) and FMN. We propose a catalytic mechanism for Cu(II)-enhanced NfoR activity in which Cu(I) is formed transiently. Together, the current results provide an insight on Cu (II)-induced enhancement and benefit of Cr(VI) bioremediation.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yuanzhang Zheng
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Hao J, Song Y, Tian B, Qi C, Li L, Wang L, Xing Y, Zhao X, Liu J. Platycodon grandifloras polysaccharides inhibit mitophagy injury induced by Cr (VI) in DF-1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110901. [PMID: 32593805 DOI: 10.1016/j.ecoenv.2020.110901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the role of Platycodon grandiflorus polysaccharide (PGPS) in chromium (VI)-induced autophagy in a chicken embryo fibroblast cell lines (DF-1 cells). DF-1 cells were exposed to Cr (VI), PGPSt, and Cr (VI) + PGPSt, and their effects on cell viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and autophagy-related proteins were examined. The results showed that the cell viability was reduced after Cr (VI) treatment, and 3-MA, CsA or PGPSt suppressed this decrease. Cr (VI) treatment increased the ROS levels and decreased the MMP, thereby enhancing the expression of mitochondrial autophagy marker proteins (PINK1, Parkin, and LC3-II), inhibiting mitophagy autophagy protein TOMM20 expression, and promoting the degradation of autophagy-related marker p62. These changes led to exceeding mitochondrial autophagy and cell trauma and could be mitigated by PGPSt. Overall, our research showed that Cr (VI) can induce exceeding mitochondrial autophagy in DF-1 cells, whereas PGPSt can improve Cr (VI)-induced mitochondrial autophagy by inhibiting ROS and restoring MMP.
Collapse
Affiliation(s)
- Jiajia Hao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yafen Song
- Department of Veterinary Culture Collection, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Liping Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lumei Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaona Zhao
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
50
|
Zhang X, Yan J, Luo X, Zhu Y, Xia L, Luo L. Simultaneous ammonia and Cr (VI) removal by Pseudomonas aeruginosa LX in wastewater. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|