1
|
Liang C, Liu Y, Xi T, Liu J, Ge S, Zhang X, Jia Z, Ye N. Dual impacts of elevated pCO 2 on the ecological effects induced by microplastics and nanoplastics: A study with Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107358. [PMID: 40220510 DOI: 10.1016/j.aquatox.2025.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Aquatic organisms face increased complexity and severity when exposed to the combined stressors of climate change and micro- and nanoplastics (MNPs), as opposed to facing these stressors individually. This study examined the effects and underlying mechanisms of elevated pCO2, which leads to freshwater acidification, as well as amino-modified polystyrene MNPs (PS-NH2 MNPs) of varying sizes (5 μm, 300 nm, 80 nm), on Chlamydomonas reinhardtii under both individual and combined conditions. The results showed a size-dependent toxicity of PS MNPs, with the smaller nanoparticles (80 nm) causing greater toxic inhibition than the larger microparticles (5 μm and 300 nm), primarily attributed to oxidative stress-related cellular damage. In contrast, freshwater acidification (FA) appeared to promote the growth of C. reinhardtii, possibly by upregulating transcripts associated with energy metabolism. However, when C. reinhardtii was exposed to both FA and MNPs simultaneously, distinct toxic effects were observed. The co-exposure to FA and NPs induced the most severe oxidative stress, implying the greatest energetic cost. This stress resulted in the downregulation of pathways involved in fatty acid biosynthesis and protein folding, ultimately causing significant damage to cellular structure and function. The increased energy from the upregulation of the TCA cycle was mainly allocated for DNA damage repair and cell division, which induced an energy deficit necessary for stress resistance. In contrast, during co-exposure to FA and MPs, energy was redirected towards DNA replication and the synthesis of anti-stress substances, facilitating recovery and promoting growth. Our study highlighted the decisive influence of climate change and particle size in assessing the ecological effects and risks associated with MNPs.
Collapse
Affiliation(s)
- Chengwei Liang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Key Laboratory of Intelligent Marine Ranch (under preparation), Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yajing Liu
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianle Xi
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jia Liu
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shanshan Ge
- Shandong Key Laboratory of Intelligent Marine Ranch (under preparation), Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Center, Qingdao 266071, China
| | - Zhihua Jia
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Center, Qingdao 266071, China.
| |
Collapse
|
2
|
Wang J, Tian Q, Kang J, Zhou H, Yu X, Qiu G, Shen L. Mechanistic insight of fungal-microalgal pellets in photobioreactor for heavy-metal wastewater bioremediation. BIORESOURCE TECHNOLOGY 2025; 416:131794. [PMID: 39528032 DOI: 10.1016/j.biortech.2024.131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The high cost of harvesting microalgae limits their industrial application. Fungal-microalgal pellets can efficiently harvest microalgae and enhance heavy-metal adsorption. However, the molecular response mechanism of fungal-microalgal pellets under heavy-metal stress remains unclear. Fungal-microalgal pellets in a photobioreactor were used as a research object, and a 98 % harvesting efficiency could be achieved with adding exogenous carbon and nitrogen at pH 5.0-6.0 for 12 h of co-culture. Humic acid- and tryptophan-rich proteins in extracellular polymeric substances (EPS) participate in Cd(II) complexation. The Cd(II) response in fungal-microalgal pellets involves amino acids, glucose, lipids, energy metabolism, and antioxidant systems. The turning point was at 48 h. Proline, histidine, and glutamine synthesis and the adenosine-triphosphate (ATP) binding cassette (ABC) transport pathway play important roles in resistance to Cd(II) biotoxicity. This study provides a reference for the large-scale cultivation of fungal-microalgal symbiotic pellets and the practical application for industrial heavy-metal wastewater.
Collapse
Affiliation(s)
- Junjun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China; School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
3
|
Zhang HX, Huang D, Ren MN, Li WQ, Wei SP, Ji ZQ. Discovery of N-benzyl-6-methylpicolinamide as a potential scaffold for bleaching herbicides. PEST MANAGEMENT SCIENCE 2024; 80:3269-3277. [PMID: 38363171 DOI: 10.1002/ps.8030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND In pesticide research, bleaching herbicides have always been a hot topic. Our previous research showed that N-(4-fluorobenzyl)-2-methoxybenzamide is an innovative lead compound for bleaching herbicides. RESULTS A total of 40 derivatives of picolinamides were prepared and evaluated for their herbicidal activity by Petri dish tests and postemergence trials. The structure-activity relationship (SAR) revealed that introducing electron-withdrawing groups at the 3- or 4-positions of the benzyl significantly enhances herbicidal activity. Furthermore, ZI-04 induced similar symptoms such as bleaching effect in treated weeds and accumulation of biosynthetic precursors for carotenoids as observed with diflufenican. ZI-04 also exhibited significant cross-resistance to diflufenican and had a lower resistance risk than diflufenican. CONCLUSION N-benzyl-6-methylpicolinamides were discovered as a novel scaffold for bleaching herbicides. The accumulation of phytoene, phytofluene and ζ-Carotene in radish cotyledons, and cross-resistance observed with diflufenican, showed that title compounds can interfere with carotenoid biosynthesis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui-Xia Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Di Huang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Meng-Nan Ren
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wen-Qi Li
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shao-Peng Wei
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticides, Northwest A&F University, Yangling, China
| | - Zhi-Qin Ji
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticides, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Wang L, Chen M, Zheng X, Li X. Comparative genomics of fungal mutants provides a systemic view of extreme cadmium tolerance in eukaryotic microbes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133354. [PMID: 38154183 DOI: 10.1016/j.jhazmat.2023.133354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Whether eukaryotic organisms can evolve for higher heavy metal resistance in laboratory conditions remains unknown. In this study, we challenged a macrofungi, Pleurotus ostreatus, in a designed microbial evolution and growth arena (MEGA)-plate with an extreme Cd gradient. Within months, the wild-type strain developed 10 mutants, exhibiting a maximum three-fold increase in Cd tolerance and slower growth rates. Genomic sequencing and re-sequencing of the wild-type and ten mutant strains generated about 51 GB data, allowing a comprehensive comparative genomics analysis. As a result, a total of 2512 common single nucleotide polymorphisms, 70 inserts and deletes, 39 copy number variations and 21 structural variations were found in the 10 mutants. The mutant genes were primarily involved in substrate transport. In combination with transcriptome analysis, we discovered that the ten mutants had a distinct Cd-resistant mechanism compared to the wild-type strain. Genes involved in oxidation-reduction, ion transmembrane transport, and metal compartment/efflux are primarily responsible for the extreme Cd tolerance in the P. ostreatus mutants. Our findings contribute to the understanding of eukaryotic Cd resistance at the genome level and establish a foundation for developing bioremediation tools utilizing highly tolerant macrofungi.
Collapse
Affiliation(s)
- Likun Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | | | - Xin Zheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| |
Collapse
|
5
|
Chen J, Dai L, Mataya D, Cobb K, Chen P, Ruan R. Enhanced sustainable integration of CO 2 utilization and wastewater treatment using microalgae in circular economy concept. BIORESOURCE TECHNOLOGY 2022; 366:128188. [PMID: 36309175 DOI: 10.1016/j.biortech.2022.128188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have been shown to have a promising potential for CO2 utilization and wastewater treatment which still faces the challenges of high resource and energy requirements. The implementation of the circular economy concept is able to address the issues that limit the application of microalgae-based technologies. In this review, a comprehensive discussion on microalgae-based CO2 utilization and wastewater treatment was provided, and the integration of this technology with the circular economy concept, for long-term economic and environmental benefits, was described. Furthermore, technological challenges and feasible strategies towards the improvement of microalgae cultivation were discussed. Finally, necessary regulations and effective policies favoring the implementation of microalgae cultivation into the circular economy were proposed. These are discussed to support sustainable development of microalgae-based bioremediation and bioproduction. This work provides new insights into the implementation of the circular economy concept into microalgae-based CO2 utilization and wastewater treatment to enhance sustainable production.
Collapse
Affiliation(s)
- Junhui Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Dmitri Mataya
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
6
|
Nagarajan D, Lee DJ, Varjani S, Lam SS, Allakhverdiev SI, Chang JS. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157110. [PMID: 35787906 DOI: 10.1016/j.scitotenv.2022.157110] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Sustainable environmental management is one of the important aspects of sustainable development goals. Increasing amounts of wastewaters (WW) from exponential economic growth is a major challenge, and conventional treatment methods entail a huge carbon footprint in terms of energy use and GHG emissions. Microalgae-based WW treatment is a potential candidate for sustainable WW treatment. The nutrients which are otherwise unutilized in the conventional processes are recovered in the beneficial microalgal biomass. This review presents comprehensive information regarding the potential of microalgae as sustainable bioremediation agents. Microalgae-bacterial consortia play a critical role in synergistic nutrient removal, supported by the complex nutritional and metabolite exchange between microalgae and the associated bacteria. Design of effective microalgae-bacteria consortia either by screening or by recent technologies such as synthetic biology approaches are highly required for efficient WW treatment. Furthermore, this review discusses the crucial research gap in microalgal WW treatment - the application of a multi-omics platform for understanding microalgal response towards WW conditions and the design of effective microalgal or microalgae-bacteria consortia based on genetic information. While metagenomics helps in the identification and monitoring of the microbial community throughout the treatment process, transcriptomics, proteomics and metabolomics aid in studying the algal cellular response towards the nutrients and pollutants in WW. It has been established that the integration of microalgal processes into conventional WW treatment systems is feasible. In this direction, future research directions for microalgal WW treatment emphasize the need for identifying the niche in WW treatment, while highlighting the pilot sale plants in existence. Microalgae-based WW treatment could be a potential phase in the waste hierarchy of circular economy and sustainability, considering WWs are a rich secondary source of finite resources such as nitrogen and phosphorus.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
7
|
Wang Y, Mao C, Shi Y, Fan X, Sun L, Zhuang Y. Transcriptome analysis of the response of Hypomyces chrysospermus to cadmium stress. Front Microbiol 2022; 13:990693. [PMID: 36212811 PMCID: PMC9539689 DOI: 10.3389/fmicb.2022.990693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hypomyces chrysospermus is a fungal parasite that grows on Boletus species. One isolated strain of H. chrysospermus from B. griseus was obtained and proved of strong ability to tolerate and absorb cadmium (Cd) by previous research. However, the molecular mechanisms of underlying the resistance of H. chrysospermus to Cd stress have not been investigated. This study aimed to assess the effect of Cd stress on the global transcriptional regulation of H. chrysospermus. A total of 1,839 differentially expressed genes (DEGs) were identified under 120 mg/l Cd stress. Gene ontology (GO) enrichment analysis revealed that large amounts of DEGs were associated with cell membrane components, oxidoreductase activity, and transport activity. KEGG enrichment analysis revealed that these DEGs were mainly involved in the translation, amino acid metabolism, transport and catabolism, carbohydrate metabolism, and folding/sorting and degradation pathways under Cd stress. Moreover, the expression of DEGs encoding transporter proteins, antioxidant enzymes, nonenzymatic antioxidant proteins, detoxification enzymes, and transcription factors was associated with the Cd stress response. These results provide insights into the molecular mechanisms underlying Cd tolerance in H. chrysospermus and serve as a valuable reference for further studies on the detoxification mechanisms of heavy metal-tolerant fungi. Our findings may also facilitate the development of new and improved fungal bioremediation strategies.
Collapse
|
8
|
Cross-Kingdom Comparative Transcriptomics Reveals Conserved Genetic Modules in Response to Cadmium Stress. mSystems 2021; 6:e0118921. [PMID: 34874779 PMCID: PMC8651089 DOI: 10.1128/msystems.01189-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It is known that organisms have developed various mechanisms to cope with cadmium (Cd) stress, while we still lack a system-level understanding of the functional isomorphy among them. In the present study, a cross-kingdom comparison was conducted among Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii, through toxicological tests, comparative transcriptomics, as well as conventional functional genomics. An equivalent level of Cd stress was determined via inhibition tests. Through transcriptome comparison, the three organisms exhibited differential gene expression under the same Cd stress relative to the corresponding no-treatment control. Results from functional enrichment analysis of differentially expressed genes (DEGs) showed that four metabolic pathways responsible for combating Cd stress were commonly regulated in the three organisms, including antioxidant reactions, sulfur metabolism, cell wall remodeling, and metal transport. In vivo expression patterns of 43 DEGs from the four pathways were further examined using quantitative PCR and resulted in a relatively comparable dynamic of gene expression patterns with transcriptome sequencing (RNA-seq). Cross-kingdom comparison of typical Cd stress-responding proteins resulted in the detection of 12 groups of homologous proteins in the three species. A class of potential metal transporters were subjected to cross-transformation to test their functional complementation. An ABC transporter gene in E. coli, possibly homologous to the yeast ycf1, was heterologously expressed in S. cerevisiae, resulting in enhanced Cd tolerance. Overall, our findings indicated that conserved genetic modules against Cd toxicity were commonly regulated among distantly related microbial species, which will be helpful for utilizing them in modifying microbial traits for bioremediation. IMPORTANCE Research is establishing a systems biology view of biological response to Cd stress. It is meaningful to explore whether there is regulatory isomorphy among distantly related organisms. A transcriptomic comparison was done among model microbes, leading to the identification of a conserved cellular model pinpointing the generic strategies utilized by microbes for combating Cd stress. A novel E. coli transporter gene substantially increased yeast’s Cd tolerance. Knowledge on systems understanding of the cellular response to metals provides the basis for developing bioengineering remediation technology.
Collapse
|
9
|
Cao M, Huang X, Wang F, Zhang Y, Zhou B, Chen H, Yuan R, Ma S, Geng H, Xu D, Yan C, Xing B. Transcriptomics and Metabolomics Revealed the Biological Response of Chlorella pyrenoidesa to Single and Repeated Exposures of AgNPs at Different Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15776-15787. [PMID: 34787402 DOI: 10.1021/acs.est.1c04059] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increased release of engineered nanoparticles (ENPs) from widely used commercial products has threatened environmental health and safety, particularly the repeated exposures to ENPs with relatively low concentration. Herein, we studied the response of Chlorella pyrenoidesa (C. pyrenoidesa) to single and repeated exposures to silver nanoparticles (AgNPs). Repeated exposures to AgNPs promoted chlorophyll a and carotenoid production, and increased silver accumulation, thus enhancing the risk of AgNPs entering the food chain. Notably, the extracellular polymeric substances (EPS) content of the 1-AgNPs and 3-AgNPs groups were dramatically increased by 119.1% and 151.5%, respectively. We found that C. pyrenoidesa cells exposed to AgNPs had several significant alterations in metabolic process and cellular transcription. Most of the genes and metabolites are altered in a dose-dependent manner. Compared with the control group, single exposure had more differential genes and metabolites than repeated exposures. 562, 1341, 4014, 227, 483, and 2409 unigenes were differentially expressed by 1-0.5-AgNPs, 1-5-AgNPs, 1-10-AgNPs, 3-0.5-AgNPs, 3-5-AgNPs, and 3-10-AgNPs treatment groups compared with the control. Metabolomic analyses revealed that AgNPs altered the levels of sugars and amino acids, suggesting that AgNPs reprogrammed carbon/nitrogen metabolism. The changes of genes related to carbohydrate and amino acid metabolism, such as citrate synthase (CS), isocitrate dehydrogenase (IDH1), and malate dehydrogenase (MDH), further supported these results. These findings elucidated the mechanism of biological responses to repeated exposures to AgNPs, providing a new perspective on the risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, P. R. China
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Xitong Huang
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, P. R. China
| | - Yiyue Zhang
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Huilun Chen
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Shuai Ma
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Dan Xu
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, P. R. China
| | - Changchun Yan
- College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Gao F, Nan F, Feng J, Lv J, Liu Q, Liu X, Xie S. Comparative morphological, physiological, biochemical and genomic studies reveal novel genes of Dunaliella bioculata and D. quartolecta in response to salt stress. Mol Biol Rep 2021; 49:1749-1761. [PMID: 34813000 DOI: 10.1007/s11033-021-06984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Salinity is an essential abiotic stress in plants. Dunaliella is a genus of high-salt-tolerant microalgae. The present study aimed to compare the characterizations of D. bioculata and D. quartolecta at different levels and investigate novel genes response to salt stress. METHODS AND RESULTS High chlorophyll contents were detected in D. bioculata on the 35th d of salt stress, while high lipid and carotenoid contents were detected in D. quartolecta via morphological and biochemical analyses. Physiological analysis showed that D. quartolecta cells had a smaller increase in osmotic potential, a smaller decrease in the Na+/K+ ratio and photochemical efficiency (Fv/Fm), and a lower relative conductivity than D. bioculata cells. The genomic lengths of D. quartolecta and D. bioculata were 396,013,629 bp (scaffold N50 = 1954 bp) and 427,667,563 bp (scaffold N50 = 3093 bp) via high-throughput sequencing and de novo assembly, respectively. Altogether, 25,751 and 26,620 genes were predicted in their genomes by annotation analysis with various biodatabases. The D. bioculata genome showed more segmental duplication events via collinearity analysis. More single nucleotide polymorphisms and insertion-deletion variants were detected in the D. bioculata genome. Both algae, which showed a close phylogenetic relationship, may undergo positive selection via bioinformatics analysis. A total of 382 and 85 novel genes were screened in D. bioculata and D. quartolecta, with 138 and 51 enriched KEGG pathways, respectively. Unlike the novel genes adh1, hprA and serA, the relative expression of livF and phbB in D. bioculata was markedly downregulated as salinity increased, as determined by qPCR analysis. The relative expression of leuB, asd, pstC and proA in D. quartolecta was markedly upregulated with the same salinity increase. CONCLUSION Dunaliella quartolecta is more halophilic than D. bioculata, with more effective responses to high salt stress based on the multiphase comparative data.
Collapse
Affiliation(s)
- Fan Gao
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| | - Fangru Nan
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| | - Jia Feng
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| | - Junping Lv
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| | - Qi Liu
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| | - Xudong Liu
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| | - Shulian Xie
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
11
|
Thiriet-Rupert S, Gain G, Jadoul A, Vigneron A, Bosman B, Carnol M, Motte P, Cardol P, Nouet C, Hanikenne M. Long-term acclimation to cadmium exposure reveals extensive phenotypic plasticity in Chlamydomonas. PLANT PHYSIOLOGY 2021; 187:1653-1678. [PMID: 34618070 PMCID: PMC8566208 DOI: 10.1093/plphys/kiab375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/17/2021] [Indexed: 05/06/2023]
Abstract
Increasing industrial and anthropogenic activities are producing and releasing more and more pollutants in the environment. Among them, toxic metals are one of the major threats for human health and natural ecosystems. Because photosynthetic organisms play a critical role in primary productivity and pollution management, investigating their response to metal toxicity is of major interest. Here, the green microalga Chlamydomonas (Chlamydomonas reinhardtii) was subjected to short (3 d) or chronic (6 months) exposure to 50 µM cadmium (Cd), and the recovery from chronic exposure was also examined. An extensive phenotypic characterization and transcriptomic analysis showed that the impact of Cd on biomass production of short-term (ST) exposed cells was almost entirely abolished by long-term (LT) acclimation. The underlying mechanisms were initiated at ST and further amplified after LT exposure resulting in a reversible equilibrium allowing biomass production similar to control condition. This included modification of cell wall-related gene expression and biofilm-like structure formation, dynamics of metal ion uptake and homeostasis, photosynthesis efficiency recovery and Cd acclimation through metal homeostasis adjustment. The contribution of the identified coordination of phosphorus and iron homeostasis (partly) mediated by the main phosphorus homeostasis regulator, Phosphate Starvation Response 1, and a basic Helix-Loop-Helix transcription factor (Cre05.g241636) was further investigated. The study reveals the highly dynamic physiological plasticity enabling algal cell growth in an extreme environment.
Collapse
Affiliation(s)
- Stanislas Thiriet-Rupert
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
- Present address: Unité de Génétique des Biofilms, Département Microbiologie, Institut Pasteur, Paris, France
| | - Gwenaëlle Gain
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, 4000 Liège, Belgium
| | - Alice Jadoul
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Amandine Vigneron
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Bernard Bosman
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, 4000 Liège, Belgium
| | - Monique Carnol
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, 4000 Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Pierre Cardol
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, 4000 Liège, Belgium
| | - Cécile Nouet
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
- Author for communication:
| |
Collapse
|
12
|
Du Y, Luo S, Zhao J, Feng Z, Chen X, Ren W, Liu X, Wang Z, Yu L, Li W, Qu Y, Liu J, Zhou L. Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus. BMC PLANT BIOLOGY 2021; 21:510. [PMID: 34732128 PMCID: PMC8564971 DOI: 10.1186/s12870-021-03283-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-ion beam irradiation has great potential to improve flower shapes and colors; however, few studies are available on the mutation of flower senescence in leguminous plants. RESULTS A mutant (C416) exhibiting blossom duration eight times longer than that of the wild type (WT) was isolated in Lotus japonicus derived from carbon ion beam irradiation. Genetic assays supported that the delayed flower senescence of C416 was a dominant trait controlled by a single gene, which was located between 4,616,611 Mb and 5,331,876 Mb on chromosome III. By using a sorting strategy of multi-sample parallel genome sequencing, candidate genes were narrowed to the gene CUFF.40834, which exhibited high identity to ethylene receptor 1 in other model plants. A physiological assay demonstrated that C416 was insensitive to ethylene precursor. Furthermore, the dynamic changes of phytohormone regulatory network in petals at different developmental stages was compared by using RNA-seq. In brief, the ethylene, jasmonic acid (JA), and salicylic acid (SA) signaling pathways were negatively regulated in C416, whereas the brassinosteroid (BR) and cytokinin signaling pathways were positively regulated, and auxin exhibited dual effects on flower senescence in Lotus japonicus. The abscisic acid (ABA) signaling pathway is positively regulated in C416. CONCLUSION So far, C416 might be the first reported mutant carrying a mutation in an endogenous ethylene-related gene in Lotus japonicus, rather than through the introduction of exogenous genes by transgenic techniques. A schematic of the flower senescence of Lotus japonicus from the perspective of the phytohormone regulatory network was provided based on transcriptome profiling of petals at different developmental stages. This study is informative for elucidating the molecular mechanism of delayed flower senescence in C416, and lays a foundation for candidate flower senescence gene identification in Lotus japonicus. It also provides another perspective for the improvement of flower longevity in legume plants by heavy-ion beam.
Collapse
Affiliation(s)
- Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Shanwei Luo
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jian Zhao
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730000, People's Republic of China
| | - Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Zhuanzi Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Lixia Yu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Wenjian Li
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Ying Qu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China
| | - Jie Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China.
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China.
| |
Collapse
|
13
|
Zhang B, Wu J, Meng F. Adaptive Laboratory Evolution of Microalgae: A Review of the Regulation of Growth, Stress Resistance, Metabolic Processes, and Biodegradation of Pollutants. Front Microbiol 2021; 12:737248. [PMID: 34484172 PMCID: PMC8416440 DOI: 10.3389/fmicb.2021.737248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022] Open
Abstract
Adaptive laboratory evolution (ALE) experiments are a serviceable method for the industrial utilization of the microalgae, which can improve the phenotype, performance, and stability of microalgae to obtain strains containing beneficial mutations. In this article, we reviewed the research into the microalgae ALE test and assessed the improvement of microalgae growth, tolerance, metabolism, and substrate utilization by ALE. In addition, the principles of ALE and the key factors of experimental design, as well as the issues and drawbacks of the microalgae ALE method were discussed. In general, improving the efficiency of ALE and verifying the stability of ALE resulting strains are the primary problems that need to be solved in future research, making it a promising method for the application of microalgae biotechnology.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
14
|
Li C, Zheng C, Fu H, Zhai S, Hu F, Naveed S, Zhang C, Ge Y. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress. CHEMOSPHERE 2021; 274:129771. [PMID: 33549886 DOI: 10.1016/j.chemosphere.2021.129771] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Chlamydomonas reinhardtii has been frequently investigated for its resistance to metals; however, few studies have systematically compared the intracellular and extracellular processes involved in the detoxification of Cd and Pb by this microalga. We found that C. reinhardtii was more tolerant to Pb (concentration for 50% of the maximal effect; EC50: 29.48 ± 8.83 mg L-1) than to Cd (EC50: 12.48 ± 1.30 mg L-1) after 96 h of exposure. Extracellular polymeric substances (EPS), intracellular starch granules, lipid droplets, and glutathione were significantly increased under Cd and Pb treatments. Lead-containing particles were formed outside of the cells exposed to 30 mg L-1 of Pb, whereas no minerals were present when Cd was added. Various EPS functional groups, including -COOH, C-O-C (polysaccharides), and amide I and II (proteins), were involved in the interactions with Cd and Pb. The Pb removal rate (60.46-78.27%) by C. reinhardtii was higher than that of Cd (50.61-59.38%), and the microalgal cells with intact EPS bound more metals than those without EPS. Adsorption accounted for 79.62% of the total Cd accumulation in the low-Cd treatment, whereas absorption dominated the Pb accumulation at low Pb concentrations. The distributions of Cd and Pb in and out of the microalgal cells were reversed when the concentrations of the two metals increased. The detoxification strategies of C. reinhardtii for Cd and Pb were completely different, and these findings may assist in the phycoremediation of metal pollution in aquatic environments.
Collapse
Affiliation(s)
- Chonghua Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chao Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongxuan Fu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suhua Zhai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sadiq Naveed
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Khan AK, Kausar H, Jaferi SS, Drouet S, Hano C, Abbasi BH, Anjum S. An Insight into the Algal Evolution and Genomics. Biomolecules 2020; 10:E1524. [PMID: 33172219 PMCID: PMC7694994 DOI: 10.3390/biom10111524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/06/2023] Open
Abstract
With the increase in biotechnological, environmental, and nutraceutical importance of algae, about 100 whole genomic sequences of algae have been published, and this figure is expected to double in the coming years. The phenotypic and ecological diversity among algae hints at the range of functional capabilities encoded by algal genomes. In order to explore the biodiversity of algae and fully exploit their commercial potential, understanding their evolutionary, structural, functional, and developmental aspects at genomic level is a pre-requisite. So forth, the algal genomic analysis revealed us that algae evolved through endosymbiotic gene transfer, giving rise to around eight phyla. Amongst the diverse algal species, the unicellular green algae Chlamydomonas reinhardtii has attained the status of model organism as it is an ideal organism to elucidate the biological processes critical to plants and animals, as well as commercialized to produce range of bio-products. For this review, an overview of evolutionary process of algae through endosymbiosis in the light of genomics, as well as the phylogenomic, studies supporting the evolutionary process of algae was reviewed. Algal genomics not only helped us to understand the evolutionary history of algae but also may have an impact on our future by helping to create algae-based products and future biotechnological approaches.
Collapse
Affiliation(s)
- Amna Komal Khan
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (A.K.K.); (H.K.); (S.S.J.)
| | - Humera Kausar
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (A.K.K.); (H.K.); (S.S.J.)
| | - Syyada Samra Jaferi
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (A.K.K.); (H.K.); (S.S.J.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France; (S.D.); (C.H.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France; (S.D.); (C.H.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (A.K.K.); (H.K.); (S.S.J.)
| |
Collapse
|