1
|
Lv JJ, Liu YJ, Mo YH, Deng LY, Liu Y, Li HY, Zhang L, Yang WD. The tolerance mechanism of diarrhetic shellfish toxins mediated by the extracellular regulated protein kinase (ERK) pathway in the mussel Perna viridis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138006. [PMID: 40122010 DOI: 10.1016/j.jhazmat.2025.138006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Diarrheic shellfish toxins (DSTs) are a class of lipophilic algal toxins that accumulate excessively in bivalves following harmful algal blooms. Bivalves exhibit tolerance to DSTs, which make people ignore or underestimate the risk of DSTs, leading to the occurrence of seafood poisoning incidents. However, the tolerance mechanism remains unclear in bivalves. We investigated the role of extracellular-regulated protein kinase (ERK) in DSTs tolerance, and observed that the ERK inhibitor PD98059 exacerbated damage of DSTs to the digestive tubules. PD98059 induced the TUNEL fluorescence intensity, and caspase-3 activity inhibited by DSTs were restored to the control. PD98059 enhanced the fluorescence intensity of extracellular Ca-AM and increased the accumulation of esterified DSTs. Transcriptome analysis revealed that PD98059 affected the genes expression related to apoptosis, ABC transporters, and lipid metabolism. qPCR analysis demonstrated that PD98059 down-regulated the DSTs-induced iap and ABCC10 (p = 0.063), and up-regulated ABCB1-like1, ABCC1, ABCC1-like1, and ABCC9. Molecular docking suggested that ABCC10 exhibited high affinity for esterified okadaic acid. Overall, ERK plays a crucial role in DSTs tolerance by regulating the anti-apoptotic system and ABC transporters in bivalves. Our study is of great significance to understand the tolerance mechanism in bivalves and the safety risk caused by DSTs.
Collapse
Affiliation(s)
- Jin-Jin Lv
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yu-Jie Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Yan-Hang Mo
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Li-Yan Deng
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Yang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Gabe HB, Taruhn KA, Mello DF, Lebrun M, Paillard C, Corporeau C, Dafre AL, Trevisan R. Prolonged curcumin supplementation causes tissue-specific antioxidant responses in adult oysters: Potential implications for resilience against abiotic and biotic stressors in the aquaculture industry. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 280:107282. [PMID: 39955876 DOI: 10.1016/j.aquatox.2025.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Aquatic animals inhabiting marine coastal environments are highly susceptible to environmental fluctuations and pollution, exemplified by widespread mass mortalities induced by marine bacteria or viruses. Enhancing antioxidant defenses presents a promising strategy to mitigate such environmental stressors. We postulated that supplementation of oysters with natural compounds such as flavonoids, exemplified by curcumin (CUR), could effectively bolster their antioxidant protection. Adult Pacific oysters were supplemented with CUR (30 μM) in seawater for 2, 4, 8, and 16 days. CUR metabolites progressively accumulated in gills, mantle, and digestive glands. Notably, oyster antioxidant response was significantly augmented, as evidenced by elevated glutathione (GSH) levels, and enhanced activities of glutathione reductase (GR), thioredoxin reductase (TrxR), and glutathione S-transferase (GST) after 4, 8, and 16 days of CUR supplementation. This response was tissue-specific, with the most pronounced increase in gills, followed by mantle, whereas digestive gland exhibited minimal response. After being supplemented with CUR for 8 days, oysters were subjected to antioxidant-disrupting agents such as N-ethylmaleimide (NEM), 1‑chloro-2,4-dinitrobenzene (CDNB). Both chemicals reduced antioxidant protection in untreated animals. However, CUR supplementation prevented these redox-disrupting effects, suggesting the potential ability of CUR to counteract antioxidant stressors. The effects of 8 days of CUR supplementation were also tested against the lethal effects of the pathogens V. tapetis, V, alginolyticus, and V. anguillarum, but CUR failed to induce immunological protection. The antioxidant protection induced by CUR holds promise for application in aquaculture to bolster animal health and resilience against abiotic stressors. Further research is needed to investigate the long-term impact of CUR supplementation and its role against biotic stressors, such as bacterial and viral infections.
Collapse
Affiliation(s)
- Heloísa Bárbara Gabe
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; UMR6539 LEMAR, UBO/CNRS/IFREMER/IRD, F-29280 Plouzané, France
| | - Karine Amabile Taruhn
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | | | - Melody Lebrun
- UMR6539 LEMAR, UBO/CNRS/IFREMER/IRD, F-29280 Plouzané, France
| | | | | | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Rafael Trevisan
- UMR6539 LEMAR, UBO/CNRS/IFREMER/IRD, F-29280 Plouzané, France.
| |
Collapse
|
3
|
Yuan KK, Yu YY, Liu YJ, Yang XL, Mo YH, Shi W, Liu GX, Li HY, Yang WD. Microplastics-exposure experience aggravates the accumulation of diarrhetic shellfish toxins (DSTs) in thick-shell mussel Mytilus coruscus through impairing detoxification processes. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136782. [PMID: 39644847 DOI: 10.1016/j.jhazmat.2024.136782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Possessing sessile filter-feeding lifestyle, bivalves are more susceptible to contamination by benthic phycotoxins such as the diarrhetic shellfish toxins (DSTs). Due to the prevalence of microplastics (MPs) in aquatic environments, bivalve that experienced MP-exposure are potentially at higher risk from exposure to DSTs-producing microalgae, however, little is known about the impacts of past MP-exposure experience on the accumulation of DSTs. In this study, taking polystyrene (PS) MPs and DSTs-producing Prorocentrum lima as representatives, the impacts of MP-exposure on DSTs accumulation were evaluated in the thick-shell mussel Mytilus coruscus. Our results demonstrated that mussels with MP-exposure experience accumulated markedly higher levels of DSTs in their digestive glands, which may result from a significant impairment of detoxification. In addition, although might exert their effects through different mechanisms, both MP- and/or P. lima-exposure aggravated the level of oxidative stress and led to significant histological lesion of the digestive glands, with the highest stress and lesion observed in mussels that exposed to P. lima after a 21-day MP-exposure. Collectively, our results indicate the risk of DSTs-contamination of bivalves could be markedly aggravated by the ubiquitous presence of MPs, which may pose a severe threat to human consumers and warrants upmost attention.
Collapse
Affiliation(s)
- Kuan-Kuan Yuan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ying-Ying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiu-Lin Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guang-Xu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Yuan KK, Li HY, Yang WD. Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors. Mar Drugs 2024; 22:510. [PMID: 39590790 PMCID: PMC11595774 DOI: 10.3390/md22110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning (CP). Despite being caused by exposure to various toxins or toxin analogs, these clinical syndromes share numerous similarities. Humans are exposed to these toxins mainly through the consumption of fish and shellfish, which serve as the main biological vectors. However, the risk of human diseases linked to toxigenic HABs is on the rise, corresponding to a dramatic increase in the occurrence, frequency, and intensity of toxigenic HABs in coastal regions worldwide. Although a growing body of studies have focused on the toxicological assessment of HAB-related species and their toxins on aquatic organisms, the organization of this information is lacking. Consequently, a comprehensive review of the adverse effects of HAB-associated species and their toxins on those organisms could deepen our understanding of the mechanisms behind their toxic effects, which is crucial to minimizing the risks of toxigenic HABs to human and public health. To this end, this paper summarizes the effects of the five most common HAB toxins on fish, shellfish, and humans and discusses the possible mechanisms.
Collapse
Affiliation(s)
| | | | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (K.-K.Y.); (H.-Y.L.)
| |
Collapse
|
5
|
Wu H, Zhang Q, Dong C, Zheng G, Tan Z, Gu H. Coordination regulation of enhanced performance reveals the tolerance mechanism of Chlamys farreri to azaspiracid toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135247. [PMID: 39029196 DOI: 10.1016/j.jhazmat.2024.135247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Azaspiracids (AZAs) are lipid biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. However, the mechanisms underlying the tolerance of shellfish to high levels of such toxins remain poorly understood. This study investigated the combined effects of detoxification metabolism and stress-related responses in scallops Chlamys farreri exposed to AZA. Scallops accumulated a maximum of 361.81 μg AZA1 eq/kg and 41.6 % AZA residue remained after 21 days of exposure. A range of AZA2 metabolites, including AZA19, AZA11, and AZA23, and trace levels of AZA2-GST, were detected. Total hemocyte counts significantly increased and ROS levels remained consistently high until gradually decreasing. Immune system activation mediated mitochondrial dysfunction and severe energy deficiency. DEGs increased over time, with key genes CYP2J6 and GPX6 contributing to AZA metabolism. These transcriptome and metabolic results identify the regulation of energy metabolism pathways, including inhibition of the TCA cycle and activation of carbohydrates, amino acids, and lipids. AZA also induced autophagy through the MAPK-AMPK signaling pathways, and primary inhibited PI3K/AKT to decrease mTOR pathway expression. Our results provide additional insights into the resistance of C. farreri to AZA, characterized by re-establishing redox homeostasis toward a more oxidative state.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianru Zhang
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| |
Collapse
|
6
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
7
|
Saco A, Suárez H, Novoa B, Figueras A. A Genomic and Transcriptomic Analysis of the C-Type Lectin Gene Family Reveals Highly Expanded and Diversified Repertoires in Bivalves. Mar Drugs 2023; 21:md21040254. [PMID: 37103393 PMCID: PMC10140915 DOI: 10.3390/md21040254] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
C-type lectins belong to a widely conserved family of lectins characterized in Metazoa. They show important functional diversity and immune implications, mainly as pathogen recognition receptors. In this work, C-type lectin-like proteins (CTLs) of a set of metazoan species were analyzed, revealing an important expansion in bivalve mollusks, which contrasted with the reduced repertoires of other mollusks, such as cephalopods. Orthology relationships demonstrated that these expanded repertoires consisted of CTL subfamilies conserved within Mollusca or Bivalvia and of lineage-specific subfamilies with orthology only between closely related species. Transcriptomic analyses revealed the importance of the bivalve subfamilies in mucosal immunity, as they were mainly expressed in the digestive gland and gills and modulated with specific stimuli. CTL domain-containing proteins that had additional domains (CTLDcps) were also studied, revealing interesting gene families with different conservation degrees of the CTL domain across orthologs from different taxa. Unique bivalve CTLDcps with specific domain architectures were revealed, corresponding to uncharacterized bivalve proteins with putative immune function according to their transcriptomic modulation, which could constitute interesting targets for functional characterization.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | - Hugo Suárez
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | | |
Collapse
|
8
|
Yu X, Zhang C, Chen K, Liu Y, Deng Y, Liu W, Zhang D, Jiang G, Li X, Giri SS, Park SC, Chi C. Dietary T-2 toxin induces transcriptomic changes in hepatopancreas of Chinese mitten crab (Eriocheir sinensis) via nutrition metabolism and apoptosis-related pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114397. [PMID: 36527851 DOI: 10.1016/j.ecoenv.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Long-term feed route exposure to T-2 toxin was proved to elicit growth retarding effects and induction of oxidative stress and apoptosis in Chinese mitten crab (Eriocheir sinensis). However, no study with a holistic perspective has been conducted to date to further describe the in-depth toxicological mechanism of T-2 toxin in E.sinensis. In this study, an RNA-Sequencing (RNA-seq) was used in this study to investigate the effects of feed supplementation with 0 mg/kg and 4 mg/kg T-2 toxin on the hepatopancreas transcriptome of E.sinensis and establish a hepatopancreas transcriptome library of T-2 toxin chronically exposed crabs after five weeks, where 14 differentially expressed genes (DEGs) were screened out across antioxidant, apoptosis, autophagy, glucolipid metabolism and protein synthesis. The actual expression of all the DEGs (Caspase, ATG4, PERK, ACSL, CAT, BIRC2, HADHA, HADHB, ACOX, PFK, eEFe1, eIF4ɑ, RPL13Ae) was also analyzed by real-time quantitative PCR (RT-qPCR). It was demonstrated that long-term intake of large amounts of T-2 toxin could impair antioxidant enzyme activity, promote apoptosis and protective autophagy, disrupt lipid metabolism and inhibit protein synthesis in the hepatopancreas of E.sinensis. In conclusion, this study explored the toxicity mechanism of T-2 toxin on the hepatopancreas of E.sinensis at the mRNA level, which lays the foundation for further investigation of the molecular toxicity mechanism of T-2 toxin in aquatic crustaceans.
Collapse
Affiliation(s)
- Xiawei Yu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| | - Caiyan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Keke Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Yuan Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ying Deng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
9
|
Lv JJ, Yuan KK, Lu GX, Li HY, Kwok HF, Yang WD. Responses of ABCB and ABCC transporters to the toxic dinoflagellate Prorocentrum lima in the mussel Perna viridis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106368. [PMID: 36493563 DOI: 10.1016/j.aquatox.2022.106368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Bivalve mollusks can accumulate diarrheic shellfish poisoning (DSP) toxins through filter-feeding, but they exhibit some resistance to the toxins. Previous studies have suggested that the ABC transporters may have an important role in the resistance to DSP toxins, but comprehensive studies are lacking. In this study, we comprehensively analyzed the distribution of ABC transporters in the mussel Perna viridis, and observed responses of ABCB and ABCC transporters to the DSP toxins-producing dinoflagellate Prorocentrum lima. Total 39 members of ABC transporters were identified in P. viridis, including 3 full PvABCBs, 3 half PvABCBs, and 7 PvABCCs transporters. We found that PvABCBs and PvABCCs subfamilies were expressed in hemocytes, gills and digestive gland with some difference, especially in hemocytes. After exposure to P. lima, PvABCBs and PvABCCs displayed different expression changes in different tissues. The short-term (3 h) exposure to P. lima induced the transcription of PvABCB1_like1, PvABCB6, PvABCC1, PvABCC1_like and PvABCC1/3, and the longer-term (96 h) exposure increased the transcription of PvABCB1, PvABCB1_like, PvABCB10, PvABCC1 and PvABCC1_like1 in gills and PvABCC10 in digestive gland. These results suggest that different types of PvABCBs and PvABCCs in P. viridis may contribute to the detoxification of DSP toxins in different tissues at different time after exposure to DSP toxins. Our finding provides new evidence for further understanding the role of ABC transporters in the tolerance of mussel to DSP toxins.
Collapse
Affiliation(s)
- Jin-Jin Lv
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Kuan-Kuan Yuan
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Guan-Xiu Lu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Toxic Responses of Different Shellfish Species after Exposure to Prorocentrum lima, a DSP Toxins Producing Dinoflagellate. Toxins (Basel) 2022; 14:toxins14070461. [PMID: 35878199 PMCID: PMC9317551 DOI: 10.3390/toxins14070461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Prorocentrum lima is a global benthic dinoflagellate that produces diarrhetic shellfish poisoning (DSP) toxins, which can be ingested by filter-feeding bivalves, and eventually pose a great threat to human health through food chain. After being exposed to P. lima, different bivalves may accumulate various levels of DSP toxins and display different toxic responses. However, the underlying mechanism remains unclear. Here, we found that the content of okadaic acid-equivalents (OA-eq) varied in the digestive glands of the three bivalves including Crassostrea gigas, Mytilus coruscus and Tegillarca granosa after P. lima exposure. The degree of esterification of OA-eq in the three bivalves were opposite to the accumulation of OA-eq. The digestive gland tissues of the three bivalve species were damaged to different degrees. The transcriptional induction of Nrf2 targeted genes such as ABCB1 and GPx indicates the functionality of Nrf2 pathway against DSP toxins in bivalves. The oyster could protect against DSP toxins mainly through ABC transporters and esterification, while the mussel and clam reduce the damage induced by DSP toxins mainly by regulating the expression of antioxidant genes. Our findings may provide some explanations for the difference in toxic response to DSP toxins in different shellfish.
Collapse
|
11
|
Zhang L, Liu Y, Chen H, Cai W. Transcriptome analysis reveals sex-specific alterations in gonads of green mussel exposed to organophosphorus insecticide triazophos. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109333. [PMID: 35351620 DOI: 10.1016/j.cbpc.2022.109333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Triazophos (TP) is a widespread pollutant in aquatic environments. A sex-specific metabolic response in green-lipped mussel Perna viridis to TP exposure was observed in our previous study, and this led us to investigate the mechanisms associated with its toxicity. P. viridis were subjected to chronic exposure (15 days) to TP at 35 μg/L to compare the sex-biased transcriptomic profiles in the gonads of male and female mussels. We identified 632 differentially expressed genes (DEGs) (348 up-regulated and 284 down-regulated) in TP-exposed males, and only 61 DEGs (9 up-regulated and 52 down-regulated) in TP-exposed females. Many DEGs were found to be involved in the nervous, reproductive endocrine, oxidative stress, and immune systems of P. viridis. Additionally, enzymatic activity analysis indicated TP induced neurotoxic effects and oxidative damage to the mussels. Our results demonstrate that the stress response and molecular mechanisms of TP toxicology are different between female and male mussels.
Collapse
Affiliation(s)
- Linbao Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Yong Liu
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Haigang Chen
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wengui Cai
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
12
|
Lv JJ, Yuan KK, Lu MY, He ZB, Li HY, Yang WD. Responses of JNK signaling pathway to the toxic dinoflagellate Prorocentrum lima in the mussel Perna viridis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112905. [PMID: 34673413 DOI: 10.1016/j.ecoenv.2021.112905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Diarrheic shellfish poisoning (DSP) toxins are widely distributed over the world, causing diarrhea, vomiting, and even tumor in human. However, bivalves, the main carrier of the DSP toxins, have some tolerant mechanisms to DSP toxins, though it remains unclear. In this study, we scrutinized the role of Jun N-terminal kinases (JNK) in tolerance of DSP toxins and the relationship between JNK, apoptosis and nuclear factor E2-related factor/antioxidant response element (Nrf2/ARE) pathways. We found that the phosphorylated level of JNK protein was significantly increased both in hemocytes (6 h) and gills (3 h) of the mussel Perna viridis after short-term exposure to DSP toxins-producing dinoflagellate Prorocentrum lima. Exposure of P. lima induced oxidative stress in mussels. Hemocytes and gills displayed different sensitivities to the cytotoxicity of DSP toxins. Exposure of P. lima activated caspase-3 and induced apoptosis in gills but did not induce caspase-3 and apoptosis in hemocytes. The short-term exposure of P. lima could activate Nrf2/ARE signaling pathway in hemocytes (6 h), while longer-term exposure could induce glutathione reductase (GR) expression in hemocytes (96 h) and glutathione-S-transferases (GST) in gills (96 h). Based on the phylogenetic tree of Nrf2, Nrf2 in P. viridis was closely related to that in other mussels, especially Mytilus coruscus, but far from that in Mus musculus. The most likely phosphorylated site of Nrf2 in the mussels P. viridis is threonine 504 for JNK, which is different from that in M. musculus. Taken all together, the tolerant mechanism of P. viridis to DSP toxins might be involved in JNK and Nrf2/ARE signaling pathways, and JNK play a key role in the mechanism. Our findings provide a new clue to further understand tolerant mechanisms of bivalves to DSP toxins.
Collapse
Affiliation(s)
- Jin-Jin Lv
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Kuan-Kuan Yuan
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Mi-Yu Lu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Zheng-Bing He
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Transcriptomic Profile of the Cockle Cerastoderma edule Exposed to Seasonal Diarrhetic Shellfish Toxin Contamination. Toxins (Basel) 2021; 13:toxins13110784. [PMID: 34822568 PMCID: PMC8625317 DOI: 10.3390/toxins13110784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/04/2023] Open
Abstract
Bivalves constitute an important source of proteins for human consumption, but some accumulate biotoxins such as diarrhetic shellfish toxins (DSTs), constituting a risk to human health. The cockle Cerastoderma edule is one of the most important species harvested in the Portuguese coast but also one of the most affected species due to recurrent DSTs exposure. However, little is known regarding the effects of the toxins produced by blooming dinoflagellates on C. edule. Herein, we explore the Differentially Expressed Genes (DEGs) of two tissues (gills and digestive gland) from wild cockles sampled in Portugal, through their whole transcriptomic response in two different seasons (exposed and not exposed to DSTs). The de novo transcriptome assembly returned 684,723 contigs, N50 of 1049, and 98.53% completeness. Altogether, 1098 DEGs were identified, of which 353 DEGs were exclusive for the digestive gland, 536 unique for the gills and 209 DEGs were common. Among DEGs were identified known DSTs-biomarkers including glutathione peroxidase, glutathione S-transferase, superoxide dismutase, cytochrome P450, ABC transporters, actin and tubulin-related proteins, Heat shock proteins and complement C1Q-like proteins. This study provides the first transcriptomic profile of C. edule, giving new insights about its molecular responses under different environmental conditions of DSTs exposure.
Collapse
|
14
|
Huang JH, Jiao YH, Li L, Li DW, Li HY, Yang WD. Small RNA analysis of Perna viridis after exposure to Prorocentrum lima, a DSP toxins-producing dinoflagellate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105950. [PMID: 34474269 DOI: 10.1016/j.aquatox.2021.105950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Diarrheic shellfish poisoning toxins (DSP toxins) are a set of the most important phycotoxins produced by some dinoflagellates. Studies have shown that DSP toxins have various toxicities such as genotoxicity, cytotoxicity, and immunotoxicity to bivalve mollusks. However, these toxicities appear decreasing with exposure time and concentration of DSP toxins. The underlying mechanism involved remains unclear. In this study, small RNA sequencing was performed in the digestive gland of the mussel Perna viridis after exposure to DSP toxins-producing dinoflagellate Prorocentrum lima for different time periods. The potential roles of miRNAs in response and detoxification to DSP toxins in the mussel were analyzed. Small RNA sequencing of 12 samples from 72 individuals was conducted by BGISEQ-500. A total of 123 mature miRNAs were identified, including 90 conserved miRNAs and 33 potential novel miRNAs. After exposure to P. lima, multiple important miRNAs displayed some alterations. Further miRNA target prediction revealed some important genes involved in cytoskeleton, apoptosis, complement system and immune stress. qPCR demonstrated that miR-71_5, miR-750_1 and novel_mir4 were significantly up-regulated at 6 h after exposure to P. lima, while miR-100_2 was significantly down-regulated after 96 h of exposure. Accordingly, putative target genes of these differentially expressed miRNAs experienced some changes. After 6 h of DSP toxins exposure, NHLRC2 and C1q-like were significantly down-regulated. After 96 h of DSP toxins exposure, NHLRC2 was significantly up-regulated. It is reasonable to speculate that the mussel P. viridis might respond to DSP toxins through miR-750_1, novel_mir4 and miR-71_5 regulating the expression of relevant target genes involved in apoptosis, cytoskeleton, and immune response, etc. This study might provide new clues to uncover the toxic response of bivalve to DSP toxins and lay a foundation for revealing the roles of miRNAs in the environmental adaptation in shellfish.
Collapse
Affiliation(s)
- Jia-Hui Huang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Yu-Hu Jiao
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Li Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
15
|
Expression Analyses of Genes Related to Multixenobiotic Resistance in Mytilus galloprovincialis after Exposure to Okadaic Acid-Producing Dinophysis acuminata. Toxins (Basel) 2021; 13:toxins13090614. [PMID: 34564618 PMCID: PMC8471661 DOI: 10.3390/toxins13090614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
The mussel Mytilus galloprovincialis is one of the most important aquaculture species in Europe. Its main production problem is the accumulation of toxins during coastal blooms, which prevents mussel commercialization. P-glycoprotein (ABCB1/MDR1/P-gp) is part of the multixenobiotic resistance system in aquatic organisms, and okadaic acid, the main DSP toxin, is probably a substrate of the P-gp-mediated efflux. In this study, the presence and possible role of P-gp in the okadaic acid detoxification process was studied in M. galloprovincialis. We identified, cloned, and characterized two complete cDNAs of mdr1 and mdr2 genes. MgMDR1 and MgMDR2 predicted proteins had the structure organization of ABCB full transporters, and were identified as P-gp/MDR/ABCB proteins. Furthermore, the expression of mdr genes was monitored in gills, digestive gland, and mantle during a cycle of accumulation-elimination of okadaic acid. Mdr1 significantly increased its expression in the digestive gland and gills, supporting the idea of an important role of the MDR1 protein in okadaic acid efflux out of cells in these tissues. The expression of M. galloprovincialismrp2, a multidrug associated protein (MRP/ABCC), was also monitored. As in the case of mdr1, there was a significant induction in the expression of mrp2 in the digestive gland, as the content of okadaic acid increased. Thus, P-gp and MRP might constitute a functional defense network against xenobiotics, and might be involved in the resistance mechanisms to DSP toxins.
Collapse
|
16
|
Effect of Different Species of Prorocentrum Genus on the Japanese Oyster Crassostrea gigas Proteomic Profile. Toxins (Basel) 2021; 13:toxins13070504. [PMID: 34357976 PMCID: PMC8310146 DOI: 10.3390/toxins13070504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
This paper assesses the effects of exposure to toxic concentrations (1200 to 6000 cells/mL) of the dinoflagellates Prorocentrum lima, Prorocentrum minimum, and Prorocentrum rhathymum and several concentrations of aqueous and organic extracts obtained from the same species (0 to 20 parts per thousand) on the Crassostrea gigas (5-7 mm) proteomic profile. Through comparative proteomic map analyses, several protein spots were detected with different expression levels, of which eight were selected to be identified by liquid chromatography-mass spectrometry (LC-MS/MS) analyses. The proteomic response suggests that, after 72 h of exposure to whole cells, the biological functions of C. gigas affected proteins in the immune system, stress response, contractile systems and cytoskeletal activities. The exposure to organic and aqueous extracts mainly showed effects on protein expressions in muscle contraction and cytoskeleton morphology. These results enrich the knowledge on early bivalve developmental stages. Therefore, they may be considered a solid base for new bioassays and/or generation of specific analytical tools that allow for some of the main effects of algal proliferation phenomena on bivalve mollusk development to be monitored, characterized and elucidated.
Collapse
|
17
|
Gong Y, Zhang K, Geng N, Wu M, Yi X, Liu R, Challis JK, Codling G, Xu EG, Giesy JP. Molecular mechanisms of zooplanktonic toxicity in the okadaic acid-producing dinoflagellate Prorocentrum lima. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116942. [PMID: 33765503 DOI: 10.1016/j.envpol.2021.116942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Prorocentrum lima is a dinoflagellate that forms hazardous blooms and produces okadaic acid (OA), leading to adverse environmental consequences associated with the declines of zooplankton populations. However, little is known about the toxic effects and molecular mechanisms of P. lima or OA on zooplankton. Here, their toxic effects were investigated using the brine shrimp Artemia salina. Acute exposure of A. salina to P. lima resulted in lethality at concentrations 100-fold lower than densities observed during blooms. The first comprehensive results from global transcriptomic and metabolomic analyses in A. salina showed up-regulated mRNA expression of antioxidant enzymes and reduced non-enzyme antioxidants, indicating general detoxification responses to oxidative stress after exposure to P. lima. The significantly up-regulated mRNA expression of proteasome, spliceosome, and ribosome, as well as the increased fatty acid oxidation and oxidative phosphorylation suggested the proteolysis of damaged proteins and induction of energy expenditure. Exposure to OA increased catabolism of chitin, which may further disrupt the molting and reproduction activities of A. salina. Our data shed new insights on the molecular responses and toxicity mechanisms of A. salina to P. lima or OA. The simple zooplankton model integrated with omic methods provides a sensitive assessment approach for studying hazardous algae.
Collapse
Affiliation(s)
- Yufeng Gong
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Keke Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Minghuo Wu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China.
| | - Renyan Liu
- National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | | | - Garry Codling
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; RECETOX Centre, Masaryk University, Kamenice, Brno, Czech Republic
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Campos A, Freitas M, de Almeida AM, Martins JC, Domínguez-Pérez D, Osório H, Vasconcelos V, Reis Costa P. OMICs Approaches in Diarrhetic Shellfish Toxins Research. Toxins (Basel) 2020; 12:E493. [PMID: 32752012 PMCID: PMC7472309 DOI: 10.3390/toxins12080493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Diarrhetic shellfish toxins (DSTs) are among the most prevalent marine toxins in Europe's and in other temperate coastal regions. These toxins are produced by several dinoflagellate species; however, the contamination of the marine trophic chain is often attributed to species of the genus Dinophysis. This group of toxins, constituted by okadaic acid (OA) and analogous molecules (dinophysistoxins, DTXs), are highly harmful to humans, causing severe poisoning symptoms caused by the ingestion of contaminated seafood. Knowledge on the mode of action and toxicology of OA and the chemical characterization and accumulation of DSTs in seafood species (bivalves, gastropods and crustaceans) has significantly contributed to understand the impacts of these toxins in humans. Considerable information is however missing, particularly at the molecular and metabolic levels involving toxin uptake, distribution, compartmentalization and biotransformation and the interaction of DSTs with aquatic organisms. Recent contributions to the knowledge of DSTs arise from transcriptomics and proteomics research. Indeed, OMICs constitute a research field dedicated to the systematic analysis on the organisms' metabolisms. The methodologies used in OMICs are also highly effective to identify critical metabolic pathways affecting the physiology of the organisms. In this review, we analyze the main contributions provided so far by OMICs to DSTs research and discuss the prospects of OMICs with regard to the DSTs toxicology and the significance of these toxins to public health, food safety and aquaculture.
Collapse
Affiliation(s)
- Alexandre Campos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Marisa Freitas
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
- ESS-P.Porto, School of Health, Polytechnic Institute of Porto. Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - André M. de Almeida
- LEAF-Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| | - José Carlos Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Dany Domínguez-Pérez
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Hugo Osório
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro Reis Costa
- IPMA—Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal;
| |
Collapse
|