1
|
Yuan Y, Feng Z, Yan S, Zhang J, Song H, Zou Y, Jin D. The Effect of the Application of Chemical Fertilizer and Arbuscular MyCorrhizal Fungi on Maize Yield and Soil Microbiota in Saline Agricultural Soil. J Fungi (Basel) 2025; 11:319. [PMID: 40278139 PMCID: PMC12028491 DOI: 10.3390/jof11040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The overuse of chemical fertilizers not only leads to resource wastage but also causes problems such as environmental pollution and soil degradation. In particular, crop growth in saline-sodic soils is severely restricted due to high salinity and alkalinity, further exacerbating challenges in agricultural production. The aim of this study was to investigate different fertilization strategies that combine chemical fertilizer reduction with arbuscular mycorrhizal fungi (AMF) for improving saline-sodic soils and to assess the effects of these protocols on crop yield, soil properties, and microbial communities. Field experiments across two sites (BeiWuLao and XuJiaZhen) demonstrated that integrating AMF with CF reduction (AHCF treatment) significantly enhanced maize yield by 23.5% at BeiWuLao (from 11,475 to 14,175 kg/ha) and 81.2% at XuJiaZhen (from 7245 to 13,125 kg/ha) compared to conventional fertilization (CK) (p < 0.01). Soil nutrient analysis revealed substantial improvements: available potassium (AK) increased by 77.7% (61.35 vs. 39.33 mg/kg), available phosphorus (AP) by 33.9% (20.50 vs. 15.50 mg/kg), ammonium nitrogen (AN) by 57.3% (64.17 vs. 40.83 mg/kg), and soil organic matter (SOM) by 96.4% (46.98 vs. 23.91 mg/kg) under AHCF treatment (p < 0.05). Although pH and electrical conductivity (ECe) remained unaffected, AMF inoculation shifted microbial composition, elevating salinity-tolerant taxa such as Actinobacteria (+24.7%) and Anabaena. Beta diversity analysis (PCoA) confirmed distinct microbial community structures between treatments, with ECe and AN identified as primary drivers of bacterial (RDA variance: 74.08%) and fungal (RDA variance: 54.63%) communities, respectively. Overall, the combination of chemical fertilizer reduction and AMF effectively improved soil fertility, microbial community structure, and crop yield. These findings have important implications for improving saline soils and promoting environmental sustainability.
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
| | - Zhengjun Feng
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
- Engineering Research Center of Resource Efficiency Enhancing and Carbon Emission Reduction in Yellow River Basin, Ministry of Education of the People’s Republic of China, Taiyuan 030006, China
- Shanxi Yellow River Laboratory, Taiyuan 030006, China
| | - Shengxin Yan
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
| | - Junjie Zhang
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
| | - Huiping Song
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
- Engineering Research Center of Resource Efficiency Enhancing and Carbon Emission Reduction in Yellow River Basin, Ministry of Education of the People’s Republic of China, Taiyuan 030006, China
- Shanxi Yellow River Laboratory, Taiyuan 030006, China
| | - Yan Zou
- Shanxi Qinghuan Nengchuang Environmental Protection Technology Co., Ltd., Taiyuan 030006, China; (Y.Z.); (D.J.)
| | - Dapeng Jin
- Shanxi Qinghuan Nengchuang Environmental Protection Technology Co., Ltd., Taiyuan 030006, China; (Y.Z.); (D.J.)
| |
Collapse
|
2
|
Chen Y, Yang W, Liu H, Mao W, Zhang J, Wang B, Yang L, Wang S, Zhou H, Zeng P, Wu P. Phosphorus-loaded magnetic biochar for remediation of cadmium contaminated paddy soil: Efficacy and identification of limiting factors. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138162. [PMID: 40184969 DOI: 10.1016/j.jhazmat.2025.138162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Alleviating cadmium (Cd) risk in paddy soils is a global research hotspot. Although biochar reduces Cd mobility, a holistic perspective on the effects of biochar on Cd fraction distribution in rice rhizosphere and its immobilization mechanisms is lacking. Here, we developed a pathway model that links soil physicochemical properties, IP formation, enzyme activity, microbial biomass, porewater nutrients, and soil Cd fractions to fill knowledge gaps. Results revealed that phosphorus-loaded magnetic biochar (PMLB) application increased soil pH, available phosphorus (AP), total phosphorus (TP), microbial biomass, and TP and Fe contents in porewater while inhibiting soil enzyme activities. Compared with the control, 0.2 %-1 % w/w PMLB treatment reduced soil acetic acid-extractable Cd (Aci-Cd) content during the tillering, filling, and maturity periods by 23.71-32.92 %, 25.45-37.33 %, and 7.39-18.40 %, respectively. Cd content in brown rice was reduced by 44.02-47.86 %. Soil pH, AP and urease activity were the primary drivers of soil Aci-Cd reduction. Soil microbial biomass contributed most to reducing Cd content in rice tissues (total path coefficient: -0.48), followed by enzyme activity and IP. Additionally, PMLB promoted IP formation and altered the immobilization methods of Cd by IP, from coprecipitation with iron (hydr)oxides and phosphate to ternary complex formation with phosphate as a bridge to band Cd and iron (hydr)oxides.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Hongyan Liu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Wenjian Mao
- Guizhou Environment and Engineering Appraisal Center, Guiyang 550002, China
| | - Jian Zhang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Bing Wang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Bao X, Lu H, Zhao J, Yang T, Wu L, Zou J, Chen Q, Zhang B. Screening and identification of two novel phosphate-solubilizing Pyrenochaetopsis tabarestanensis strains and their role in enhancing phosphorus uptake in rice. Front Microbiol 2025; 15:1494859. [PMID: 39850137 PMCID: PMC11754195 DOI: 10.3389/fmicb.2024.1494859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved. An initial comparative sequence analysis of the hypervariable regions of the ITS rDNA and morphological analysis identified two strains belonging to the genus Pyrenochaetopsis, designated Pyrenochaetopsis tabarestanensis WFY-1 (PtWFY-1) and WFY-2 (PtWFY-2). Both strains demonstrated the ability to solubilize tricalcium phosphate, magnesium phosphate, phosphate rock powder, and calcium phytate phosphorus in vitro through acidification via the exudation of oxoglutaric acid, acetic acid, citric acid, and pyruvic acid. The amounts of oxoglutaric acid, acetic acid, citric acid, and pyruvic acid secreted were 1,900.03, 1,478.47, 579.11, and 685.90 mg L-1, respectively, for the PtWFY-1 strain and 2,441.67, 1,519.18, 867.65, and 888.30 mg L-1, respectively, for the PtWFY-2 strain relative to the control (0.00 mg L-1). These organic acids acidify the rhizosphere, increasing the availability of phosphorus for plant uptake. Inoculation with PtWFY-1 increased available soil P by 5.8% after 30 days, increasing the plant P concentration by 69.8% and the dry weight of the rice seedlings by 24.5%. Similarly, the PtWFY-2 strain increased these parameters by 7.7%, 60.3%, and 14.5%, respectively. PtWFY-1 showed slightly stronger effects on P availability and plant growth compared to PtWFY-2. The secretion of phytohormones was responsible for the growth promotion in rice by the PtWFY-1 and PtWFY-2 strains, along with P absorption The principal phytohormone in the PtWFY-1 and PtWFY-2 broths was L-tryptophan, which is a precursor substance for IAA synthesis, accounting for 84.68% and 83.46%, respectively. Assessment of the antifungal activities of the PtWFY-1 and PtWFY-2 strains against Magnaporthe oryzae demonstrated that rice grew healthier, indirectly promoting rice phosphorus absorption. These findings highlight the potential of using Pyrenochaetopsis strains as biofertilizers to sustainably improve phosphorus use efficiency in rice agriculture.
Collapse
Affiliation(s)
- Xiaozhe Bao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Haifei Lu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| | - Jinyao Zhao
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Taotao Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Longmei Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jixiang Zou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qingchun Chen
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Bin Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
4
|
Lazar A, Griffiths RI, Goodall T, Norton LR, Mushinski RM, Bending GD. Regional scale diversity and distribution of soil inhabiting Tetracladium. ENVIRONMENTAL MICROBIOME 2024; 19:111. [PMID: 39696703 DOI: 10.1186/s40793-024-00646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/17/2024] [Indexed: 12/20/2024]
Abstract
The genus Tetracladium has historically been regarded as an aquatic hyphomycete. However, sequencing of terrestrial ecosystems has shown that Tetracladium species might also be terrestrial soil and plant-inhabiting fungi. The diversity of Tetracladium species, their distribution across ecosystems, and the factors that shape community composition remain largely unknown. Using internal transcribed spacer (ITS) amplicon sequencing, we investigated the spatial distribution of Tetracladium in 970 soil samples representing the major ecosystems found across the British landscape. Species of the genus were found in 57% of the samples and across all vegetation types. The Tetracladium sequences we recovered included species common in aquatic ecosystems. However, we found five additional clades that clustered with environmental sequences previously found in terrestrial environments. The community composition of the Tetracladium OTUs was mainly related to vegetation type and soil pH. Strikingly, both taxon richness and overall abundance were highest in arable soils and showed positive relationships with soil pH. T. maxilliforme and a taxon of environmental sequences, Tetracladium group 1, was the biggest group, had the most relative abundance across ecosystems and was found in all vegetation types. Overall, this study provides insights into the community composition patterns of Tetracladium in terrestrial ecosystems and highlights the importance of vegetation characteristics in shaping Tetracladium communities.
Collapse
Affiliation(s)
- Anna Lazar
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Robert I Griffiths
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Tim Goodall
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Lisa R Norton
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Ryan M Mushinski
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Su N, Wang K, Zhang Z, Yao L, Chen Z, Han H. Urease-producing bacteria combined with pig manure biochar immobilize Cd and inhibit the absorption of Cd in lettuce (Lactuca sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45537-45552. [PMID: 38967850 DOI: 10.1007/s11356-024-34241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The synergistic remediation of heavy metal-contaminated soil by functional strains and biochar has been widely studied. However, the mechanisms by which urease-producing bacteria combine with pig manure biochar (PMB) to immobilize Cd and inhibit Cd absorption in vegetables are still unclear. In our study, the effects and mechanisms of PMB combined with the urease-producing bacterium TJ6 (TJ6 + PMB) on Cd adsorption were explored. The effects of TJ6 + PMB on the Cd content and pH of the leachate were also studied through a 56-day soil leaching experiment. Moreover, the effects of the complexes on Cd absorption and microbial mechanisms in lettuce were explored through pot experiments. The results showed that PMB provided strain TJ6 with a greater ability to adsorb Cd, inducing the generation of CdS and CdCO3, and thereby reducing the Cd content (71.1%) and increasing the pH and urease activity in the culture medium. TJ6 + PMB improved lettuce dry weight and reduced Cd absorption. These positive effects were likely due to (1) TJ6 + PMB increased the organic matter and NH4+ contents, (2) TJ6 + PMB transformed available Cd into residual Cd and decreased the Cd content in the leachate, and (3) TJ6 + PMB altered the structure of the rhizosphere bacterial and fungal communities in lettuce, increasing the relative abundances of Stachybotrys, Agrocybe, Gaiellales, and Gemmatimonas. These genera can promote plant growth, decompose organic matter, and release phosphorus. Interestingly, the fungal communities were more sensitive to the addition of TJ6 and PMB, which play important roles in the decomposition of organic matter and immobilization of Cd. In conclusion, this study revealed the mechanism by which urease-producing bacteria combined with pig manure biochar immobilize Cd and provided a theoretical basis for safe pig manure return to Cd-polluted farmland. This study also provides technical approaches and bacterial resources for the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Nannan Su
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Ke Wang
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Zhengtian Zhang
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Zhaojin Chen
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Hui Han
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
| |
Collapse
|
6
|
Qiu L, Sha A, Li N, Ran Y, Xiang P, Zhou L, Zhang T, Wu Q, Zou L, Chen Z, Li Q, Zhao C. The characteristics of fungal responses to uranium mining activities and analysis of their tolerance to uranium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116362. [PMID: 38657459 DOI: 10.1016/j.ecoenv.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The influence of uranium (U) mining on the fungal diversity (FD) and communities (FC) structure was investigated in this work. Our results revealed that soil FC richness and FD indicators obviously decreased due to U, such as Chao1, observed OTUs and Shannon index (P<0.05). Moreover, the abundances of Mortierella, Gibberella, and Tetracladium were notably reduced in soil samples owing to U mining activities (P<0.05). In contrast, the abundances of Cadophora, Pseudogymnoascus, Mucor, and Sporormiella increased in all soil samples after U mining (P<0.05). Furthermore, U mining not only dramatically influenced the Plant_Pathogen guild and Saprotroph and Pathotroph modes (P<0.05), but also induced the differentiation of soil FC and the enrichment of the Animal_Pathogen-Soil_Saprotroph and Endophyte guilds and Symbiotroph and Pathotroph Saprotroph trophic modes. In addition, various fungal populations and guilds were enriched to deal with the external stresses caused by U mining in different U mining areas and soil depths (P<0.05). Finally, nine U-tolerant fungi were isolated and identified with a minimum inhibitory concentration range of 400-600 mg/L, and their adsorption efficiency for U ranged from 11.6% to 37.9%. This study provides insights into the impact of U mining on soil fungal stability and the response of fungi to U mining activities, as well as aids in the screening of fungal strains that can be used to promote remediation of U mining sites on plateaus.
Collapse
Affiliation(s)
- Lu Qiu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanqiong Ran
- Sichuan Ecological and Environmental Monitoring Center, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhaoqiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Zeng T, Sha H, Xie Q, Lu Y, Nong H, Wang L, Tang L. Comprehensive assessment of the microbial community structure in a typical lead-zinc mine soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33377-9. [PMID: 38648006 DOI: 10.1007/s11356-024-33377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Understanding the microbial community structure in soil contaminated with heavy metals (HMs) is a precondition to conduct bioremediation in mine soil. Samples were collected from a typical lead-zinc (Pb-Zn) mine to assess the microbial community structure of the HMs concentrated in the soil. The goal was to analyze the bacterial and fungal community structures and their interactions using the 16S rRNA genes and internal transcribed spacer high-throughput sequencing. Analyses at different sampling sites showed that contamination with HMs significantly reduced the bacterial richness and diversity but increased that of the fungi. The predominant bacteria genera of Acidobacteriales, Gaiellales, Anaerolineaceae, Sulfurifustis, and Gemmatimonadaceae, and predominant fungal genera of Sordariomycetes, Talaromyces, and Mortierella were assumed as HM resistant genera in Pb-Zn mining area. The pH effect on the bacterial and fungal communities was opposite to those of Cd, Pb, and Zn. This study offers comprehensive outlooks for bacterial and fungal community structures upon multiple HM stresses in the soil around a typical Pb-Zn mine area.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Haichao Sha
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Haidu Nong
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Liangqin Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
8
|
Chen Z, Ma J, Ma J, Ye J, Yu Q, Zou P, Sun W, Lin H, Wang F, Zhao X, Wang Q. Long-term biogas slurry application increases microbial necromass but not plant lignin contribution to soil organic carbon in paddy soils as regulated by fungal community. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:254-264. [PMID: 38219463 DOI: 10.1016/j.wasman.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Biogas slurry (BS) is widely considered as a source of organic matter and nutrients for improving soil organic carbon (SOC) sequestration and crop production in agroecosystems. Microbial necromass C (MNC) is considered one of the major precursors of SOC sequestration, which is regulated by soil microbial anabolism and catabolism. However, the microbial mechanisms through which BS application increases SOC accumulation in paddy soils have not yet been elucidated. A 12-year field experiment with four treatments (CK, no fertilizers; CF, chemical fertilizer application; BS1 and BS2, biogas slurry application at two nitrogen rates from BS) was conducted in rice paddy fields. The results showed that long-term BS application had no effect on lignin phenols proportion in SOC relative to CF. In contrast, BS application elevated the MNC contribution to SOC by 15.5-20.5 % compared with the CF treatment. The proportion of fungal necromass C (FNC) to SOC increased by 16.0 % under BS1 and by 25.8 % under BS2 compared with the CF treatment, while no significant difference in bacterial necromass C (BNC) contribution to SOC was observed between the BS and CF treatments. The MNC was more closely correlated with fungal community structures than with bacterial community structures. We further found that fungal genera, Mortierella and Ciliophora, mainly regulated the MNC, FNC and BNC accumulation. Collectively, our results highlighted that fungi play a vital role in SOC storage in paddy soils by regulating MNC formation and accumulation under long-term BS application.
Collapse
Affiliation(s)
- Zhaoming Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinchuan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiaogang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ping Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanchun Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinlin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
9
|
Selvarajan R, Sibanda T, Ullah H, Abia ALK. Beach sand mycobiome: The silent threat of pathogenic fungi and toxic metal contamination for beachgoers. MARINE POLLUTION BULLETIN 2024; 198:115895. [PMID: 38101061 DOI: 10.1016/j.marpolbul.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Emphasis is always placed on bacterial but not fungal pathogens in marine environments. We analysed the fungal diversity, functional predictions, and toxic metals and metalloids contamination in beach sand from different South African locations. Results revealed a diverse fungal community, with Ascomycota, Rozellomycota, and Basidiomycota being the dominant phyla. Functional predictions highlighted fungal metabolic pathways related to of carbohydrates, amino acids, and lipids, in different beach samples. Elevated concentrations of toxic metals and metalloids were detected in Central and Harbour beach sands, likely due to anthropogenic activities. Correlations among different elements were observed, suggesting complex interactions in the coastal environment. Fungal pathogens like Cladosporium, Fusarium, Aspergillus, and Candida in beach sands raise potential public health risk concerns. Therefore, monitoring fungal diversity (including pathogens) alongside bacterial contamination in beach environments is imperative. The results contribute to understanding fungal community dynamics, functional potential, toxic metal and metalloid contamination, and potential risks associated with beach sand ecosystems.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Institute of Deep Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, South Africa.
| | - Timothy Sibanda
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Habib Ullah
- Institute of Deep Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Environmental Research Foundation, Westville 3630, South Africa.
| |
Collapse
|
10
|
Shi Z, Yang Y, Fan Y, He Y, Li T. Dynamic Responses of Rhizosphere Microorganisms to Biogas Slurry Combined with Chemical Fertilizer Application during the Whole Life Cycle of Rice Growth. Microorganisms 2023; 11:1755. [PMID: 37512927 PMCID: PMC10386682 DOI: 10.3390/microorganisms11071755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Biogas slurry combined with chemical fertilizer (BCF) is widely used as a fertilizer in paddy fields and rhizosphere microorganisms are key players in plant growth and reproduction. However, the dynamic responses of rhizosphere microorganisms of field-grown rice to BCF application still remain largely unknown. In this study, a field experiment was conducted in two proximate paddy fields in Chongming Island to study the impacts of BCF on the changes in rhizosphere microorganisms during the whole rice growth, including seedling, tillering, booting, and grain-filling stages, with solely chemical fertilizer (CF) treatment as control. The results showed BCF could increase the N-, P-, and C- levels in paddy water as well as the rhizosphere microbial abundance and diversity compared with control. In particular, the phosphate-solubilizing- and cellulose-decomposing-bacteria (e.g., Bacillus) and fungi (e.g., Mortierella) were more abundant in the rhizosphere of BCF than those of CF. Moreover, these microbes increased markedly at the booting and grain-filling stages in BCF, which could promote rice to obtain available nutrients (P and C). It was noted that denitrifying-like bacteria (e.g., Steroidobacteraceae) decreased and dissimilatory nitrate reduction to ammonia-related bacteria (e.g., Geobacter, Anaeromyxobacter, and Ignavibacterium) increased at the booting and filling stages, which could promote N-availability. TP in paddy water of BCF was most correlated to the bacteria, while COD was the most critical regulator for the fungi. Furthermore, correlation network analysis showed nutrient-cycling-related microorganisms were more closely interconnected in BCF than those in CF. These findings showed the application of biogas slurry plus chemical fertilizer could regulate rhizosphere microorganisms towards a beneficial fertilizer use for rice growth.
Collapse
Affiliation(s)
- Zhenbao Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanmei Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Yehong Fan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Yan He
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Kong F, Li Q, Yang Z, Chen Y. Does the application of biogas slurry reduce soil N 2O emissions and increase crop yield?-A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118339. [PMID: 37315456 DOI: 10.1016/j.jenvman.2023.118339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
The use of organic fertilizer for agricultural production can reduce the use of chemical fertilizer (CF), reduce greenhouse gas emissions, and maintain crop production. However, biogas slurry (BS), a liquid with a high moisture content and a low C/N ratio, differs from commercial organic fertilizer and manure in terms of its impact on the soil N cycle. Replacing CF with BS needs to be reconsidered regarding soil nitrous oxide (N2O) emissions and crop production in terms of fertilization, agricultural land type, and soil characteristics. For this systematic review, the results of 92 published studies worldwide were collected. Based on the findings, the combined application of BS and CF can significantly increase soil total N (TN), microbial biomass N (MBN), and soil organic matter (SOM) levels. The Chaol and ACE index values of soil bacteria were increased by 13.58% and 18.53%, whereas those of soil fungi were decreased by 10.45% and 14.53%, respectively. At a replacement ratio (rr) ≤ 70%, crop yield was promoted by 2.20%-12.17%, and soil N2O emissions were reduced by 1.94%-21.81%. A small rr (≤30%) was more conducive to growth, and a moderate rr (30% < rr ≤ 70%) was more favorable for N2O emission reduction, especially in the dryland crop system. However, at rr = 100%, soil N2O emissions in neutral and alkaline dryland soil were increased by 28.56%-32.22%. The importance analysis of the influencing factors showed that the proportion of BS, the N application rate, and the temperature were the factors affecting soil N2O emissions. Our results provide a scientific basis for the safe use of BS in agricultural systems.
Collapse
Affiliation(s)
- Fanjing Kong
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China
| | - Qing Li
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China
| | - Zhimin Yang
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China; Chongqing Key Laboratory of Water Environment Evolution and Pollution Prevention and Control in the Three Gorges Reservoir Area, Chongqing, 400716, China
| | - Yucheng Chen
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China.
| |
Collapse
|
12
|
Wang M, Xu Y, Ni H, Ren S, Li N, Wu Y, Yang Y, Liu Y, Liu Z, Liu Y, Shi J, Zhang Y, Jiang L, Tu Q. Effect of fertilization combination on cucumber quality and soil microbial community. Front Microbiol 2023; 14:1122278. [PMID: 36910239 PMCID: PMC9996052 DOI: 10.3389/fmicb.2023.1122278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Due to the lack of scientific guidance on the usage of fertilizer, the overuse of chemical and organic fertilizer is commonly witnessed all over the world, which causes soil degradation and leads to environmental pollution. The effect of fertilizer strategies on soil properties, cucumber nutrients, and microbial community was investigated in this study with the aim to explore an optimized and enhanced fertilizer strategy. There were five fertilizer strategies conducted including CK (no fertilizer), M (cow dung manure only), NPK (chemical fertilizer only), NPKM (chemical fertilizer combined with manure), and DNPKM (30%-reducing chemical fertilizer combined with manure). It was found that different fertilizer strategies significantly affected the soil organic matter and nutrient levels and cucumber production and nutrient contents of the experimental field. Different fertilizer strategies showed dramatic effects on the alpha- and beta-diversity of soil microbial communities. Moreover, NPKM and DNPKM groups could significantly improve the bacterial abundance and fungal diversity. In addition, the structure of microbial communities was significantly changed in the presence of manure, chemical fertilizer, and their combination. Optimized combination of NPK with M improved the abundance of aerobic, biofilm formation-related, and Gram-negative bacteria and suppressed the anaerobic and Gram-positive bacteria. The presence of saprotrophs fungi was enhanced by all fertilizer strategies, especially the plethora of Gymnoascus. The combination of manure with chemical fertilizer could improve the availability of nutrients, and therefore reduce the adverse effects and potential risks induced by excessive fertilizer application. In conclusion, the new fertilization approach can not only meet the growth requirements of cucumber after reduced fertilization, but also protect soil health, which provides a new candidate for the eco-friendly technology to satisfy the topic of carbon neutrality.
Collapse
Affiliation(s)
- Mei Wang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yu Xu
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haiping Ni
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Shiai Ren
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Ni Li
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuxia Wu
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yan Yang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yumin Liu
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zongzheng Liu
- Qingdao Institute of Animal Husbandry and Veterinary Medicine, Qingdao, China
| | - Yingchun Liu
- Qingdao Institute of Animal Husbandry and Veterinary Medicine, Qingdao, China
| | - Jing Shi
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lihua Jiang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Resources and Environmental Engineering, Shandong University of Agricultural Engineering, Jinan, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Song P, Liu J, Huang P, Han Z, Wang D, Sun N. Diversity and structural analysis of rhizosphere soil microbial communities in wild and cultivated Rhizoma Atractylodis Macrocephalae and their effects on the accumulation of active components. PeerJ 2023; 11:e14841. [PMID: 36811005 PMCID: PMC9939024 DOI: 10.7717/peerj.14841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/11/2023] [Indexed: 02/18/2023] Open
Abstract
Rhizosphere microorganisms are the main factors affecting the formation of high quality medicinal materials and promoting the accumulation of secondary metabolites. However, the composition, diversity, and function of rhizosphere microbial communities in endangered wild and cultivated Rhizoma Atractylodis Macrocephalae (RAM) and their relationships with active component accumulation have remained unclear. In this study, high-throughput sequencing and correlation analysis were used to study the rhizosphere microbial community diversity (bacteria and fungi) of three RAM species and its correlation with the accumulation of polysaccharides, atractylone, and lactones (I, II, and III). A total of 24 phyla, 46 classes, and 110 genera were detected. The dominant taxa were Proteobacteria, Ascomycota, and Basidiomycota. The microbial communities in both wild and artificially cultivated soil samples were extremely species-rich, but there were some differences in their structure and the relative abundances of microorganism taxa. Meanwhile, the contents of effective components in wild RAM were significantly higher than those in cultivated RAM. Correlation analysis showed that 16 bacterial and 10 fungal genera were positively or negatively correlated with active ingredient accumulation. These results showed that rhizosphere microorganisms could play an important role in component accumulation and might lay a foundation for future research on endangered materials.
Collapse
Affiliation(s)
- Pingping Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Junling Liu
- Key Laboratory of Quality Research and Evaluation of Traditional Chinese Medicine, State Medical Products Administration, Hefei, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Zhili Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Nianxia Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
14
|
Shen Y, Li H, Liu Y, Gao T, Li G, Zuo M, Ji J, Li C, Li X, Chen Y, Yin Z, Li J, Zhang W. Variations of fungal communities in lead–zinc tailings located in Northwestern China. HUMAN AND ECOLOGICAL RISK ASSESSMENT: AN INTERNATIONAL JOURNAL 2023; 29:390-409. [DOI: 10.1080/10807039.2022.2098466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 03/06/2025]
Affiliation(s)
- Yuanyuan Shen
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Haijuan Li
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Yuan Liu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Tianpeng Gao
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - Guangwen Li
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Mingbo Zuo
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Jing Ji
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changming Li
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yueli Chen
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Zhuoxin Yin
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - Jing Li
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Wenli Zhang
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| |
Collapse
|
15
|
Li Y, Zhou C, Li S, Zhang X, Pu M, Xie X. Combined coagulation and membrane treatment for anaerobically digested manure centrate: Contaminant residuals and membrane fouling. ENVIRONMENTAL RESEARCH 2023; 218:115010. [PMID: 36502911 DOI: 10.1016/j.envres.2022.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
To realize water and resource recovery from anaerobically digested manure centrate, the effect of combined coagulation and membrane treatment on contaminant residuals and membrane fouling was investigated. Two combined treatments were used to explore the properties of the retention of nutrients and the removal of risk pollutants. Behaviors and reversibility of membrane fouling after combined treatment were also examined. The result showed that the combined treatment significantly improved the water recovery rate by more than 60% and achieved better nutrient enrichment. Meanwhile, the combined treatment had certain removal effects on heavy metals and antibiotics, which promoted the safety of farmland utilization of anaerobically digested manure centrate. Moreover, the combined treatment reduced the membrane fouling by removing most suspended solids in the digested centrate. Combined coagulation and membrane treatment show great potential for practical applications in the treatment of anaerobically digested manure centrate due to the easy operation and excellent effect. This work provides a technical reference for the harmless and resource recovery of anaerobically digested manure centrate.
Collapse
Affiliation(s)
- Yun Li
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengzhi Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shanshan Li
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Mengjie Pu
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaomin Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
16
|
Liu J, Li C, Ma W, Liu W, Wu W. Molecular Characterization of Distinct Fungal Communities in the Soil of a Rare Earth Mining Area. MICROBIAL ECOLOGY 2022; 84:1212-1223. [PMID: 34839384 DOI: 10.1007/s00248-021-01931-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The exploitation of ion-absorbed rare earth elements (REEs) has caused serious ecological destruction and environmental pollution. Effects on soil fungal structure and diversity exerted by mining activities are usually ignored, although fungus is one of the most important components in soil ecosystems. In the present research, quantitative polymerase chain reaction (qPCR) and high-throughput Illumina MiSeq sequencing were conducted to characterize fungal community composition and structure in soil of a rare earth mining area after in situ leaching. Statistical analyses, network, and FUNGuild were used to conduct in-depth analyses. Ascomycota, Basidiomycota, and Glomeromycota were the most abundant phyla in the mining soils. Fungal community structures were stable after leaching practice, but nutrition contents (organic matter, TC, and TN) significantly and positively contributed to fungal abundances and diversities. Saprotrophs in phyla Ascomycota and Basidiomycota were the dominant fungal trophic mode, and they played critical roles in nutrient cycling, transformation processes, and reducing REE toxicity. Symbiotrophs of phyla Glomeromycota contributed to soil aggregation and slowing down nutrient losses after in situ leaching practice. In addition, fungi could regulate the interactions between species to resist the harsh environment of REE toxicity or ammonium caused by in situ leaching practice.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou, 341099, China.
| | - Chun Li
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China
| | - Wendan Ma
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China
| | - Wei Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, 310030, People's Republic of China
| |
Collapse
|
17
|
Lazar A, Mushinski RM, Bending GD. Landscape scale ecology of Tetracladium spp. fungal root endophytes. ENVIRONMENTAL MICROBIOME 2022; 17:40. [PMID: 35879740 PMCID: PMC9310467 DOI: 10.1186/s40793-022-00431-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The genus Tetracladium De Wild. (Ascomycota) has been traditionally regarded as a group of Ingoldian fungi or aquatic hyphomycetes-a polyphyletic group of phylogenetically diverse fungi which grow on decaying leaves and plant litter in streams. Recent sequencing evidence has shown that Tetracladium spp. may also exist as root endophytes in terrestrial environments, and furthermore may have beneficial effects on the health and growth of their host. However, the diversity of Tetracladium spp. communities in terrestrial systems and the factors which shape their distribution are largely unknown. RESULTS Using a fungal community internal transcribed spacer amplicon dataset from 37 UK Brassica napus fields we found that soils contained diverse Tetracladium spp., most of which represent previously uncharacterised clades. The two most abundant operational taxonomic units (OTUs), related to previously described aquatic T. furcatum and T. maxilliforme, were enriched in roots relative to bulk and rhizosphere soil. For both taxa, relative abundance in roots, but not rhizosphere or bulk soil was correlated with B. napus yield. The relative abundance of T. furcatum and T. maxilliforme OTUs across compartments showed very similar responses with respect to agricultural management practices and soil characteristics. The factors shaping the relative abundance of OTUs homologous to T. furcatum and T. maxilliforme OTUs in roots were assessed using linear regression and structural equation modelling. Relative abundance of T. maxilliforme and T. furcatum in roots increased with pH, concentrations of phosphorus, and increased rotation frequency of oilseed rape. It decreased with increased soil water content, concentrations of extractable phosphorus, chromium, and iron. CONCLUSIONS The genus Tetracladium as a root colonising endophyte is a diverse and widely distributed part of the oilseed rape microbiome that positively correlates to crop yield. The main drivers of its community composition are crop management practices and soil nutrients.
Collapse
Affiliation(s)
- Anna Lazar
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Ryan M Mushinski
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
18
|
Jia T, Liang X, Guo T, Wu T, Chai B. Bacterial community succession and influencing factors for Imperata cylindrica litter decomposition in a copper tailings area of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152908. [PMID: 34999068 DOI: 10.1016/j.scitotenv.2021.152908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Litter decomposition is a critical component of the ecological nutritional transformation process. In a copper mining area, the litter from Imperata cylindrica is the major indicator for restoring heavy metal-polluted copper mining lands. Large amounts of litter are generated at the end of the plant growing season during the process of vegetation restoration in copper mining areas, and the microbial dynamics play an important role in soil nutrient turnover during the decomposition of litter. Investigating the characteristics and interactions of bacterial communities during litter decomposition will clarify the driving mechanisms of organic matter and nutrient cycling in copper mining areas that harbor contaminated soils. Here, we report the results of an in situ decomposition experiment that lasted for a total of 460 days from three of the 16 copper mining subdams with heavy metal pollution and different phytoremediation histories (e.g., 50, 22 and 5 years) to explore the bacterial communities as the driving factors of litter decomposition. The total carbon contents of the litter decreased by 62.6% and 71.5% in the decomposition process at those sites with phytoremediation histories of 50 and 22 years (S516 and S536), respectively, but decreased by only 25.8% at the site with a phytoremediation history of 5 years (S560). The optimal C/N ratios in the three different restoration stages varied and were 65.5, 86.7 and 39.3 in S516, S536, S560, respectively. Litter decomposition enriched the heavy metal contents such as cadmium, copper (Cu), lead and zinc (P < 0.05) in litter. Proteobacteria and Actinobacteriota were the dominant bacterial phyla during the different litter decomposition stages, which accounted for 91.66% of the relative abundances in the bacterial communities. Moreover, the role of Friedmanniella, which had the highest betweenness centrality (BC) value, was critical in sustaining both the structure and function of the bacterial communities during the early decomposition stage. However, Quadrisphaera, with the maximum BC value (1074.8), became the dominant genus as litter decomposition progressed. The most crucial factors that affected the litter bacterial communities were the litter pH and copper contents. The obtained results will be helpful to provide a further understanding of litter decomposition mechanisms and will provide a scientific basis for improving the effectiveness of material circulation and nutrient transformation in degraded copper mining ecosystems.
Collapse
Affiliation(s)
- Tong Jia
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Xiaoxia Liang
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Tingyan Guo
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Tihang Wu
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA
| | - Baofeng Chai
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
19
|
Jia T, Wang X, Guo T, Chai B. Litter Decomposition of Imperata cylindrica in a Copper Tailing Areas With Different Restoration History: Fungal Community Dynamics and Driving Factors. Front Microbiol 2021; 12:780015. [PMID: 34880848 PMCID: PMC8647173 DOI: 10.3389/fmicb.2021.780015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms drive litter decomposition while maintaining the chemical cycle of ecosystems. We used the dominant vegetation (Imperata cylindrica) in the mining area selected for this study for this experiment to explore fungal community characteristics, key fungal groups, and their associative driving factors during I. cylindrica litter decomposition. Maximum litter C/N values occurred 100days after the commencement of the decomposition experiment during all different recovery years in this copper tailings area. Heavy metals in litter [copper (Cu), zinc (Zn), plumbum (Pb), and cadmium (Cd)] accumulated gradually with decomposition. The dominant fungal phyla observed in the community were Ascomycota and Basidiomycota, while the classes Sordariomycetes and Eurotiomycetes significantly increased as litter decomposition progressed. Degrees of connectivity and interaction between fungal communities were highest during the early litter decomposition stage. Sordariomycetes, Dothideomycetes, and Leotiomycetes all played critical roles in maintaining fungal community relationships. The effect of physicochemical properties and enzyme activities in I. cylindrica litter was significant on the dominant fungi, while driving factors that affected fungal communities differed over different recovery stages. Total nitrogen (TN), heavy metals, pH, and enzyme activities in the little were significantly correlated with fungal community composition. Litter properties throughout the litter decomposition process mainly affected the dynamics of the fungal community structure. The main environmental factors that affected fungal community structure were copper content and pH. Dichotomopilus, Trichoderma, Knufia, Phialophora, Oxyporus, and Monocillium, which all played important roles in litter decomposition, positively correlated with heavy metals, sucrase, and catalase. Finally, results from this study will help us better clarify litter decomposition mechanisms in degraded ecosystems as well as provide a scientific basis for improving species cycling and nutrient transformation efficiency in mining ecosystems.
Collapse
Affiliation(s)
- Tong Jia
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Xuerong Wang
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Tingyan Guo
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|
20
|
Liu Q, Zhao Z, Xue Z, Li D, Wen Z, Ran Y, Mei Z, He L. Comprehensive Risk Assessment of Applying Biogas Slurry in Peanut Cultivation. Front Nutr 2021; 8:702096. [PMID: 34722601 PMCID: PMC8552993 DOI: 10.3389/fnut.2021.702096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Biogas slurry, a byproduct of biogas plants, is considered a high-quality bio-organic fertilizer. Despite providing nutrients to crops, biogas slurry may contain a high concentration of heavy metals, leading to food safety problems and endangering human health if such metals are absorbed by plants. Therefore, biogas slurry should undergo systematic risk assessment prior to direct use on farmland to ensure its safety for soils and crops. In this study, the risk of applying biogas slurry in peanut cultivation was comprehensively evaluated. Based on nitrogen contents, different concentrations of biogas slurry were applied in peanut cultivation. The results achieved herein showed that the application of biogas slurry as a nutrient supplier in peanut cultivation would significantly affect the physical and chemical properties of soil and characteristics of the plant and the quality of peanuts. Although the heavy metal content of biogas slurry was within the permitted range, it had potential risks to human health and the environment. Principal component analysis (PCA) showed that biogas slurry was the primary source of heavy metals in soil. After the application of biogas slurry, the contents of As and Hg in the soil increased significantly, which were 11.12 and 26.67 times higher than those in the control soil. The contents of Cu, Zn, Pb, Cd, and As in peanut kernel samples under different levels of biogas slurry application were all lower than the maximum permissible limit set by the Standardization Administration of China. In contrast, the content of Hg in peanut kernels was higher than the maximum permissible limit value of 0.02 mg/kg. Peanut had a higher enrichment capacity of Cd and Zn and a higher migration capacity of Pb. The health risk assessment showed that the long-term consumption of peanuts grown with a high dosage of biogas slurry would be harmful to the health of children aged 2–6 years with a large consumption level.
Collapse
Affiliation(s)
- Qingyu Liu
- College of Engineering, Shenyang Agricultural University, Shenyang, China.,Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zixuan Zhao
- College of Engineering, Shenyang Agricultural University, Shenyang, China
| | - Zhiping Xue
- College of Engineering, Shenyang Agricultural University, Shenyang, China
| | - Ding Li
- Institute of Development Studies, Southwestern University of Finance and Economics, Chengdu, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Yi Ran
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zili Mei
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Li He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
21
|
Gao Y, Li H, Yang B, Wei X, Zhang C, Xu Y, Zheng X. The preliminary evaluation of differential characteristics and factor evaluation of the microbial structure of rural household toilet excrement in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43842-43852. [PMID: 33840021 PMCID: PMC8036012 DOI: 10.1007/s11356-021-13779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/29/2021] [Indexed: 05/28/2023]
Abstract
Recent studies on the microbial community composition of human excrement after rural household toilet treatment are unclear regarding the effects and risks of using recycled products as fertilizers in agriculture. In this study, we used Illumina high-throughput sequencing to investigate the microbial community structure of the excrement from 50 Chinese rural household toilets on a spatial scale, and we evaluated the impact of select geochemical factors on the bacterial and fungal communities in the human excrement. Multivariate analysis showed that there was a significant spatial differentiation of the human excrement in microbial communities after all toilet treatments. Twenty dry toilet samples and thirty septic tank samples had similar bacterial (Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes) and fungal phyla (Ascomycota and Basidiomycota), differing only in the proportions of the microorganisms. For both dry toilet samples and septic tank samples, the pH and ammonium nitrogen were found to be the major driving forces affecting the changes in bacterial community structures (p<0.05), while there was no correlation found for the fungal community with environmental factors in China (p>0.05), except in the northern regions, where the total phosphorus was found to be significantly correlated with the fungal community (p<0.05). Network analysis confirmed that NH4+-N had the most significant impact on the content of pathogens. Certain pathogens were still detected after toilet treatment, such as Streptococcus, Bacteroides, Aspergillus, and Chrysosporium, and the proportion of potential pathogenic bacteria in dry toilets was higher than that in septic tanks, suggesting that septic tanks were better than dry toilets in treating human excrement. These results provide an ecological perspective for understanding the large-scale geographic distribution of household excrement microbial communities in rural areas and for improving human excrement treatment technologies and avoiding the risks of agricultural applications.
Collapse
Affiliation(s)
- Yi Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Bo Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
22
|
Jia T, Guo T, Chai B. Bacterial community characteristics and enzyme activities in Imperata cylindrica litter as phytoremediation progresses in a copper tailings dam. PeerJ 2020; 8:e9612. [PMID: 33194335 PMCID: PMC7391973 DOI: 10.7717/peerj.9612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/06/2020] [Indexed: 12/04/2022] Open
Abstract
This study analyzed Imperata cylindrica litter to determine variation in bacterial community composition and function along with enzyme activity as phytoremediation progresses. We found significant differences in physical and chemical properties of soil and litter in the different sub-dams investigated. The Actinobacteria, Gammaproteobacteria and Alphaproteobacteria were the dominant bacteria found in the litter of the different sub-dams. The alpha diversity (α-diversity) of litter bacterial community increased over as phytoremediation progressed, while total soil carbon and total litter carbon content were positively correlated to bacterial α-diversity. Total litter carbon and total nitrogen were the key factors that influenced bacterial community structure. Heavy metal can influence the degradation of litters by altering the composition of the microbial community. Furthermore, bacterial communities encoded with alpha-amylase (α-amylase) dominated during the initial phytoremediation stage; however, bacterial communities encoded with hemicellulase and peroxidase gradually dominated as phytoremediation progressed. Findings from this study provide a basis for exploring litter decomposition mechanisms in degraded ecosystems, which is critically important to understand the circulation of substances in copper tailings dams.
Collapse
Affiliation(s)
- Tong Jia
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Tingyan Guo
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|