1
|
Mora-Humara JM, González-Mille DJ, Espinosa-Reyes G, Burgos-Aceves MA, Torres-Dosal A, Razo-Soto I, Ilizaliturri-Hernández CA. In Situ Assessment of Potentially Toxic Elements (PETs) in Different Tissues of Leopard Frogs (Lithobates berlandieri) Residing Near a Mining Site in Charcas, San Luis Potosi, Mexico. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:64. [PMID: 40220172 DOI: 10.1007/s00128-025-04039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Mining generates large volumes of waste, which, if not regulated, can release toxic metals, causing widespread environmental contamination. This study focused on heavy metal contamination in sediments and amphibians within a mining area at Charcas, San Luis Potosi, Mexico. The results revealed that the Lithobates berlandieri individuals inhabiting an area polluted with industrial waste, high levels of heavy metals and metalloids (As, Cd, Cr, Cu, Hg and Pb) were found in sediments and tissues compared to samples from a reference site. Furthermore, the levels of all metals and metalloids in these frogs were higher in the kidney, liver, and skin. Additionally, it can contribute to the proposed use of non-lethal biomarkers (e.g. skin) for medium and long-term monitoring and regulation at these sites.
Collapse
Affiliation(s)
- José Miguel Mora-Humara
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550, Lomas 2ª Secc., San Luis Potosi, Mexico
| | - Donají J González-Mille
- Programa de Investigadoras e Investigadores por México del Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT). Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Guillermo Espinosa-Reyes
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550, Lomas 2ª Secc., San Luis Potosi, Mexico
| | - Mario A Burgos-Aceves
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550, Lomas 2ª Secc., San Luis Potosi, Mexico
| | | | - Israel Razo-Soto
- Facultad de Ingenieria, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550, Lomas 2ª Secc., San Luis Potosi, Mexico.
| |
Collapse
|
2
|
Silva-Gigante M, Hinojosa-Reyes L, Bazzan-Dessuy M, Rosas-Castor JM, Torres-Gaytán DE, Quero-Jiménez PC, Caballero-Quintero A, Guzmán-Mar JL. Traces of the past: assessing the impact of potentially toxic elements from an abandoned mine on groundwater and agricultural soil in San Luis Potosí, México. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1015. [PMID: 39365363 DOI: 10.1007/s10661-024-13081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
The study was conducted in Cerritos, San Luis Potosí, México, near the Guaxcama mine, focused on environmental contamination (groundwater and agricultural soil) from antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg). In March 2022, 20 agricultural soil and 16 groundwater samples were collected near the historically cinnabar (HgS)- and arsenopyrite (FeAsS)-rich Guaxcama mine. Hydride generation atomic fluorescence spectrometry (HG-AFS) for As, cold vapor atomic fluorescence spectrometry (CV-AFS) for Hg, and inductively coupled plasma optical emission spectrometry (ICP-OES) for Cd, Pb, and Sb were used for the determinations of potentially toxic elements (PTEs). While concentrations of Cd, Hg, Pb, and Sb in groundwater were below detection limits, As levels exhibited a range from 40.9 ± 1.4 to 576.0 ± 1.0 µg/L, exceeding permissible limits for drinking water (10 µg/L). In agricultural soil, As was between 7.67 ± 0.16 and 24.1 ± 0.4 µg/g, Hg ranged from 0.203 ± 0.018 to 2.33 ± 0.19 µg/g, Cd from 2.53 ± 0.90 to 2.78 ± 0.01 µg/g, and Pb from 11.7 ± 1.2 to 34.3 ± 4.1 µg/g. Only one study area surpassed the Mexican As soil limit of 22 µg/g. Sequential extraction (four-step BCR procedure) indicated significant As bioavailability in soil (fractions 1 and 2) ranging from 3.66 to 10.36%, heightening the risk of crop transfer, in contrast to the low bioavailability of Hg, showing that fractions 1, 2, and 3 were below the limit of quantification (LOQ). Crucial physicochemical parameters in soil, including nitrate levels, pH, and organic matter, were pivotal in understanding contamination dynamics. Principal component analysis highlighted the influence of elements like Fe and Ca on phytoavailable As, while Pb and Cd likely originated from a common source. Ecological risk assessments underscored the significant impact of pollution, primarily due to the concentrations of Cd and Hg. Non-cancer and cancer risks to residents through As poisoning via contaminated water ingestion also were found. The hazard index (HI) values varied between 4.0 and 82.2 for adults and children. The total incremental lifetime cancer risk (TILCAR) values for adults ranged from 7.75E - 04 to 1.06E - 02, whereas for children, the values were from 2.47E - 04 to 3.17E - 03.
Collapse
Affiliation(s)
- M Silva-Gigante
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México
| | - L Hinojosa-Reyes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México
| | - M Bazzan-Dessuy
- Universidade Federal Do Rio Grande Do Sul, Instituto de Química, Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - J M Rosas-Castor
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México
| | - D E Torres-Gaytán
- Instituto Potosino de Investigación Científica y Tecnológica, IPICYT, División de Geociencias Aplicadas, Camino a La Presa San José 2055 Col. Lomas 4a Sección, San Luis Potosí, SLP, CP 78216, México
| | - P C Quero-Jiménez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México
| | - A Caballero-Quintero
- Escuela de Ingeniería y Ciencias, Departamento de Ciencias, Química y Nanotecnología, Tecnológico de Monterrey, Ave Eugenio Garza Sada 2501 sur, Monterrey, NL, CP 64890, México
| | - J L Guzmán-Mar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México.
| |
Collapse
|
3
|
Padilla-Reyes DA, Dueñas-Moreno J, Mahlknecht J, Mora A, Kumar M, Ornelas-Soto N, Mejía-Avendaño S, Navarro-Gómez CJ, Bhattacharya P. Arsenic and fluoride in groundwater triggering a high risk: Probabilistic results using Monte Carlo simulation and species sensitivity distribution. CHEMOSPHERE 2024; 359:142305. [PMID: 38740338 DOI: 10.1016/j.chemosphere.2024.142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The widespread presence of arsenic (As) and fluoride (F-) in groundwater poses substantial risks to human health on a global scale. These elements have been identified as the most prevalent geogenic contaminants in groundwater in northern Mexico. Consequently, this study aimed to evaluate the human health and ecological risks associated with the content of As and F- in the Meoqui-Delicias aquifer, which is in one of Mexico's most emblematic irrigation districts. Concentrations of As and F- were measured in 38 groundwater samples using ICP-MS and ion chromatography, respectively. Overall, these elements showed a similar trend across the aquifer, revealing a positive correlation between them and pH. The concentration of As and F- in the groundwater ranged from 5.3 μg/L to 303 μg/L and from 0.5 mg/L to 8.8 mg/L, respectively. Additionally, the levels of As and F- surpassed the established national standards for safe drinking water in 92% and 97% of samples, respectively. Given that groundwater is used for both agricultural purposes and human activities, this study also assessed the associated human health and ecological risks posed by these elements using Monte Carlo simulation and Species Sensitivity Distribution. The findings disclosed a significant noncarcinogenic health risk associated with exposure to As and F-, as well as an unacceptable carcinogenic health risk to As through water consumption for both adults and children. Furthermore, a high ecological risk to aquatic species was identified for F- and high to medium risks for As in the sampling sites. Therefore, the findings in this study provide valuable information for Mexican authorities and international organizations (e.g., WHO) about the adverse effects that any exposure without treatment to groundwater from this region represents for human health.
Collapse
Affiliation(s)
- Diego A Padilla-Reyes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| | - Nancy Ornelas-Soto
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Sandra Mejía-Avendaño
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Carmen J Navarro-Gómez
- Faculty of Engineering, Autonomous University of Chihuahua, Circuito Universitario, 31109, Campus Uach II, Chihuahua, Chih, C.P. 31125, Mexico
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-114 28, Stockholm, Sweden
| |
Collapse
|
4
|
Huang JL, Li ZY, Mao JY, Chen ZM, Liu HL, Liang GY, Zhang DB, Wen PJ, Mo ZY, Jiang YM. Contamination and health risks brought by arsenic, lead and cadmium in a water-soil-plant system nearby a non-ferrous metal mining area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115873. [PMID: 38150749 DOI: 10.1016/j.ecoenv.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Heavy metal(loid)s contamination prevails in the water-soil-plant system around non-ferrous metal mining areas. The present study aimed to evaluate the heavy metal(loid)s contamination in Nandan Pb-Zn mining area (Guangxi, China). A total of 36 river water samples, 75 paired paddy soil and rice samples, and 128 paired upland soil and plant samples were collected from this area. The concentrations of arsenic (As), lead (Pb), and cadmium (Cd) in these samples were measured. Results showed that the average water quality indexes (WQIs) at the 12 sampling sites along the main river ranged from 41 to 5008, indicating the water qualities decreasing from "Excellent" to "Undrinkable". The WQIs nearby tailings or industrial park were significantly higher than those at the other sites. 34.0% and 64.5% of soil samples exceeded the risk screening values for As and Cd. The Pb and Cd concentrations in all rice samples exceeded the Chinese food safety limits by 18.7% and 82.7%, respectively. Leafy vegetables had a higher concentration of As, Pb, and Cd than other vegetables, exceeding the maximum permissible limits by 14.1%, 61.2%, and 40.0%, respectively. The biological accumulation coefficient (BAC) of Cd was the highest in rice and lettuce leaves. The hazard quotients (HQs) of As and Cd, indicating non-carcinogenic risks, were 4.15 and 1.76 in adult males, and 3.40 and 1.45 in adult females, all higher than the permitted level (1.0). The carcinogenic probabilities of As and Cd from rice and leafy vegetables consumption were all higher than 1 × 10-4. We conclude that metal(loid)s contamination of the water-soil-plant system has posed great non-carcinogenic and carcinogenic risks to the local population.
Collapse
Affiliation(s)
- Jiong-Li Huang
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning 530200, China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China; Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Zhong-You Li
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jing-Ying Mao
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Zhi-Ming Chen
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Hui-Lin Liu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Gui-Yun Liang
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Da-Biao Zhang
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Ping-Jing Wen
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhao-Yu Mo
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
5
|
Silva-Gigante M, Hinojosa-Reyes L, Rosas-Castor JM, Quero-Jiménez PC, Pino-Sandoval DA, Guzmán-Mar JL. Heavy metals and metalloids accumulation in common beans (Phaseolus vulgaris L.): A review. CHEMOSPHERE 2023:139010. [PMID: 37236281 DOI: 10.1016/j.chemosphere.2023.139010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/30/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
This review focuses on evaluating the accumulation and translocation of As, Cd, Hg, and Pb in Phaseolus vulgaris L. plants and on the possible effects of these elements on the growth of Phaseolus vulgaris L. in soil contaminated with these elements. Heavy metals (HMs) and metalloids (Ms) such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) represent serious environmental threats due to their wide abundance and high toxicity. HMs and Ms contamination in water and soils from natural or anthropogenic sources, is of great concern in agricultural production due to their toxic effects on plants, adversely affecting food safety and plant growth. The uptake of HMs and Ms by Phaseolus vulgaris L. plants depends on several factors including soil properties such as pH, phosphate, and organic matter. High concentrations of HMs and Ms could be toxic to plants due to the increased generation of ROS such as (O2•-), (•OH), (H2O2), and (1O2) and oxidative stress due to an imbalance between ROS generation and antioxidant enzyme activity. To minimize the effects of ROS, plants have developed a complex defense mechanism based on the activity of antioxidant enzymes such as SOD, CAT, GPX, etc., and phytohormones, especially salicylic acid (SA) that can reduce the toxicity of HMs and Ms in the factors that affect the uptake of these elements by bean plants, and in addition, defense mechanisms under oxidative stress caused by the presence of As, Cd, Hg, and Pb.
Collapse
Affiliation(s)
- M Silva-Gigante
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - L Hinojosa-Reyes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - J M Rosas-Castor
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - P C Quero-Jiménez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - D A Pino-Sandoval
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - J L Guzmán-Mar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico.
| |
Collapse
|
6
|
Xu B, Yi Y. Immobilization of lead (Pb) using ladle furnace slag and carbon dioxide. CHEMOSPHERE 2022; 308:136387. [PMID: 36088964 DOI: 10.1016/j.chemosphere.2022.136387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Global sustainable development faces challenges in greenhouse gas emissions, consumption of energy and non-renewable resources, environmental pollution, and waste landfilling. Current technologies for immobilization of heavy metals face similar challenges; for example, the use of cement, magnesia, lime, and other binders for immobilization of heavy metals is associated with carbon dioxide emission and consumption of limestone/magnesite and energy. In these contexts, this study introduced a novel and sustainable method for immobilization of lead (Pb) by using an industrial solid waste (ladle furnace slag, LFS) and a greenhouse gas (carbon dioxide). In this laboratory investigation, LFS was first mixed with the lead nitrate and then treated by conventional curing (without carbon dioxide) and carbonation curing (with carbon dioxide) for different periods. The treated LFS were then analyzed by various chemical analyses and microanalysis. The results showed that LFS with conventional curing is not effective in immobilization of lead, while LFS with carbonation curing can effectively immobilize lead. The leaching concentrations of Pb from carbonated LFS were four orders of magnitude lower than those with conventional curing. LFS can achieve carbon dioxide uptake of up to 8% of LFS mass. During the carbonation process, carbonates were produced and wrapped LFS particles to prevent the release of lead, lead nitrate was also carbonated into lead carbonate, and the pH of LFS was reduced to 9.36-9.58, close to the minimum solubility of lead carbonate; these are the main reasons for lead immobilization. In summary, the use of LFS with carbon dioxide for immobilization of lead can not only sequester carbon dioxide, but also reduce the cost of binders, non-renewable resource consumption, energy use, and LFS landfilling.
Collapse
Affiliation(s)
- Bo Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yaolin Yi
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
7
|
Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador. SUSTAINABILITY 2022. [DOI: 10.3390/su14106089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mining environmental liabilities (MEL) are of great concern because of potential risks to ecosystems and human health. In this research, the environmental risk (RI) related to MEL existing in three artisanal and small-scale gold-mining areas of Ecuador was evaluated. For this purpose, data of 167 MEL including landfills, mining galleries, tailing deposits, and mineral processing plants from Macuchi, Tenguel–Ponce Enriquez, and Puyango mining areas, were analyzed. The risk assessment related to the presence of waste deposits was carried out based on the methodology proposed by the Spanish Geological Survey. Moreover, the procedure outlined in the Environmental Risk Assessment Guide of the Ministry of Environment of Peru for nonwaste deposits was applied. The highest RI values were identified in Puyango and Tenguel–Ponce Enriquez. Thus, they were both categorized as priority control areas requiring intervention and rehabilitation plans. The MEL that require a high level of intervention include waste deposits and mine entrances associated with potentially toxic elements. Moreover, the point risk maps showed that rivers in the studied areas have a potential pollution risk. This study provides risk levels associated with MEL in mining areas from Ecuador. This information could be used for environmental management and pollution mitigation.
Collapse
|
8
|
Kumar A, Rahman MS, Ali M, Salaun P, Gourain A, Kumar S, Kumar R, Niraj PK, Kumar M, Kumar D, Bishwapriya A, Singh S, Murti K, Dhingra S, Sakamoto M, Ghosh AK. Assessment of disease burden in the arsenic exposed population of Chapar village of Samastipur district, Bihar, India, and related mitigation initiative. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27443-27459. [PMID: 34982385 DOI: 10.1007/s11356-021-18207-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Fast growing arsenic menace is causing serious health hazards in Bihar, India, with an estimated 10 million people at risk. The exposed population is often unaware of the problem, which only amplifies the burden of arsenic health effects. In the present study, we have assessed the current situation of arsenic exposure in Chapar village of Samastipur district, Bihar. The health of the inhabitants was assessed and correlated with (1) arsenic concentrations in the groundwater of individual wells and (2) arsenic concentration found in their hair and urine. Altogether, 113 inhabitants were assessed, and 113 hair, urine and groundwater samples were collected. The health study reveals that the exposure to arsenic has caused serious health hazard amongst the exposed population with pronounced skin manifestations, loss of appetite, anaemia, constipation, diarrhoea, general body weakness, raised blood pressure, breathlessness, diabetes, mental disabilities, diabetes, lumps in the body and few cancer incidences. It was found that 52% of the total collected groundwater samples had arsenic levels higher than the WHO limit of 10 µg/l (with a maximum arsenic concentration of 1212 µg/l) and the reduced arsenite was the predominant form in samples tested for speciation (N = 19). In the case of hair samples, 29% of the samples had arsenic concentrations higher than the permissible limit of 0.2 mg/kg, with a maximum arsenic concentration of 46 µg/l, while in 20% exposed population, there was significant arsenic contamination in urine samples > 50 µg/l. In Chapar village, the probability of carcinogenic-related risk in the exposed population consuming arsenic contaminated water is 100% for children, 99.1% for females and 97.3% for male subjects. The assessment report shared to the government enabled the village population to receive two arsenic filter units. These units are currently operational and catering 250 households providing arsenic-free water through piped water scheme. This study therefore identified a significant solution for this arsenic-exposed population.
Collapse
Affiliation(s)
- Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India.
| | - Md Samiur Rahman
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India
| | - Mohammad Ali
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India
| | | | | | | | - Ranjit Kumar
- Central University of Himachal Pradesh, Kangra, HP, India
| | - Pintoo Kumar Niraj
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India
| | - Mukesh Kumar
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, India
| | | | | | - Krishna Murti
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Sameer Dhingra
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | | | - Ashok Kumar Ghosh
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India
| |
Collapse
|
9
|
Pérez-Vázquez FJ, González-Martell AD, Fernández-Macias JC, Rocha-Amador DO, González-Palomo AK, Ilizaliturri-Hernández CA, González-Mille DJ, Cilia-Lopez VG. Health risk assessment in children living in an urban area with hydrofluorosis: San Luis Potosí Mexico case study. J Trace Elem Med Biol 2021; 68:126863. [PMID: 34601282 DOI: 10.1016/j.jtemb.2021.126863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Fluoride is an inorganic element, which can be found in high concentrations in groundwater. Its consumption and exposure have consequences on human health. The objective of this study was to evaluate fluoride exposure and develop a health risk assessment in children from an urban area with hydrofluorosis in Mexico. METHODS Water fluoride levels in active wells were provided by the Water State Agency and divided into three zones: agriculture zone (Zone A), metallurgical zone (Zone B), and industrial zone (Zone C). Urinary fluoride levels were determined by potentiometric method using an ion-selective electrode. Health risk assessment was performed through Monte Carlo model analysis and hazard quotient was calculated. RESULTS According to fluoride well concentration, all zones have high concentration especially Zone B (2.55 ± 0.98 mg/L). Urinary fluoride concentrations were highest in children in Zone B (1.42 ± 0.8 mg/L). The estimated median daily intake dose of fluoride was 0.084 mg/Kg-day for the children living in zone B. The highest mean HQ value was to Zone B (1.400 ± 0.980), followed by Zone C (0.626 ± 0.443). CONCLUSION The levels of fluoride exposure registered are a potential risk to generate adverse health effects in children in the San Luis Potosi metropolitan area.
Collapse
Affiliation(s)
- F J Pérez-Vázquez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico; CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - A D González-Martell
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - J C Fernández-Macias
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - D O Rocha-Amador
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Mexico
| | - A K González-Palomo
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | | | - D J González-Mille
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - V G Cilia-Lopez
- Facultad de Medicina-CIACYT, Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
10
|
Jiménez-Oyola S, Chavez E, García-Martínez MJ, Ortega MF, Bolonio D, Guzmán-Martínez F, García-Garizabal I, Romero P. Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112629. [PMID: 34399125 DOI: 10.1016/j.ecoenv.2021.112629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Mining operations are important causes of environmental pollution in developing countries where mining waste management is not adequate. Consequently, heavy metal(loid)s are easily released into the environment, being a potential risk to human health. This study carries out a Bayesian probabilistic human health risk assessment, related to multi-pathway exposure to heavy metal(loid)s in a gold mining area in Southern Ecuador. Concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn in tap water, surface water, and soil samples, were analyzed to assess the potential adverse human health effects based on the Hazard Index (HI) and Total cancer risk (TCR). Adults and children residents were surveyed to adjust their exposure parameters to the site-specific conditions. Exposure to heavy metal(loid)s resulted in unacceptable risk levels for human health in the two age groups, both carcinogenic (TCR > 1 × 10-5) and non-carcinogenic (HI > 1) through ingestion of tap water and incidental ingestion of surface water. Sensitivity analysis showed that As concentration in waters and exposure frequency were the main contributors to risk outcome. Exposure to soil via accidental ingestion and dermal contact was below the safety limit, not posing a risk to human health. These findings can provide a baseline for the environmental management of the mining area and indicate the need for further research on As pollution in water and its implications on the health of the inhabitants of mining communities.
Collapse
Affiliation(s)
- Samantha Jiménez-Oyola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador; Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain.
| | - Eduardo Chavez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María-Jesús García-Martínez
- Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain
| | - Marcelo F Ortega
- Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain
| | - David Bolonio
- Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain
| | - Fredy Guzmán-Martínez
- Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain; Mexican Geological Survey, Boulevard Felipe Angeles Km. 93.50-4, 42083 Pachuca, Mexico
| | - Iker García-Garizabal
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Paola Romero
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
11
|
Martínez-Toledo Á, González-Mille DJ, García-Arreola ME, Cruz-Santiago O, Trejo-Acevedo A, Ilizaliturri-Hernández CA. Patterns in utilization of carbon sources in soil microbial communities contaminated with mine solid wastes from San Luis Potosi, Mexico. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111493. [PMID: 33120261 DOI: 10.1016/j.ecoenv.2020.111493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 09/14/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In San Luis Potosí, Mexico, the exploitation of minerals has historically been carried out as an activity that has left in its path environmental liabilities, with high concentrations of heavy metals. These metals have undergone weathering by rain and wind and have moved closer to inhabited locations as is the case of Cerro de San Pedro (CSP) and Villa de la Paz (VDP). The objective of this study is to show the biological alteration of soils due to the presence of heavy metals and metalloids like Cadmium (Cd), Copper (Cu), Lead (Pb) and Arsenic (As) and to find the relationship between contamination and risk indexes. Soil samples were obtained from sites with historical records of mining activity and their surroundings. Several analyses were performed, such as pH levels, organic matter, electrical conductivity, clays, heavy metals and As. Moreover, Community Level Physiological profiling (CLPP) were conducted. The obtained evidence showed high levels of contamination by As and heavy metals in both sites (CSP: 6485.1 mg/Kg of Pb and pH of 4.4; VDP: 7188.2 mg/Kg of As and pH of 7.8). According to the Metal Pollution Index (MPI), 607.0 in CSP and 1050.5 in VDP, presented a high environmental risk, apart from, risk to human health (SQGQI) 35.8 in CSP and 131.5 in VDP. At the same time, CLPPs showed that microbiological communities were selective in taking up substrate groups, in the following order: Carbohydrates > Polymers > Carboxylic acids > Amino acids > Amines/Amides. However, a positive correlation in CSP was only found between both indexes and Amines/Amides (r = 0.46, p < 0.05), and in VDP the D-Galactonic acid-γ-Lactone with the MPI (r = 0.49, p < 0.05), and with the SQGQI (r = 0.45, p < 0.05). Although this behavior was not homogeneous, it was possible to find negative correlations between both indexes and the AWCD with other substrates, influenced by the physicochemical characteristics presented in each studied site. Consequently, according to our findings, a combined effect between the physicochemical characteristics, As, and heavy metals took place, on the metabolic activity, causing alterations to soil functions.
Collapse
Affiliation(s)
- Ángeles Martínez-Toledo
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud, Universidad Autónoma de San Luis Potosí, Coordinación para la Aplicación de la Ciencia y la Tecnología (CIACyT-CIAAS), San Luis Potosí, México
| | - Donaji J González-Mille
- Cátedras Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad Autónoma de San Luis Potosí, México
| | | | - Omar Cruz-Santiago
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud, Universidad Autónoma de San Luis Potosí, Coordinación para la Aplicación de la Ciencia y la Tecnología (CIACyT-CIAAS), San Luis Potosí, México
| | - Antonio Trejo-Acevedo
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública (CRISP-INSP), Tapachula, Chiapas, México
| | - César A Ilizaliturri-Hernández
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud, Universidad Autónoma de San Luis Potosí, Coordinación para la Aplicación de la Ciencia y la Tecnología (CIACyT-CIAAS), San Luis Potosí, México.
| |
Collapse
|
12
|
Wang L, Chen L, Guo B, Tsang DCW, Huang L, Ok YS, Mechtcherine V. Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123317. [PMID: 32947716 DOI: 10.1016/j.jhazmat.2020.123317] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) and arsenic (As) contaminated soil poses severe threats to human health. This study proposes a novel approach for synchronous stabilisation/solidification (S/S) of Pb and As contaminated soil and explains the immobilisation mechanisms in red mud-modified magnesium phosphate cement (MPC). Experimental results show that incorporation of red mud in MPC binder retarded over-rapid reaction and enhanced compressive strength via the formation of (Al,Fe,K)PO4·nH2O compounds as indicated by X-ray diffractometer (XRD) and elemental mapping. The presence of Pb had a marginal effect on the MPC reaction; however, the presence of As suppressed the generation of MgKPO4·6H2O, leading to a significant delay of setting time and a reduction of compressive strength. Extended X-ray absorption fine structure (EXAFS) analysis proved that Pb2+ strongly coordinated with the PO43-, whereas AsO2- gently coordinated with K+. The MPC binder displayed an excellent immobilisation efficiency for Pb (99.9%), but was less effective for As. The use of red mud enhanced the As immobilisation efficacy to 80.5% due to strong complexation between AsO2- and Fe3+. The treated soils fulfilled requirements of metal(loid) leachability and mechanical strength for on-site reuse. Therefore, red mud-modified MPC can be an effective binder for sustainable remediation of Pb and As contaminated soil.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062, Dresden, Germany; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Liang Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yong Sik Ok
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia; Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Viktor Mechtcherine
- Institute of Construction Materials, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|