1
|
Yan L, Xie B, Liu Z, Huang Y, Ding C, Fang W, Lin F, Lin Y, Kang D, Chen F. Association between exposure to 35 environmental pollutants and mortality from cerebrovascular diseases: A long-term prospective study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117802. [PMID: 39875251 DOI: 10.1016/j.ecoenv.2025.117802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/20/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Environmental pollutants have been implicated in various detrimental health effects. However, the specific relationship between environmental pollutant exposure and the risk of cerebrovascular disease mortality remains uncertain. This study aimed to comprehensively explore the potential relationship between environmental pollutant exposure and risk of cerebrovascular disease mortality in the U.S. population. Data on 35 types of environmental pollutant exposure were extracted from the National Health and Nutrition Examination Survey (NHANES). Cerebrovascular disease-related deaths were ascertained from the National Center for Health Statistics, with mortality follow-up data available until December 31, 2019. Weighted univariable and multivariable Cox regression analyses were employed to evaluate the association between environmental pollutants and mortality from cerebrovascular diseases. A total of 11,643 participants were included for organochlorine pesticides, 11,912 for brominated flame retardants, 13,797 for per- and polyfluoroalkyl substances, and 14,560 for phthalates, with a median follow-up of 8.6 years. The average age of participants was approximately 46 years, with male participants comprising around 48 % of the cohort. Four types of organochlorine pesticides (hexachlorobenzene, oxychlordane, 2,2-Bis(4-chlorophenyl)-1,1-dichloroethene, and trans-nonachlor), perfluorooctanoic acid, and mono-n-butyl phthalate were found to be associated with an increased risk of cerebrovascular disease mortality. Furthermore, the composite environmental index derived from these six pollutants also demonstrated a significant correlation with elevated cerebrovascular disease mortality risk. This prospective study provides evidence of an association between certain environmental pollutant exposure (especially for organochlorine pesticides) and risk of cerebrovascular disease mortality. These findings provide new insights into potential prevention strategies for this disease mortality from the perspective of environmental pollutant exposure.
Collapse
Affiliation(s)
- Lingjun Yan
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350209, China
| | - Bingqin Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zilin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yu Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Chenyu Ding
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350209, China
| | - Wenhua Fang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350209, China
| | - Fuxin Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350209, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350209, China
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350209, China.
| | - Fa Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
2
|
Cui F, Deng S, Fu Y, Xu T, Bao S, Wang S, Lin Y, Wang X, Zhao F, Zhang T, Xu S, Zhang Z, Li W, Yang GY, Tang H, Wang J, Sheng X, Tang Y. Maternal phthalates exposure promotes neural stem cell differentiation into phagocytic astrocytes and synapse engulfment via IRE1α/XBP1s pathway. Cell Rep 2025; 44:115126. [PMID: 39752254 DOI: 10.1016/j.celrep.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025] Open
Abstract
Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear. Here, we demonstrate that maternal exposure to MBP enhances neural stem cell (NSC) differentiation into astrocytes with highly expressed C3 and LCN2 in mouse offspring, resulting in increased synapse phagocytosis and cognitive dysfunction. Mechanistically, we find that MBP exposure activates the IRE1α/XBP1s (spliced XBP1) stress response pathway, which regulates key genes involved in astrocyte differentiation (SOX9 and ATF3) and reactivity (C3 and LCN2). Conditional knockout or pharmacological inhibition of IRE1α markedly inhibits NSC differentiation into astrocytes and astrocyte reactivity, attenuates synapse phagocytosis, and improves cognitive function. This phenotype is further recapitulated in a human brain organoid model. Together, these findings unveil the molecular mechanism underlying the neurodevelopmental deficits caused by a widespread environmental pollutant.
Collapse
Affiliation(s)
- Fengzhen Cui
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China; School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shiyu Deng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Yan Fu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Tongtong Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Shuangshuang Bao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Siyi Wang
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Yahang Lin
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Xianghui Wang
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Faming Zhao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shunqing Xu
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Wanlu Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Huanwen Tang
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jixian Wang
- Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Xia Sheng
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China.
| |
Collapse
|
3
|
Adam N, Desroziers E, Hanine R, Bascarane K, Naulé L, Mhaouty-Kodja S. Developmental exposure to environmentally relevant doses of phthalates alters the neural control of male and female reproduction in mice. ENVIRONMENTAL RESEARCH 2024; 258:119476. [PMID: 38909949 DOI: 10.1016/j.envres.2024.119476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The present study aims to analyze the effects of developmental exposure to phthalates at environmentally relevant doses on the neural control of male and female reproduction. For this purpose, C57Bl/6J mice were exposed to di-(2-ethylexyl) phthalate (DEHP) alone (5 or 50 μg/kg/d), or DEHP (5 μg/kg/d) in a phthalate mixture. Exposure through diet started 6 weeks before the first mating and lasted until weaning of litters from the second gestation (multiparous dams). Analyses of offspring born from multiparous dams exposed to DEHP alone or in a phthalate mixture showed that females experienced a delayed pubertal onset, and as adults they had prolonged estrous cyclicity and reduced Kiss1 expression in the preoptic area and mediobasal hypothalamus. Male littermates showed a reduced anogenital distance and delayed pubertal onset compared with controls. However, in adulthood the weight of androgen-sensitive organs and hypothalamic Kiss1 expression were unaffected, suggesting normal functioning of the male gonadotropic axis. Developmental exposure to DEHP alone or in a phthalate mixture reduced the ability of intact males and ovariectomized and hormonally primed females to attract a sexual partner and to express copulatory behaviors. In addition, females were unable to discriminate between male and female stimuli in the olfactory preference test. Social interaction was also impaired in females, while locomotor activity and anxiety-like behavior in both sexes were unaffected by the treatment. The sexual deficiencies were associated with reduced expression of the androgen receptor in the preoptic area and progesterone receptor in the mediobasal hypothalamus, the key regions involved in male and female sexual behavior, respectively. Thus, the neural structures controlling reproduction are vulnerable to developmental exposure to phthalates at environmentally relevant doses in male and female mice. Adult females had an impaired gonadotropic axis and showed more affected behaviors than adult males.
Collapse
Affiliation(s)
- Nolwenn Adam
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Elodie Desroziers
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Rita Hanine
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Karouna Bascarane
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
4
|
Zhang Y, Yang Y, Tao Y, Guo X, Cui Y, Li Z. Phthalates (PAEs) and reproductive toxicity: Hypothalamic-pituitary-gonadal (HPG) axis aspects. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132182. [PMID: 37557049 DOI: 10.1016/j.jhazmat.2023.132182] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Phthalates (PAEs) are widely used for their excellent ability to improve plastic products. As an essential endocrine axis that regulates the reproductive system, whether dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis is involved in reproductive toxicity mediated by environmental endocrine disruptors PAEs has become a hot topic of widespread concern. This study systematically reviewed the adverse effects of multiple PAEs on the HPG axis in different models and objectively discussed the possible underlying mechanisms. The abnormal release of gonadotropin-releasing hormone and gonadotropin, dysfunction of sex hormone receptors and steroid hormone synthesis, and general damage, including cell proliferation, oxidative stress, apoptosis, and autophagy have been confirmed to be involved in this process. Although it is widely established that PAEs induce HPG axis dysfunction, the specific mechanisms involved remain unclear. From a systematic review of relevant publications, it appears that the abnormal expression of peroxisome proliferator-activated, aryl hydrocarbon, and insulin receptors mediated by PAEs is key upstream event that induces these adverse outcomes; however, this inference needs to be further verified. Overall, this study aimed to provide reliable potential biomarkers for future environmental risk assessment and epidemiological investigation of PAEs.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiangyong Guo
- Fuyu County Agricultural Technology Extension Center, Qiqihar 161200, PR China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
5
|
Li L, Xia Y, Chen J, Han X, Hao L, Li D, Liu Y. DBP exposure induces thyroid inflammatory impairment through activating AKT/NF-κB/NLRP3 signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115385. [PMID: 37625334 DOI: 10.1016/j.ecoenv.2023.115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Previous studies exhibited reproductive and neurodevelopmental toxicity in rats exposed to Di-n-butyl phthalate (DBP). However, the effects of DBP exposure on the other endocrine organ are still unclear. This study aimed to assess the impact of DBP exposure on the thyroid of male rats and the associated mechanisms. Here, rats were respectively treated with DBP at 0 (control), 50 (low dose), 250 (medium dose), or 500 (high dose) mg/kg/day dissolved in 1 ml quantity of corn oil by intragastrical administration for two weeks. The results demonstrated that the proliferation and inflammatory response changes were significantly different compared to the control. In vivo DBP is mainly converted to mono-n-butyl phthalate (MBP), an active form producing untoward reactions of DBP exposure. Therefore, for in vitro experiments, we treated the thyroid follicular epithelial cell line (Nthy-ori 3-1) in a temporal gradient using 1 mM MBP. Further in vitro studies showed that MBP exposure upregulated tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), as well as interleukin-1β (IL-1β) by activating AKT/NF-κB/NLRP3 signaling. Meanwhile, we detected that Pellino2 (Peli2) played an essential role in promoting the activation of NLRP3 inflammasome. Briefly speaking, this study confirmed that DBP exposure caused impaired thyroid structure and thyroid inflammation in male rats, which offered new views into the harm of DBP exposure on the endocrine organ.
Collapse
Affiliation(s)
- Lei Li
- Endocrinology Department, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu 224001, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junhan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lanxiang Hao
- Endocrinology Department, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu 224001, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Yanmei Liu
- Endocrinology Department, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu 224001, China.
| |
Collapse
|
6
|
Zhang M, Liu C, Yuan XQ, Cui FP, Miao Y, Yao W, Qin DY, Deng YL, Chen PP, Zeng JY, Liu XY, Wu Y, Li CR, Lu WQ, Li YF, Zeng Q. Individual and joint associations of urinary phthalate metabolites with polycystic ovary and polycystic ovary syndrome: Results from the TREE cohort. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104233. [PMID: 37473789 DOI: 10.1016/j.etap.2023.104233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Phthalates are widespread endocrine disrupting chemicals that adversely affect female reproductive health. We aimed to investigate the individual and joint associations of phthalate exposures measured by repeated urinary metabolites with polycystic ovary (PCO) and polycystic ovary syndrome (PCOS) (96 PCO cases, 96 PCOS cases and 370 controls). In single-pollutant analyses, mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP) and the sum of di(2-ethylhexyl) phthalate (∑DEHP) were associated with increased prevalence of PCO. Mono(2-ethylhexyl) phthalate (MEHP), MBzP and ∑DEHP were associated with elevated prevalence of PCOS. In multiple-pollutant analyses, one-quartile increase of weighted quantile sum index in phthalate metabolite mixtures was associated with increased prevalence of PCO and PCOS, and MBzP was the most major contributor. Our findings suggest a potential role for phthalate exposures, both individually and in mixtures, in the development of PCO and PCOS.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Dan-Yu Qin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
You M, Song Y, Chen J, Liu Y, Chen W, Cen Y, Zhao X, Tao Z, Yang G. Combined exposure to benzo(a)pyrene and dibutyl phthalate aggravates pro-inflammatory macrophage polarization in spleen via pyroptosis involving cathepsin B. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163460. [PMID: 37061049 DOI: 10.1016/j.scitotenv.2023.163460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Humans are often simultaneously exposed to benzo(a)pyrene (BaP) and dibutyl phthalate (DBP) through consumption of food and water. Yet, direct evidence of the link between BaP and DBP co-exposure and the risk of splenic injury is lacking. In the present study, we established the rats and primary splenic macrophages models to evaluate the effects of BaP or/and DBP exposure on spleen and underlying mechanisms. Compared to the single exposure or control groups, the co-exposure group showed more severe spleen damage and higher production of pro-inflammatory cytokines. Co-exposure to BaP and DBP resulted in a 1.79-fold, 2.11-fold and 1.9-fold increase in the M1 macrophage markers iNOS, NLRP3 (pyroptosis marker protein) and cathepsin B (CTSB), respectively, and a 0.8-fold decrease in the M2 macrophage marker Arg1 in vivo. The more prominent effects in perturbation of imbalance in M1/M2 polarization (iNOS, 2.25-fold; Arg1, 0.55-fold), pyroptosis (NLRP3, 1.43-fold), and excess CTSB (1.07-fold) in macrophages caused by BaP and DBP co-exposure in vitro were also found. Notably, MCC950 (the NLRP3-specific inhibitor) treatment attenuated the pro-inflammatory macrophage polarization and following pro-inflammatory cytokine production triggered by BaP and DBP co-exposure. Furthermore, CA-074Me (the CTSB-specific inhibitor) suppressed the macrophages pyroptosis, pro-inflammatory macrophage polarization, and secretion of pro-inflammatory cytokine induced by BaP and DBP co-exposure. In conclusion, this study indicates co-exposure to BaP and DBP poses a higher risk of spleen injury. Pro-inflammatory macrophage polarization regulated by pyroptosis involving CTSB underlies the spleen injury caused by BaP and DBP co-exposure.
Collapse
Affiliation(s)
- Mingdan You
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yawen Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiaodeng Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Zhongfa Tao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Ganghong Yang
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
8
|
Xia Y, Hao L, Li Y, Li Y, Chen J, Li L, Han X, Liu Y, Wang X, Li D. Embryonic 6:2 FTOH exposure causes reproductive toxicity by disrupting the formation of the blood-testis barrier in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114497. [PMID: 36608565 DOI: 10.1016/j.ecoenv.2023.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have revealed nephrotoxicity, hepatotoxicity, subchronic developmental and reproductive toxicity in rats exposed to fluorotelomer alcohol (FTOH). However, the effects of embryonic 6:2 FTOH exposure on the reproductive system of offspring mice remain unclear. The purpose of this study is to explore the reproductive toxic effects of embryonic 6:2 FTOH exposure on offspring male mice and the related molecular mechanisms. Therefore, the pregnant mice were given corn oil or 6:2 FTOH by gavage from gestational days 12.5-21.5. The results demonstrated that embryonic 6:2 FTOH exposure resulted in disrupted testicular structure, low expression of tight junction protein between Sertoli cells (SCs), impaired blood-testis barrier (BTB) formation and maturation, reduced sperm viability and increased malformation, and induced testicular inflammation in the offspring of mice. Further in vitro studies showed that 6:2 FTOH treatment upregulated MMP-8 expression by activating AKT/NF-κB signaling pathway, which in turn enhanced occludin cleavage leading to the disruption of SCs barrier integrity. In summary, this study demonstrated that 6:2 FTOH exposure caused reproductive dysfunction in male offspring through disruption of BTB, which provided new insights into the effects of 6:2 FTOH exposure on the offspring.
Collapse
Affiliation(s)
- Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lanxiang Hao
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Yueyang Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junhan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Li
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yanmei Liu
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China.
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
9
|
Yu M, Tang Q, Lei B, Yang Y, Xu L. Bisphenol AF Promoted the Growth of Uterus and Activated Estrogen Signaling Related Targets in Various Tissues of Nude Mice with SK-BR-3 Xenograft Tumor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15743. [PMID: 36497816 PMCID: PMC9741110 DOI: 10.3390/ijerph192315743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Environmental estrogens can promote the growth, migration, and invasion of breast cancer. However, few studies evaluate adverse health impacts of environmental estrogens on other organs of breast cancer patients. Therefore, the present study investigated the effects of environmental estrogen bisphenol AF (BPAF) on the main organs of female Balb/cA nude mice with SK-BR-3 xenograft tumor by detecting the organ development and gene expression of targets associated with G protein-coupled estrogen receptor 1 (GPER1)-mediated phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinase (MAPK) signaling pathways in hypothalamus, ovary, uterus, liver, and kidney. The results showed that BPAF at 20 mg/kg bw/day markedly increased the uterine weight and the uterine coefficient of nude mice compared to SK-BR-3 bearing tumor control, indicating that BPAF promoted the growth of uterus due to its estrogenic activity. Additionally, BPAF significantly up-regulated the mRNA relative expression of most targets related to nuclear estrogen receptor alpha (ERα) and GPER1-mediated signaling pathways in the hypothalamus, followed by the ovary and uterus, and the least in the liver and kidney, indicating that BPAF activated different estrogen activity related targets in different tissues. In addition, BPAF markedly up-regulated the mRNA expression of GPER1 in all tested tissues, and the molecular docking showed that BPAF could dock into GPER1. Because gene change is an early event of toxicity response, these findings suggested that BPAF might aggravate the condition of breast cancer patients through exerting its estrogenic activity via the GPER1 pathway in various organs.
Collapse
|
10
|
Xia Y, Chen J, Ma T, Meng X, Han X, Li D. Maternal DBP exposure promotes synaptic formation in offspring by activating astrocytes via the AKT/NF-κB/IL-6/JAK2/STAT3 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154437. [PMID: 35278568 DOI: 10.1016/j.scitotenv.2022.154437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
It has been demonstrated that activated astrocytes in the hypothalamus could disrupt GnRH secretion in offspring after maternal di-n-butyl phthalate (DBP) exposure, indicating that the effect of DBP on astrocyte activation and crosstalk between astrocytes and neurons is still worthy of further investigation. In this study, pregnant mice were intragastrically administered DBP dissolved in corn oil from gestational days (GD) 12.5-21.5. Maternal DBP exposure resulted in hippocampal astrocyte activation, abnormal synaptic formation, and reduced autonomic and exploratory behavior in offspring on postnatal day (PND) 22. Further studies identified that mono-n-butyl phthalate (MBP) induced astrocyte activation and proliferation by activating the AKT/NF-κB/IL-6/JAK2/STAT3 signaling pathway. Moreover, upregulated thrombospondin 1 (TSP1) in activated astrocytes regulated synaptic-related protein expression. This study highlights the neurotoxicity of maternal DBP exposure to offspring, which provides new insights into identifying potential molecular targets for the treatment of diseases related to neurological development disorders in children.
Collapse
Affiliation(s)
- Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junhan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China
| | - Xiannan Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
11
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
12
|
Wang X, Lv Z, Han B, Li S, Yang Q, Wu P, Li J, Han B, Deng N, Zhang Z. The aggravation of allergic airway inflammation with dibutyl phthalate involved in Nrf2-mediated activation of the mast cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148029. [PMID: 34082215 DOI: 10.1016/j.scitotenv.2021.148029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Dibutyl phthalate (DBP)-an organic pollutant-is ubiquitous in the environment. DBP as an immune adjuvant is related to the development of multiple allergic diseases. However, the current research involving DBP-induced pulmonary toxicity remains poorly understood. Therefore, this research aimed to explore the adverse effect and potential mechanism of DBP exposure on the lungs in rats. In our study, ovalbumin was used to build a rat model of allergic airway inflammation to study any harmful effect of DBP exposure on lung tissues. Rats were treated by intragastric administration of DBP (500 mg kg-1 or 750 mg kg-1) and/or subcutaneous injection of SFN (4 mg kg-1). The results of histopathological analysis, cell count, and myeloperoxidase showed that DBP promoted the inflammatory damage of lungs. In the lung tissues, the detection of terminal deoxynucleotidyl transferase dUNT nick end labeling and oxidative stress indices showed that DBP significantly increased the level of apoptosis and oxidative stress. Western blot analysis indicated that DBP raised the expression level of thymic stromal lymphopoietin and reduced the nuclear expression level of nuclear factor-erythroid-2-related factor 2 (Nrf2), which was further verified by quantitative real-time PCR. Meanwhile, DBP treatment markedly up-regulated the inflammatory cytokines such as IL-4 and IL-13, and rat mast cell protease-2, a marker secreted by mast cells (MCs). Conversely, sulforaphane, a Nrf2 inducer, ameliorated the pulmonary damage induced by DBP in the above. Altogether, our data provides a new insight into the impacts of the activation of MCs on the DBP-induced pulmonary toxicity as well as the safety evaluation of DBP.
Collapse
Affiliation(s)
- Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
13
|
López-Rodríguez D, Aylwin CF, Delli V, Sevrin E, Campanile M, Martin M, Franssen D, Gérard A, Blacher S, Tirelli E, Noël A, Lomniczi A, Parent AS. Multi- and Transgenerational Outcomes of an Exposure to a Mixture of Endocrine-Disrupting Chemicals (EDCs) on Puberty and Maternal Behavior in the Female Rat. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:87003. [PMID: 34383603 PMCID: PMC8360047 DOI: 10.1289/ehp8795] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The effects of endocrine-disrupting chemicals (EDCs) on fertility and reproductive development represent a rising concern in modern societies. Although the neuroendocrine control of sexual maturation is a major target of EDCs, little is known about the potential role of the hypothalamus in puberty and ovulation disruption transmitted across generations. OBJECTIVES We hypothesized that developmental exposure to an environmentally relevant dose of EDC mixture could induce multi- and/or transgenerational alterations of sexual maturation and maternal care in female rats through epigenetic reprograming of the hypothalamus. We investigated the transmission of a disrupted reproductive phenotype via the maternal germline or via nongenomic mechanisms involving maternal care. METHODS Adult female Wistar rats were exposed prior to and during gestation and until the end of lactation to a mixture of the following 13 EDCs: di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), vinclozolin, prochloraz, procymidone, linuron, epoxynaxole, dichlorodiphenyldichloroethylene, octyl methoxynimmate, 4-methylbenzylidene camphor (4-MBC), butylparaben, and acetaminophen. Perinatally exposed offspring (F1) were mated with unexposed males to generate germ cell (F2) and transgenerationally exposed (F3 and F4) females. Sexual maturation, maternal behavior, and hypothalamic targets of exposure were studied across generations. RESULTS Germ cell (F2) and transgenerationally (F3) EDC-exposed females, but not F1, displayed delayed pubertal onset and altered folliculogenesis. We reported a transgenerational alteration of key hypothalamic genes controlling puberty and ovulation (Kiss1, Esr1, and Oxt), and we identified the hypothalamic polycomb group of epigenetic repressors as actors of this mechanism. Furthermore, we found a multigenerational reduction of maternal behavior (F1-F3) induced by a loss in hypothalamic dopaminergic signaling. Using a cross-fostering paradigm, we identified that the reduction in maternal phenotype was normalized in EDC-exposed pups raised by unexposed dams, but no reversal of the pubertal phenotype was achieved. DISCUSSION Rats developmentally exposed to an EDC mixture exhibited multi- and transgenerational disruption of sexual maturation and maternal care via hypothalamic epigenetic reprogramming. These results raise concerns about the impact of EDC mixtures on future generations. https://doi.org/10.1289/EHP8795.
Collapse
Affiliation(s)
| | - Carlos Francisco Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | | | - Elena Sevrin
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marzia Campanile
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marion Martin
- Lille Neuroscience & Cognition (LilNCog), Institut national de la santé et de la recherche médicale (Inserm), CHU Lille, Lille, France
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Arlette Gérard
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Silvia Blacher
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ezio Tirelli
- Department of Psychology: Cognition and Behavior, University of Liège, Liège, Belgium
| | - Agnès Noël
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liège, Liège, Belgium
| |
Collapse
|
14
|
Ma T, Zhou Y, Xia Y, Jin H, Wang B, Wu J, Ding J, Wang J, Yang F, Han X, Li D. Environmentally relevant perinatal exposure to DBP disturbs testicular development and puberty onset in male mice. Toxicology 2021; 459:152860. [PMID: 34280466 DOI: 10.1016/j.tox.2021.152860] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Di-n-butyl phthalate (DBP) is considered as a potential modifier of puberty. However, different results indicate that DBP plays an accelerated, delayed, or neutral role in the initiation of puberty. Furthermore, whether the effect of DBP on puberty will disrupt the function of reproductive system in the adults is still ambiguous. Therefore, we aimed to investigate the effect of maternal exposure to DBP on the onset of puberty in male offspring mice and the subsequent changes in the development of reproductive system. Here, pregnant mice were treated with 0 (control), 50, 250, or 500 mg/kg/day DBP in 1 mL/kg corn oil administered daily by oral gavage from gestation day (GD) 12.5 to parturition. Compared with the control group, the 50 mg/kg/day DBP group accelerated puberty onset and testicular development were quite remarkable in male offspring mice during early puberty. Furthermore, in 22-day male offspring mice, 50 mg/kg/day DBP induced increased levels of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone in serum, and promoted the expression of steroidogenesis-related genes in the testes. Testicular Leydig cells (LCs) were isolated from the testes of 3-week-old mice and treated with 0 (control), 0.1, 1 mM monobutyl phthalate (MBP, the active metabolite of DBP) for 24 h. Consistent with the in vivo results, the expression of steroidogenesis-related genes and testosterone production were increased in LCs following exposure to 0.1 mM MBP. In adulthood, testes of the male offspring mice exposed to all doses of DBP exhibited adverse morphology compared with the control group. These results demonstrated that maternal exposure to 50 mg/kg/day DBP induced earlier puberty and precocious development of the testis, and eventually damaged the reproductive system in the later life.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China; Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Junli Wang
- Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Fenglian Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
15
|
Ji J, Hou J, Xia Y, Xiang Z, Han X. NLRP3 inflammasome activation in alveolar epithelial cells promotes myofibroblast differentiation of lung-resident mesenchymal stem cells during pulmonary fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166077. [PMID: 33515677 DOI: 10.1016/j.bbadis.2021.166077] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal and agnogenic interstitial lung disease, which has limited therapeutic options. Recently, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome has been demonstrated as an important contributor to various fibrotic diseases following its persistent activation. However, the role of NLRP3 inflammasome in pulmonary fibrogenesis still needs to be further clarified. Here, we found that the activation of the NLRP3 inflammasome was raised in fibrotic lungs. In addition, the NLRP3 inflammasome was found to be activated in alveolar epithelial cells (AECs) in the lung tissue of both IPF patients and pulmonary fibrosis mouse models. Further research revealed that epithelial cells, following activation of the NLRP3 inflammasome, could induce the myofibroblast differentiation of lung-resident mesenchymal stem cells (LR-MSCs). In addition, inhibiting the activation of the NLRP3 inflammasome in epithelial cells promoted the expression of dickkopf-1 (DKK1), a secreted Wnt antagonist. DKK1 was capable of suppressing the profibrogenic differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis. In conclusion, this study not only provides a further in-depth understanding of the pathogenesis of pulmonary fibrosis, but also reveals a potential therapeutic strategy for disorders associated with pulmonary fibrosis.
Collapse
Affiliation(s)
- Jie Ji
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|