1
|
Chen Z, Wang B, Farooq U, Lu T, Qi Z, Zhang L, Miao R. pH-dependent transport of tetracycline in saturated porous media: Single and combined effects of surfactants and iron oxide colloids. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137829. [PMID: 40043401 DOI: 10.1016/j.jhazmat.2025.137829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Herein, sodium dodecyl sulfate (SDS) and rhamnolipid (Rha) were employed to investigate their influences on TC mobility and ferrihydrite colloid-mediated transport of TC at variable pH values (5.0-9.0). In the binary system, surfactants suppressed TC transport because of surfactants' bridging effects; similarly, ferrihydrite colloids also restrained TC mobility stemming from the colloid-associated TC retention. Interestingly, the degree of the inhibitory effects of colloids/surfactants increased with decreasing pH values. Surprisingly, the mutual influences of surfactants and colloids on TC movement displayed a strong pH dependence. Concretely, surfactants strengthened the repressive impacts of ferrihydrite colloids on TC mobility at pH 5.0 caused by the enhanced TC deposition on colloids attached to sand surfaces through the linking effects of surfactants. Nevertheless, at pH 7.0, adding surfactants reduced the repressive effects due to increased TC-colloid mobility and enhanced electrostatic repulsion. Unexpectedly, colloids accelerated the transport of TC with surfactants at pH 9.0 owing to colloids acting as TC carriers, the enhanced TC2-/TC- species mobility, and competitive retention. Notably, SDS exhibited a greater effect on individual TC mobility or colloid-mediated TC transport than Rha at a certain pH, which was related to the different surfactant-binding abilities of sand grains/ferrihydrite colloids.
Collapse
Affiliation(s)
- Zhiwei Chen
- Xiaoqinling Ecological Restoration Field Scientific Observation and Research Station of Yellow River Basin at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Usman Farooq
- Miami College, Jinming Campus, Henan University, Kaifeng 475004, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Li Zhang
- Xiaoqinling Ecological Restoration Field Scientific Observation and Research Station of Yellow River Basin at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Renhui Miao
- Xiaoqinling Ecological Restoration Field Scientific Observation and Research Station of Yellow River Basin at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Duan L, Li M, Liu J, Chen W. Soil colloids can significantly enhance spreading of polybromodiphenyl ethers in groundwater by serving as an effective carrier. J Environ Sci (China) 2025; 147:93-100. [PMID: 39003087 DOI: 10.1016/j.jes.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 07/15/2024]
Abstract
Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.
Collapse
Affiliation(s)
- Lin Duan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Min Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Jiameng Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Liu M, Liu X, Hu Y, Zhang Q, Farooq U, Qi Z, Lu L. Mobility of biochar-derived dissolved organic matter and its effects on sulfamerazine transport through saturated soil porous media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2264-2278. [PMID: 39526417 DOI: 10.1039/d4em00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dissolved organic matter (DOM) released from biochar may impact antibiotic mobility and environmental fate in subsurface environments. Here, DOM samples derived from biochars (BDOM) generated by pyrolyzing corn straw at 300, 450, and 600 °C were employed to elucidate the mobility characteristics of these organic substances and their influences on the transport of sulfamerazine (SMZ, a typical sulfonamide antibiotic) in soil porous media. The results demonstrated that BDOM produced at a lower pyrolysis temperature exhibited greater mobility owing to the weaker hydrophobic and H-bonding interactions between BDOM and soil particles. Additionally and importantly, BDOM facilitated the promotion of SMZ mobility owing to the increased electrostatic repulsion between SMZ- forms and soil grains, the steric hindrance effect induced by the deposition of organic matter, and the competitive retention between SMZ molecules and BDOM. Meanwhile, the promotion effects of BDOM enhanced with improving pyrolysis temperature owing to the promoted deposition of organic matter on soil surfaces and the strengthened electrostatic repulsion. Moreover, the facilitated effects of BDOM on SMZ mobility declined as the solution pH values were raised from 5.0 to 9.0 or the flow rate increased from 0.18 to 0.51 cm min-1. This trend was due to decreased deposition competition and the steric effect caused by decreased retention of BDOM on soil particles. Furthermore, the cation-bridging effect emerged as an important mechanism contributing to the promotion effects of BDOM when the solution contained divalent cations (Cu2+ or Ca2+). Moreover, a two-site non-equilibrium model was used to interpret the controlling mechanisms for the effects of BDOM on the transport of SMZ. Findings from this work highlight that biochar-derived dissolved organic matter can remarkably affect the environmental behaviors of antibiotics in aquatic environments.
Collapse
Affiliation(s)
- Mengya Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Xiaochen Liu
- Hydrogeology and Engineering Geology Institute of Hubei Geological Bureau, Jinzhou, 434020, P. R. China
| | - Yalu Hu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Laotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, P. R. China.
| |
Collapse
|
4
|
Wang J, Han Z, Zhang C, Wang M, Li H, Gao D. Effects of soil colloids on adsorption and migration of benzo(a)pyrene on contaminated sites under runoff infiltration processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124150. [PMID: 38735466 DOI: 10.1016/j.envpol.2024.124150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
In the environment, soil colloids are widespread and possess a significant adsorption capacity. This makes them capable of transporting different pollutants, presenting a potential risk to human and ecological well-being. This study aimed to examine the adsorption and co-migration characteristics of benzo(a)pyrene (BaP) and soil colloids in areas contaminated with organic substances, utilizing both static and dynamic batch experiments. In the static adsorption experiments, it was observed that the adsorption of BaP onto soil colloids followed the pseudo-second-order kinetic model (R2 = 0.966), and the adsorption isotherm conformed to the Langmuir model (R2 = 0.995). The BaP and soil colloids primarily formed bonds through π-π interactions and hydrogen bonds. The dynamic experimental outcomes revealed that elevating colloids concentration contributed to increased BaP mobility. Specifically, when the concentration of soil colloids in influent was 500 mg L-1, the mobility of BaP was 23.2 % compared to that without colloids of 13.4 %. Meanwhile, the lowering influent pH value contributed to increased BaP mobility. Specifically, when the influent pH value was 4.0, the mobility of BaP was 30.1 %. The BaP's mobility gradually declined as the initial concentration of BaP in polluted soil increased. Specifically, when the initial concentration of BaP in polluted soil was 5.27 mg kg-1, the mobility of BaP was 39.1 %. This study provides a support for controlling BaP pollution in soil and groundwater.
Collapse
Affiliation(s)
- Jianlong Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China.
| | - Zhimeng Han
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Changhe Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; China Academy of Building Research, Beijing, 100013, China
| | - Meiqi Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Hongxin Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Dawen Gao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
5
|
Xiao R, Huang D, Du L, Yin L, Gao L, Chen H, Tang Z. Transport and retention of ciprofloxacin with presence of multi-walled carbon nanotubes in the saturated porous media: impacts of ionic strength and cation types. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:153. [PMID: 38587707 DOI: 10.1007/s10653-024-01927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/20/2024] [Indexed: 04/09/2024]
Abstract
The environmental fate and risks of ciprofloxacin (CIP) in the subsurface have raised intensive concerns. Herein, the transport behaviors of CIP in both saturated quartz sand and sand/multi-walled carbon nanotubes (MWCNTs) mixtures under different solution ionic strength of the solution and coexisting cation types were investigated. Batch adsorption experiments highlighted growing adsorptive capacity for CIP with the increasing content of MWCNTs in the MWCNTs-quartz sand mixtures (from 0.5% to 1.5%, w/w). Breakthrough curves (BTCs) of CIP in the MWCNTs-quartz sand mixtures were well fitted by the two-site chemical nonequilibrium model (R2 > 0.833). The estimated retardation factors for CIP increased from 9.68 to 282 with growing content of MWCNTs in the sand column, suggesting the presence of MWCNTs significantly inhibited the transport of CIP in saturated porous media. Moreover, the values of retardation factors are negatively correlated with the ionic strength and higher ionic strength could facilitate the transport of CIP in the saturated porous media. Compared with monovalent cations (Na+), the presence of divalent cations (Ca2+) significantly facilitated the transport of CIP in the columns due to the complexation between CIP and Ca2+ as well as deposition of MWCNTs aggregates on the sand surface. Results regarding CIP retention in columns indicated that MWCNTs could enhance the accumulation of CIP in the layers close to the influent of sand columns, while they could hinder upward transport of CIP to the effluent. This study improves our understanding for transport behaviors and environmental risk assessments of CIP in the saturated porous media with MWCNTs.
Collapse
Affiliation(s)
- Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Zhousha Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
6
|
Jiang Y, Zhang Y, Liang Y, Liu W, Wang Y, Yang J, Qiu R, Di HJ, A D. Migration of nanocolloid-carrying antibiotics in paddy red soil during the organic fertilization process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168204. [PMID: 37918725 DOI: 10.1016/j.scitotenv.2023.168204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Soil nanocolloids are highly mobile and can act as carriers for the transport of antibiotics to a wider and deeper range of soils; however, the inherent behavior and mechanism of nanocolloid-carrying antibiotics in soil remain unclear. In this study, we conducted a comprehensive investigation of the migration of antibiotics in paddy red soil during the organic fertilization process using four common soil nanocolloids: kaolin (KL), montmorillonite (MT), hematite (HT), and humic acid (HA). The results showed that nanocolloid carriers promoted the intra-medium (from soil surface to the bottom) and inter-medium transfer (from organic fertilizers to soil) of antibiotics. The migration mechanisms of antibiotics carried by the nanocolloids differed: the phenolic hydroxyl and carboxyl groups of HA esterified with the carboxyl groups of quinolones and phenolic hydroxyl groups of tetracyclines, respectively, while the oxygen atoms of HT formed stabilizing complexes with the soil, which could further adsorb antibiotics using their functional group-rich complexes. Smaller antibiotic compounds were adsorbed in the metal oxide interlayer of MT via cation exchange, whereas KL adsorbed antibiotics on its metal oxide surface layer in the same way but were susceptible to desorption. Additionally, nanocolloids changed the adsorption capacity of soil for antibiotics and influenced the enrichment of dominant/functional bacteria (e.g., Burkholderiaceae) and thus varied the vertical distribution of antibiotics in soil. These findings enhance our understanding of the migration behavior and mechanism of nanocolloid-carrying antibiotics in red paddy soil and provide a theoretical foundation for preventing and controlling antibiotic pollution in arable systems.
Collapse
Affiliation(s)
- Yu Jiang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yifei Zhang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanyuan Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wen Liu
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yu Wang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiewen Yang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hong J Di
- Soil & Physical Science Department, Lincoln University, Lincoln, 7647, Christchurch, New Zealand
| | - Dan A
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
7
|
Chen J, Xu B, Lu L, Zhang Q, Lu T, Farooq U, Chen W, Zhou Q, Qi Z. Insight into the inhibitory roles of ionic liquids in the adsorption of levofloxacin onto clay minerals. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Nie Y, Zhang Y, Nie X, Tian X, Dai C, Shi J. Colloidal iron species driven enhanced H 2O 2 decomposition into hydroxyl radicals for efficient removal of methylene blue from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130949. [PMID: 36860077 DOI: 10.1016/j.jhazmat.2023.130949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Colloids are wide-spread in natural waters and colloid-facilitated transport via adsorption was established as the most important mechanism for the mobilization of aqueous contaminants. This study reports another possible, but reasonable, role of colloids for the contaminants driven by redox reactions. Under the same conditions (pH 6.0, 0.3 ml 30% H2O2, and 25 °C), the degradation efficiencies of methylene blue (MB) at 240 min over Fe colloid, Fe ion, Fe oxide and Fe(OH)3 were 95.38%, 42.66%, 4.42% and 9.40%. We suggested that, Fe colloid can promote the H2O2 based in-situ chemical oxidation process (ISCO) compared with other iron species such as Fe(Ⅲ) ion, Fe oxide and Fe(OH)3 in natural water. Furthermore, the MB removal via adsorption by Fe colloid was only 1.74% at 240 min. Hence, the occurrence, behavior and fate of MB in Fe colloid containing natural water system mainly depends on the reduction-oxidation rather than adsorption-desorption process. Based on the mass balance of colloidal iron species and characterization of iron configurations distribution, Fe oligomers were the active and dominant components for Fe colloid-driven enhanced H2O2 activation among three types of Fe species. The quick and steady conversion of Fe(III) to Fe(II) was proven to be reason why Fe colloid can efficiently react with H2O2 to produce hydroxyl radicals.
Collapse
Affiliation(s)
- Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yuge Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xueyu Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Jianbo Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
9
|
Lu T, Chen J, Zhang Q, Zhang M, Li Y, Qi Z. Surfactant-mediated mobility of carbon dots in saturated soil: comparison between anionic and cationic surfactants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37622-37633. [PMID: 36572776 DOI: 10.1007/s11356-022-24878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Understanding the mobility, retention, and fate of carbon dots (CDs) is critical for the risk management of this emerging carbon material. However, the influences of surfactants on CDs' transport through subsurface media are still poorly understood. Herein, column experiments were conducted to explore the different influences of an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the CDs' transport in water-saturated soil. In the Na+ background electrolyte, both surfactants facilitated the transport of CDs at pH 7.0. The trend stemmed from steric hindrance, a decline in the straining effect, and competitive deposition between CDs and surfactant molecules. Additionally, SDBS increased the electrostatic repulsion of CDs and soil. Interestingly, in the divalent cation background electrolytes (i.e., Ca2+ or Cu2+), SDBS suppressed CDs' mobility, whereas CTAB had the opposite effect. The transport-inhibited effect of SDBS was mainly due to anionic surfactant ion (DBS-) precipitation with metal cations and the formation of adsorbed SDBS-Cu2+/Ca2+-CDs complexes. The enhanced effect of CTAB resulted from the CTAB coating on soil grains, which suppressed the cation bridging between CDs and soil. Furthermore, the magnitude of the SDBS promotion effect was pH-dependent. Surprisingly, CTAB could inhibit CDs' mobility at pH 9.0, owing to the binding cationic surfactant's strong hydrophobicity effect on the soil surface. Moreover, the experimental breakthrough curves of CDs were well described using a two-site transport model. Overall, the observations obtained from this study shed light on the relative mobility of CDs with different surfactants in typical groundwater conditions.
Collapse
Affiliation(s)
- Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiuyan Chen
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Mengli Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan, 250014, China
| | - Zhichong Qi
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
10
|
Wei Q, Song F, Lu T, Farooq U, Chen W, Zhang Q, Qi Z. Mobility of tetracycline in saturated porous media: Single and combined functions of ligands and ferrihydrite colloids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Wei Q, Chen J, Zhang Q, Lu T, Farooq U, Chen W, Qi Z. Insight into the effect of phosphate on ferrihydrite colloid-mediated transport of tetracycline in saturated porous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80693-80704. [PMID: 35727510 DOI: 10.1007/s11356-022-21536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Colloid-mediated contaminant mobility is absolutely critical for the environmental behavior of contaminants such as antibiotics in water resources. In this study, the influences of phosphate (a commonly inorganic ligand in the environment) on the ferrihydrite colloid-mediated transport of tetracycline (TC, a typical antibiotic) in porous media were investigated. In the absence of colloids, phosphate promoted TC mobility due to the competitive deposition of phosphate and TC on the sand surface as well as the electrostatic repulsion. Interestingly, ferrihydrite colloids could inhibit TC transport; however, the inhibitory effect of the colloids was weakened by the addition of phosphate. This phenomenon stemmed from colloid-associated TC mobility, the increased electrostatic repulsion induced by adsorbed phosphate, and deposition site competition effect. Another interesting finding was that the impacts of phosphate on the colloid-mediated mobility of TC were pH-dependent. That is, phosphate exhibited a weaker effect on the inhibitory role of ferrihydrite colloids in TC mobility at pH 5.0 than that at pH 7.0; specially, ferrihydrite colloids acted as possible carriers of TC and facilitated antibiotic transport at pH 9.0. The observations were ascribed to different influences of phosphate on the binding affinity of ferrihydrite toward TC and the mobility of free TC under different pH conditions. Therefore, the findings of this study provide useful information about the fate and co-transport of antibiotics and natural mineral colloids in the presence of inorganic ligands in the aquatic environment.
Collapse
Affiliation(s)
- Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Taotao Lu
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Chen J, Zhang Q, Zhu Y, Li Y, Chen W, Lu T, Qi Z. Biosurfactant-mediated mobility of graphene oxide nanoparticles in saturated porous media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1883-1894. [PMID: 36148869 DOI: 10.1039/d2em00297c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There is currently a lack of scientific understanding regarding how bio-surfactants influence the mobility of graphene oxide (GO) through saturated porous media. In this study, the transport characteristics of GO through porous media with different heterogeneities (i.e., quartz sand and goethite-coated sand) after the addition of saponin (a representative bio-surfactant) were investigated. The results demonstrated that saponin (3-10 mg L-1) promoted GO mobility in both types of porous media at pH 7.0. This trend was attributed to the competitive deposition between nanoparticles and bio-surfactant molecules for attachment sites, the enhanced electrostatic repulsion, the decreased strain, the presence of steric effects induced by the adsorbed saponin, and the increase in the hydrophilicity of nanoparticles. Intriguingly, saponin promoted GO mobility in goethite-coated sand (i.e., chemically heterogeneous porous media) to a greater extent than that in sand (i.e., relatively homogeneous porous media) when saponin concentrations increased, which stemmed from the differences in the extent of the deposition site competition for saponin on the two porous media and the electrostatic repulsion between GO and the porous media. Furthermore, a cation-bridging mechanism was also involved in the ability of saponin to increase GO mobility when the electrolyte solution was 0.1 mM Cu2+. Moreover, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and the colloid transport model were applicable to elucidate the mobility properties of GO with or without saponin in porous media. The findings from this work highlight the important status of bio-surfactants in the fate of colloidal carbon-based nanomaterials in subsurface systems.
Collapse
Affiliation(s)
- Jiuyan Chen
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yanxiang Li
- The Testing Center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan 250014, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
13
|
The mechanisms involved into the inhibitory effects of ionic liquids chemistry on adsorption performance of ciprofloxacin onto inorganic minerals. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Zhao P, Geng T, Guo Y, Meng Y, Zhang H, Zhao W. Transport of E. coli colloids and surrogate microspheres in the filtration process: Effects of flow rate, media size, and media species. Colloids Surf B Biointerfaces 2022; 220:112883. [DOI: 10.1016/j.colsurfb.2022.112883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/15/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
|
15
|
Chen J, Xie L, Zhang Q, Wei Q, Farooq U, Chen W, Miao R, Qi Z. `Anionic surfactant-assisted the transport of carbon dots through saturated soil and its variation with aqueous chemistry. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Influence of Soil Colloids on Ni Adsorption and Transport in the Saturated Porous Media: Effects of pH, Ionic Strength, and Humic Acid. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural colloids are widely distributed in soil and groundwater. Due to their specific characteristics, colloids can actively involve various transport contaminants, resulting in a complicated fate and the transport of heavy metals to the environment. This study investigated the effects of soil colloids on the adsorption and transport of Ni2+ in saturated porous media under different conditions, including pH, ion strength (IS), and humic acid (HA), because these indexes are non-negligible in the fates of various organic or inorganic matters in the subsurface environment. The results indicate that Ni2+ adsorption by soil colloids slightly increased from 17% to 25% with the increase of pH from 5.5 to 7.5 at the IS of 30 mmol·L−1, whilst it significantly reduced from 55% to 17% with the increase of IS from 0 to 30 mmol·L−1 at a pH of 5.5. Both Langmuir and Freundlich models can fit the adsorption isotherms of Ni2+ on soil colloids and quartz sand. According to the column experiment, the presence of soil colloids increased the initial penetration rate, but could not increase the final transport efficiency of Ni2+ in the effluent. The presence of soil colloids has weakened the effect of IS on Ni2+ transport in the sand column. Moreover, this experiment implies that HA remarkably decreased the Ni2+ transport efficiency from 71.3% to 58.0% in the presence of soil colloids and that there was no significant difference in the HA effect on the Ni2+ transport in the absence of soil colloids.
Collapse
|
17
|
Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions. SUSTAINABILITY 2022. [DOI: 10.3390/su14074003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Newly designed mesoporous brushite-metakaolin-based geopolymer materials were examined with an idea for using this material as a potential adsorbent for Pb(II) removal from aqueous solutions. As a starting component for geopolymer synthesis, a natural raw kaolinite clay with the addition of 2 wt.%, 4 wt.%, 6 wt.%, 8 wt.%, and 10 wt.% of pure brushite was used. Phase, structural, morphological, and adsorption properties of newly synthesized mesoporous brushite-metakaolin geopolymer materials were examined in detail by the means of XRPD, FTIR, SEM-EDS, BET/BJH, and ICP-OES methods. The ICP-OES results showed that the synthesized material samples with 2 wt.%, 4 wt.%, and 6 wt.% of brushite possess significant adsorption properties and the mechanisms of the adsorption process can be attributed to chemisorption. The most notable result is that brushite-metakaolin-geopolymer with 2 wt.% of brushite have the best efficiency removal, more than 85% of Pb(II).
Collapse
|
18
|
Mangla D, Sharma A, Ikram S. Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127946. [PMID: 34891019 DOI: 10.1016/j.jhazmat.2021.127946] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 05/27/2023]
Abstract
This review gives a proper dedicated understanding of the contamination level, sources, and biological dangers related with different classes of antibiotics in consumable water. The literature on the adsorption of antibiotics is relatively uncommon and developments are still under progression, especially for adsorbents other than activated carbon. Also, adsorption technique has already been applied vastly for water treatment. Notwithstanding significant progressions, designed natural wastewater treatment frameworks are just bearably effective (48-77%) in the expulsion of antibiotics. Hence, the compilation of available literature especially for antibiotic adsorption was much needed. Moreover, the conventional adsorbents have some limitations of their own. In this study, the main focus was laid on unconventional adsorbents such as Biochar, Biopolymers, Carbon Nanotubes, Clays, Metal-Organic Frameworks, Microalgae and some miscellaneous adsorbents. The mechanism of adsorption by the unconventional adsorbents includes electrostatic interactions, π-π bonding, weak Van der Waal forces, H-bonding and surface complexation, which was similar to that of conventional adsorbents and hence these unconventional adsorbents can easily replace the costlier conventional adsorbents with even better adsorption efficiency. This paper also briefly discussed the thermodynamics, adsorption equilibrium; isotherm and kinetics of adsorption. This review paper seizes the critical advances of adsorption phenomenon at various interfaces and lays the foundation for current scenario associated with further progress. Besides, this study would help in understanding the antibiotic adsorption, cost estimation and future goals that will attract the young the researchers of this field.
Collapse
Affiliation(s)
- Divyanshi Mangla
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Atul Sharma
- Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
19
|
Wei Q, Zhou K, Chen J, Zhang Q, Lu T, Farooq U, Chen W, Li D, Qi Z. Insights into the molecular mechanism of tetracycline transport in saturated porous media affected by low-molecular-weight organic acids: Role of the functional groups and molecular size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149361. [PMID: 34358745 DOI: 10.1016/j.scitotenv.2021.149361] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The transport of tetracycline possessed a great challenge in its environmental applications. This study looked at how various low-molecular-weight organic acids (LMWOAs) affect the transport of tetracycline in environments. To that end, four LMWOAs were employed in experiments; acetic acid, malonic acid, malic acid, and citric acid. It was observed that LMWOAs promoted the tetracycline passage in presence of various experimental environments. The LMWOAs steric hindrance and deposition competition facilitated tetracycline transport at pH 5.0. The other deposition mechanism for tetracycline was the electrostatic repulsion between tetracycline and sand enhanced by deprotonated LMWOAs at pH 7.0. Moreover, the enhanced effects of LMWOAs on tetracycline mobility were intensively dependent on LMWOA type with more functional groups (e.g. carboxyl and hydroxyl groups) and larger molecular size supported stronger deposition competition, steric hindrance as well as electrostatic repulsion. Additionally, cation-bridging played a vital role for the enhanced effects of LMWOAs on tetracycline transport with divalent cations (e.g., Ca2+ and Pb2+). Interestingly, tetracycline exhibited a higher mobility in the presence of Ca2+ relative to Pb2+ regardless of LMWOAs-free or LMWOAs-addition. This phenomenon was attributed to the fact that Pb2+ has a greater affinity with tetracycline and LMWOAs than Ca2+. Furthermore, under the shadow of numerous LMWOAs, the non-equilibrium two site transportation model was employed to investigate the movement of tetracycline in porous saturated media. The present study suggests that LMWOAs may be important considerations in assessing the antibiotic passage in soil as well as groundwater.
Collapse
Affiliation(s)
- Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Kun Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth D-95440, Germany
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Deliang Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
20
|
Wang M, Zhang Q, Lu T, Chen J, Wei Q, Chen W, Zhou Y, Qi Z. Colloid-mediated transport of tetracycline in saturated porous media: Comparison between ferrihydrite and montmorillonite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113638. [PMID: 34488115 DOI: 10.1016/j.jenvman.2021.113638] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Given the ubiquitous mineral (e.g., clays and iron oxides) playing critical roles in impacting the fate of antibiotics in the subsurface environment, the effects of two mineral colloids (i.e., ferrihydrite and montmorillonite) on tetracycline (TC, a representative of antibiotic) transport in sand columns were investigated in this study. Interestingly, the results clearly showed that ferrihydrite colloids inhibited TC transport, while montmorillonite colloids enhanced TC mobility under neutral conditions (pH 7.0). This phenomenon resulted from the positively charged ferrihydrite colloids with weak mobility, which assisted TC deposition; besides, providing additional deposition sites for TC by the deposited ferrihydrite colloids was another important mechanism. In contrast, the transport-enhancement effect of montmorillonite on TC was attributed to the strong binding affinity of TC to clay particles as well as the competition between colloids and TC for deposition sites on sand surfaces. Moreover, the transport-inhibition effect of ferrihydrite at pH 7.0 was greater than that at pH 5.0, mainly due to more colloid-associated TC under neutral conditions. Surprisingly, ferrihydrite colloids could act as carriers of antibiotics and enhanced TC transport at pH 9.0. Because the surface charge of colloids was altered to negative and could break through the column. Meanwhile, the transport-enhancement effect of montmorillonite decreased with increasing pH from 5.0 to 9.0, resulting from the decrease of colloid-adsorbed TC. Furthermore, colloid-mediated transport of TC was influenced by ionic strength, which affected the aggregation characteristics of colloids and the binding affinities of TC to minerals. These findings provide critical information for assessing the risks of antibiotics in aquatic ecosystems where abundant natural minerals are present.
Collapse
Affiliation(s)
- Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China; Department of Hydrology, University of Bayreuth, Bayreuth, D, 95440, Germany
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
21
|
Wang T, Meng Z, Sheng L, Liu Z, Cao X, Wang X, Sun X. Insights into the mechanism of co-adsorption between tetracycline and nano-TiO2 on coconut shell porous biochar in binary system. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Zhao K, Gao L, Zhang Q, Shang J. Accumulation of sulfamethazine and ciprofloxacin on grain surface decreases the transport of biochar colloids in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125908. [PMID: 33984789 DOI: 10.1016/j.jhazmat.2021.125908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The increasing amount of antibiotics entering the environment through manure usage and sludge application from wastewater treatment plants (WWTP) attracts much concern due to their potential threat to ecological security and human health. When biochar, a soil and water amendment, is introduced into the soil for remediation, the antibiotics are usually co-present with the biochar colloids (BC) or pre-accumulated in soils. However, little is known about the effect of antibiotics on the behavior of BC. Column experiments were conducted at three different pH values to study the effect of sulfamethazine (SMT) or ciprofloxacin (CIP) on BC transport. Under certain conditions (co-present in the influent and pre-sorbed on quartz sand), large numbers of cation and zwitterion forms of the less mobile CIP at pH 5 and 7 led to less negatively-charged surface of BC and quartz sand, resulted in higher BC retention compared to the highly mobile SMT. The decrease in BC transport became more significant with a higher amount of SMT or CIP pre-sorption. Therefore, when biochar is applied into soils polluted by antibiotics, the pH-dependency and the loading amount of antibiotics in soil matrix should be paid attention to as they might affect the transport of BC and the related facilitated-contaminants transport.
Collapse
Affiliation(s)
- Kang Zhao
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ling Gao
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qianru Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Zhao P, Zhao Y, Cui L, Tian Y, Zhang Z, Zhu Q, Zhao W. Multiple antibiotics distribution in drinking water and their co-adsorption behaviors by different size fractions of natural particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145846. [PMID: 33631569 DOI: 10.1016/j.scitotenv.2021.145846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In recent years, natural particles in drinking water have attracted attention due to their carry of toxic organic matter. However, the adsorption behavior of multiple antibiotics at very low concentrations on different sized particles has not been revealed. Here, the content of 17 antibiotics in water samples collected from four process stages of the water supply plant was detected. Results showed the concentration of antibiotics in water plant was in the range of 0-69.24 ng L-1. Characterization of natural particles obtained directly from raw water of waterworks showed that the surface of large particles (>1 μm) was rougher and the composition was more complex than that of small particles (0.05-1 μm). Besides, the adsorption experiments of four antibiotics (nalidixic acid (NAL), trimethoprim (TMP), roxithromycin (ROX), and penicillin G potassium salt (PG)) on small (0.05-1 μm) and large (>1 μm) natural particles were studied. The results indicated that in the binary antibiotic system, the competition and synergy between antibiotics made a greater proportion of antibiotics soluble in water comparing with single systems, and the particle-water partition coefficient (kp-w) of the total antibiotics ranged from 1.13-1.78 was reduced to 0.57-0.84. The competitive adsorption of antibiotics appeared in the binary system showed that ROX and PG had a higher adsorption capacity than NAL and TMP. Furthermore, in the binary antibiotic systems, small particles played an important role in adsorption, suggesting the urgency of their removing. This work could help predict the possible risks of drinking water and provide some insights into future drinking water treatment.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuwei Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Limin Cui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhe Zhang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiqi Zhu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
24
|
Wang M, Song Y, Zhang H, Lu T, Chen W, Li W, Qi W, Qi Z. Insights into the mutual promotion effect of graphene oxide nanoparticles and tetracycline on their transport in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115730. [PMID: 33007596 DOI: 10.1016/j.envpol.2020.115730] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
In this study, batch and column tests were performed to investigate the co-transport of graphene oxide (GO) nanoparticles and tetracycline in saturated porous media under various solution chemistry conditions. Research indicated that GO and tetracycline had mutual promotion effect on their transport in the porous media under all the tested conditions, which was ascribed to the high adsorption capacity of tetracycline onto GO and the increased electrostatic repulsion as well as their competition for deposition sites on sand surfaces. Interestingly, the mutually promoting function of GO and tetracycline under acidic conditions was greater than that under alkaline conditions, the dominant mechanism was that the increased solution pH decreased the sorption of tetracycline onto GO and weakened the deposition site competition. Furthermore, the mutually promoting effect of GO and tetracycline was Na+ or Ca2+ concentration-dependent. Specially, increased Ca2+ concentration weakened the promoting effect of GO on tetracycline transport but magnified the promoting effect of tetracycline on GO transport. This is because higher Ca2+ concentration could cause a decrease in the adsorption of tetracycline on GO and facilitate more tetracycline molecules to occupy the deposition sites on sand surfaces. Additionally, sodium dodecyl sulfate had enhancement effect on co-transport of GO and tetracycline. Findings from this study clearly indicated that antibiotics and carbon based nanomaterials may transport together under various solution chemistry conditions, and consequently affect their fates in aquatic environments.
Collapse
Affiliation(s)
- Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yumeng Song
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Wenwen Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Wei Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
25
|
Zhu Y, Yang Q, Lu T, Qi W, Zhang H, Wang M, Qi Z, Chen W. Effect of phosphate on the adsorption of antibiotics onto iron oxide minerals: Comparison between tetracycline and ciprofloxacin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111345. [PMID: 32961496 DOI: 10.1016/j.ecoenv.2020.111345] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
With the broadly application of antibiotics to treat infectious diseases in humans and animals, antibiotic contaminants such as tetracycline (TC) and ciprofloxacin (CIP) have been detected in soil environments, where iron oxide minerals and phosphate are ubiquitous. To date, the influence of phosphate on the adsorption behaviors of TC/CIP onto iron oxides is still poorly understood. In this study, the effects of phosphate on the adsorptions of TC and CIP onto iron oxide minerals were investigated. Adsorption isotherms showed that the adsorption affinities of TC and CIP onto the three iron oxide minerals were in the order of goethite > hematite > magnetite with or without phosphate, the trend was dominated by different surface area and amount of surface hydroxyl groups of iron oxide minerals. Meanwhile, TC contains more functional groups than CIP for bonding, which resulted in greater adsorption affinity of three iron oxides to TC than that to CIP. Interestingly, phosphate weakened TC adsorption, while enhanced CIP adsorption, on the three iron oxides. This observation was ascribed to that phosphate anion enhanced the surface negative charge of iron oxides, which reinforced the electrostatic repulsion between iron oxides and negatively charged TC, also reinforced the electrostatic attraction between iron oxides and positively charged CIP. Furthermore, the inhibitory effect of phosphate on TC adsorption was dramatically enhanced at high pH, while the promoting effect of phosphate on CIP adsorption was slightly changed with various pH. Our results highlight the importance of phosphate in exploring the environmental fate of antibiotics in natural environment.
Collapse
Affiliation(s)
- Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qingxin Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth D, 95440, Germany
| | - Wei Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|