1
|
Ma Q, Zhou Y, Parales RE, Jiao S, Ruan Z, Li L. Effects of herbicide mixtures on the diversity and composition of microbial community and nitrogen cycling function on agricultural soil: A field experiment in Northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125965. [PMID: 40043878 DOI: 10.1016/j.envpol.2025.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Herbicide mixtures application is a widespread and effective practice in modern agriculture; however, a knowledge gap exists regarding the potential ecotoxicological effects of herbicide mixtures in agricultural systems. Here, the effects of various doses of herbicide mixtures (atrazine, nicosulfuron, and mesotrione) under different varieties of maize cultivation on the structure and function of microbial communities and soil chemical parameters were clarified through field experiments. The results showed that the application of herbicide mixtures increased the bacterial and fungal community alpha diversity at jointing and maturity, indicating a prolonged effect of the herbicide mixtures. Moreover, herbicide mixtures alter the composition of bacterial and fungal communities, with sensitive taxa suppressed and herbicide-tolerant taxa enriched. The herbicide mixtures significantly reduced the abundances of Bacillus even at lower doses, but Penicillum was enriched. FAPROTAX analysis and quantitative PCR (qPCR) results showed that herbicide mixtures inhibited the soil nitrogen-cycle process and related genes AOA-amoA, AOB-amoA, and nifH at maize seedling stage. Moreover, network analysis showed that low concentrations of the herbicide mixtures increased bacterial interactions while high concentrations inhibited them, which indicated that the network complexity may be herbicide concentration dependent. A synthetic community (SynCom) consisting of six bacterial strains was established for the biodegradation of the herbicide mixtures based on the analysis of the bacterial network, which resulted in an increase in the degradation efficiency of nicosulfuron by 15.90%. Moreover, potted maize experiment showed that the addition of the SynCom alleviated the toxic effects of herbicide mixtures on the plants. In summary, this study provides a comprehensive perspective for assessing the ecological risk at taxonomic and functional levels and the biodegradation approach of herbicide mixtures residue on agricultural soils in Northeastern China.
Collapse
Affiliation(s)
- Qingyun Ma
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yiqing Zhou
- State Key Laboratory of Efficient Utilization of Arable Land in China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Siyu Jiao
- State Key Laboratory of Efficient Utilization of Arable Land in China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar, 843300, PR China
| | - Zhiyong Ruan
- State Key Laboratory of Efficient Utilization of Arable Land in China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Iqbal S, Begum F, Nguchu BA, Claver UP, Shaw P. The invisible architects: microbial communities and their transformative role in soil health and global climate changes. ENVIRONMENTAL MICROBIOME 2025; 20:36. [PMID: 40133952 PMCID: PMC11938724 DOI: 10.1186/s40793-025-00694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
During the last decades, substantial advancements have been made in identifying soil characteristics that impact the composition of the soil microbiome. However, the impacts of microorganisms on their respective soil habitats have received less attention, with the majority of prior research focusing on the contributions of microbes to the dynamics of soil carbon and nitrogen. Soil microbiome plays a critical role in soil habitats by influencing soil fertility, crop yields, and biotic and abiotic stress tolerance. In addition to their roles in nutrient cycling and organic matter transformations, soil microorganisms affect the soil environment via many biochemical and biophysical mechanisms. For instance, the soil microbiome plays an essential role in soil mechanical stability and pore connectivity and regulates the flow of nutrients, oxygen, and water. Similarly, soil microbiomes perform various critical functions in an ecosystem, which leads to carbon stabilization for a long time and could serve as microbiome engineering targets for global climate change mitigation. In this review, considering soil structure, hydrology, and chemistry, we outline how microorganisms alter the soil ecosystem. Further, this study investigates the mechanisms by which feedback loops can be generated between microorganisms and soil. Moreover, we analyze the potential of microbially mediated modifications of soil properties as a viable strategy to address soil threats and global climate challenges. In addition, the current study propose a deep learning-based approach to develop a synthetic microbial consortium to improve soil health and mitigate climate change.
Collapse
Affiliation(s)
- Sajid Iqbal
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Farida Begum
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Benedictor Alexander Nguchu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Uzabakiriho Pierre Claver
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| |
Collapse
|
3
|
Dargiri SA, Naeimi S, Nekouei MK. Enhancing wheat resilience to salinity: the role of endophytic Penicillium chrysogenum as a biological agent for improved crop performance. BMC PLANT BIOLOGY 2025; 25:354. [PMID: 40102779 PMCID: PMC11921529 DOI: 10.1186/s12870-025-06388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Salinity stress severely impacts wheat productivity, necessitating effective strategies to enhance crop resilience. This study investigates the potential of Penicillium chrysogenum CM022 as a biological agent to alleviate the impact of salinity stress on wheat (Triticum aestivum L.). P. chrysogenum CM022 improved germination of wheat seeds, particularly under salinity of 150 mM NaCl. Fungal inoculation significantly improved plant growth in terms of root length, plant height, and seedling biomass, even under high salinity conditions. Notably, inoculated plants preserved photosynthetic pigments and reduced oxidative damage, evidenced by lower levels of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), compared to non-inoculated controls. The inoculated plants also exhibited enhanced proline and soluble sugar contents, which are crucial for osmotic adjustment under stress. Additionally, P. chrysogenum CM022 significantly increased the antioxidant capacity of wheat, boosting total phenolic and flavonoid contents, and enhancing antioxidant enzyme activity under high salinity. These findings underscore the potential of P. chrysogenum CM022 in improving wheat tolerance to salinity stress through physiological, biochemical, and antioxidant defense mechanisms, supporting its use in sustainable agricultural practices to mitigate the adverse effects of salinity on crop production.
Collapse
Affiliation(s)
- Soheila Aghaei Dargiri
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, 19858-13111, Iran
| | - Shahram Naeimi
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, 19858-13111, Iran.
| | | |
Collapse
|
4
|
Li M, Hu J, Wei Z, Jousset A, Pommier T, Yu X, Xu Y, Shen Q. Synthetic microbial communities: Sandbox and blueprint for soil health enhancement. IMETA 2024; 3:e172. [PMID: 38868511 PMCID: PMC10989119 DOI: 10.1002/imt2.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 06/14/2024]
Abstract
We summarize here the use of SynComs in improving various dimensions of soil health, including fertility, pollutant removal, soil-borne disease suppression, and soil resilience; as well as a set of useful guidelines to assess and understand the principles for designing SynComs to enhance soil health. Finally, we discuss the next stages of SynComs applications, including highly diverse and multikingdom SynComs targeting several functions simultaneously.
Collapse
Affiliation(s)
- Mei Li
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jie Hu
- Department of Microbial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Thomas Pommier
- UMR INRAE 1418 Ecologie MicrobienneUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
5
|
Ahammed GJ, Shamsy R, Liu A, Chen S. Arbuscular mycorrhizal fungi-induced tolerance to chromium stress in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121597. [PMID: 37031849 DOI: 10.1016/j.envpol.2023.121597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Chromium (Cr) is one of the toxic elements that harms all forms of life, including plants. Industrial discharges and mining largely contribute to Cr release into the soil environment. Excessive Cr pollution in arable land significantly reduces the yield and quality of important agricultural crops. Therefore, remediation of polluted soil is imperative not only for agricultural sustainability but also for food safety. Arbuscular mycorrhizal fungi (AMF) are widespread soil-borne endophytic fungi that form mutualistic relationships with the vast majority of land plants. In mycorrhizal symbiosis, AMF are largely dependent on the host plant-supplied carbohydrates and lipids, in return, AMF aid the host plants in acquiring water and mineral nutrients, especially phosphorus, nitrogen and sulfur from distant soils, and this distinguishing feature of the two-way exchange of resources is a functional requirement for such mutualism and ecosystem services. In addition to supplying nutrients and water to plants, the AMF symbiosis enhances plant resilience to biotic and abiotic stresses including Cr stress. Studies have revealed vital physiological and molecular mechanisms by which AMF alleviate Cr phytotoxicity and aid plants in nutrient acquisition under Cr stress. Notably, plant Cr tolerance is enhanced by both the direct effects of AMF on Cr stabilization and transformation, and the indirect effects of AMF symbiosis on plant nutrient uptake and physiological regulation. In this article, we summarized the research progress on AMF and associated mechanisms of Cr tolerance in plants. In addition, we reviewed the present understanding of AMF-assisted Cr remediation. Since AMF symbiosis can enhance plant resilience to Cr pollution, AMF may have promising prospects in agricultural production, bioremediation, and ecological restoration in Cr-polluted soils.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China
| | - Rubya Shamsy
- Microbiology Program, Department of Mathematics & Natural Sciences, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China
| |
Collapse
|
6
|
Singh AK, Zhu X, Chen C, Yang B, Pandey VC, Liu W, Singh N. Investigating the recovery in ecosystem functions and multifunctionality after 10 years of natural revegetation on fly ash technosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162598. [PMID: 36882140 DOI: 10.1016/j.scitotenv.2023.162598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Technogenic soil (technosol) developed from coal fly ash (FA) landfilling has been considered a critical environmental problem worldwide. Drought-tolerant plants often naturally grow on FA technosol. However, the impact of these natural revegetations on the recovery of multiple ecosystem functions (multifunctionality) remains largely unexplored and poorly understood. Here we assessed the response of multifunctionality, including nutrient cycling (i.e., carbon, nitrogen, and phosphorus), carbon storage, glomalin-related soil protein (GRSP), plant productivity, microbial biomass carbon (MBC), microbial processes (soil enzyme activities), and soil chemical properties (pH and electrical conductivity; EC) to FA technosol ten years' natural revegetation with different multipurpose species in Indo-Gangetic plain, and identified the key factors regulating ecosystem multifunctionality during reclamation. We evaluated four dominant revegetated species: Prosopis juliflora, Saccharum spontaneum, Ipomoea carnea, and Cynodon dactylon. We found that natural revegetation initiated the recovery of ecosystem multifunctionality on technosol, with greater recovery under higher biomass-producing species (P. juliflora and S. spontaneum) than lower biomass-producing ones (I. carnea and C. dactylon). The individual functions (11 of the total 16 variables) at higher functionality (70 % threshold) also exhibited this pattern among revegetated stands. Multivariate analyses revealed that most of the variables (except EC) significantly correlated with multifunctionality, indicating the capability of multifunctionality to consider the tradeoff between individual functions. We further performed structural equation modeling (SEM) to detect the effect of vegetation, pH, nutrients, and microbial activity (MBC and microbial processes) on ecosystem multifunctionality. Our SEM model predicted 98 % of the variation in multifunctionality and confirmed that the indirect effect of vegetation mediated by microbial activity is more important for multifunctionality than their direct effect. Collectively, our results demonstrate that FA technosol revegetation with high biomass-producing multipurpose species promotes ecosystem multifunctionality and emphasizes the significance of microbial activity in the recovery and maintenance of ecosystem attributes.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India.
| | - Xiai Zhu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Chunfeng Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Vimal Chandra Pandey
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India; Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India.
| | - Wenjie Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Nandita Singh
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
7
|
Wani KI, Naeem M, Aftab T. Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120350. [PMID: 36209933 DOI: 10.1016/j.envpol.2022.120350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal (HM) pollution has become a serious global problem due to the non-biodegradable nature of the HMs and their persistence in the environment. Agricultural soil is a non-renewable resource that requires careful management so that it can fulfill the increasing demand for agricultural food production. However, different anthropogenic activities have resulted in a large-scale accumulation of HMs in soil which is detrimental to soil and plant health. Due to their ubiquity, increased bioavailability, toxicity, and non-biodegradable nature, HM contamination has formed a roadblock in the way of achieving food security, safety, and sustainability in the future. Chromium (Cr), specifically Cr(VI) is a highly bioavailable HM with no proven role in the physiology of plants. Chromium has been found to be highly toxic to plants, with its toxicity also influenced by chemical speciation, which is in turn controlled by different factors, such as soil pH, redox potential, organic matter, and microbial population. In this review, the different factors that influence Cr speciation were analyzed and the relationship between biogeochemical transformations of Cr and its bioavailability which may be beneficial for devising different Cr remediation strategies has been discussed. Also, the uptake and transport mechanism of Cr in plants, with particular reference to sulfate and phosphate transporters has been presented. The biological solutions for the remediation of Cr contaminated sites which offer safe and viable alternatives to old-style physical and chemical remediation strategies have been discussed in detail. This review provides theoretical guidance in developing suitable approaches for the better management of these remediation strategies.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
8
|
Lun YE, Abdullah SRS, Hasan HA, Othman AR, Kurniawan SB, Imron MF, Al Falahi OA, Said NSM, Sharuddin SSN, Ismail N'I. Integrated emergent-floating planted reactor for textile effluent: Removal potential, optimization of operational conditions and potential forthcoming waste management strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114832. [PMID: 35303596 DOI: 10.1016/j.jenvman.2022.114832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.
Collapse
Affiliation(s)
- Yeow Eu Lun
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia.
| | - Osama Abrahiem Al Falahi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Fallujah Hospital, Anbar Health Directorate, Iraqi Ministry of Health, Iraq.
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Shilatul Najwa Sharuddin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
9
|
Coban O, De Deyn GB, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022; 375:abe0725. [PMID: 35239372 DOI: 10.1126/science.abe0725] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices.
Collapse
Affiliation(s)
- Oksana Coban
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Gerlinde B De Deyn
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Martine van der Ploeg
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Boorboori MR, Zhang HY. Arbuscular Mycorrhizal Fungi Are an Influential Factor in Improving the Phytoremediation of Arsenic, Cadmium, Lead, and Chromium. J Fungi (Basel) 2022; 8:176. [PMID: 35205936 PMCID: PMC8879560 DOI: 10.3390/jof8020176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing expansion of mines, factories, and agricultural lands has caused many changes and pollution in soils and water of several parts of the world. In recent years, metal(loid)s are one of the most dangerous environmental pollutants, which directly and indirectly enters the food cycle of humans and animals, resulting in irreparable damage to their health and even causing their death. One of the most important missions of ecologists and environmental scientists is to find suitable solutions to reduce metal(loid)s pollution and prevent their spread and penetration in soil and groundwater. In recent years, phytoremediation was considered a cheap and effective solution to reducing metal(loid)s pollution in soil and water. Additionally, the effect of soil microorganisms on increasing phytoremediation was given special attention; therefore, this study attempted to investigate the role of arbuscular mycorrhizal fungus in the phytoremediation system and in reducing contamination by some metal(loid)s in order to put a straightforward path in front of other researchers.
Collapse
Affiliation(s)
| | - Hai-Yang Zhang
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou 234000, China;
| |
Collapse
|
11
|
Niu XY, Wang SK, Zhou J, Di DL, Sun P, Huang DZ. Inoculation With Indigenous Rhizosphere Microbes Enhances Aboveground Accumulation of Lead in Salix integra Thunb. by Improving Transport Coefficients. Front Microbiol 2021; 12:686812. [PMID: 34421844 PMCID: PMC8371752 DOI: 10.3389/fmicb.2021.686812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The application of plant-microbial remediation of heavy metals is restricted by the difficulty of exogenous microbes to form large populations and maintain their long-term remediation efficiency. We therefore investigated the effects of inoculation with indigenous heavy-metal-tolerant rhizosphere microbes on phytoremediation of lead (Pb) by Salix integra. We measured plant physiological indexes and soil Pb bioavailability and conducted widespread targeted metabolome analysis of strains to better understand the mechanisms of enhance Pb accumulation. Growth of Salix integra was improved by both single and co-inoculation treatments with Bacillus sp. and Aspergillus niger, increasing by 14% in co-inoculated plants. Transfer coefficients for Pb, indicating mobility from soil via roots into branches or leaves, were higher following microbial inoculation, showing a more than 100% increase in the co-inoculation treatment over untreated plants. However, Pb accumulation was only enhanced by single inoculation treatments with either Bacillus sp. or Aspergillus niger, being 10% greater in plants inoculated with Bacillus sp. compared with uninoculated controls. Inoculation mainly promoted accumulation of Pb in aboveground plant parts. Superoxide dismutase and catalase enzyme activities as well as the proline content of inoculated plants were enhanced by most treatments. However, soil urease and catalase activities were lower in inoculated plants than controls. Proportions of acid-soluble Pb were 0.34 and 0.41% higher in rhizosphere and bulk soil, respectively, of plants inoculated with Bacillus sp. than in that of uninoculated plants. We identified 410 metabolites from the microbial inoculations, of which more than 50% contributed to heavy metal bioavailability; organic acids, amino acids, and carbohydrates formed the three major metabolite categories. These results suggest that both indigenous Bacillus sp. and Aspergillus niger could be used to assist phytoremediation by enhancing antioxidant defenses of Salix integra and altering Pb bioavailability. We speculate that microbial strains colonized the soil and plants at the same time, with variations in their metabolite profiles reflecting different living conditions. We also need to consider interactions between inocula and the whole microbial community when applying microbial inoculation to promote phytoremediation.
Collapse
Affiliation(s)
- Xiao-Yun Niu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Shao-Kun Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jian Zhou
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Dong-Liu Di
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Pai Sun
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Da-Zhuang Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Singh U, Akhtar O, Mishra R, Zoomi I, Kehri HK, Pandey D. Arbuscular Mycorrhizal Fungi: Biodiversity, Interaction with Plants, and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|