1
|
Hu Y, He J, Ma Y, Ge L, Lou B, Fang X, Wang H, Xu Y. Arsenic and metabolic diseases: New insights from mesenchymal stem cells. Toxicol Appl Pharmacol 2025; 498:117299. [PMID: 40081540 DOI: 10.1016/j.taap.2025.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Arsenic is a common toxic metal contaminant in the environment. Humans are exposed to arsenic through drinking water, air, food, and medical treatment. Chronic exposure to arsenic is a well-documented risk factor of type 2 diabetes and a potential risk factor of osteoporosis and obesity. Mesenchymal stem cells (MSCs) are adult stem cells with multiple differentiation potential and immunomodulatory capacity. These cells have shown therapeutic potential in experimental studies of metabolic diseases by differentiating into parenchymal cells of damaged tissues, such as islet-like cells and osteoblasts, and resisting chronic inflammation. Meanwhile, when key functional genes were suppressed in MSCs, experimental animals showed metabolic disease-related changes, such as insulin resistance and obesity. Arsenic exposure inhibits the differentiation capacity of MSCs, leads to changes in the synthesis and secretion of immunomodulatory factors, and induces cellular senescence and apoptosis. Therefore, dysfunction and death of MSCs may be important pathogenesis of arsenic-related metabolic diseases. Future studies on the functional changes of MSCs in arsenic-related metabolic diseases and the role of MSCs in arsenic pathogenesis are worthwhile. In addition, the mechanism of arsenic-induced dysfunction in MSCs needs to be explored in depth.
Collapse
Affiliation(s)
- Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Jialin He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Yue Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Lili Ge
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Bin Lou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Xin Fang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
2
|
Grajal-Puche A, Driver EM, Propper CR. Review: Abandoned mines as a resource or liability for wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171017. [PMID: 38369145 DOI: 10.1016/j.scitotenv.2024.171017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Abandoned Mine Lands (AMLs) are areas where previous mineral extraction or processing has occurred. Hundreds of thousands of AMLs exist within the United States. Contaminated runoff from AMLs can negatively affect the physiology and ecology of surrounding terrestrial and aquatic habitats and species and can be detrimental to human health. As a response, several U.S. federal and state agencies have launched programs to assess health risks associated with AMLs. In some cases, however, AMLs may be beneficial to specific wildlife taxa. There is a relative paucity of studies investigating the physiological and ecological impacts of AMLs on wildlife. We conducted a systematic review examining published scientific articles that assessed the negative and positive impacts of AMLs across invertebrate and vertebrate taxa. We also offer suggestions on evaluating AMLs to develop effective mitigation strategies that reduce their negative tole on human and wildlife communities. Peer-reviewed publications were screened across WebofScience, PubMed and Google Scholar databases. Abandoned mine lands were generally detrimental to wildlife, with adverse effects ranging from bioaccumulation of heavy metals to decreased ecological fitness. Conversely, AMLs were an overall benefit to imperiled bat populations and could serve as tools for conservation. Studies were unevenly distributed across different wildlife taxa groups, echoing the necessity for additional taxonomically diverse research. We suggest that standardized wildlife survey methods be used to assess how different species utilize AMLs. Federal and state agencies can use these surveys to establish effective remediation plans for individual AML sites and minimize the risks to both wildlife and humans.
Collapse
Affiliation(s)
- Alejandro Grajal-Puche
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86004, United States of America
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86004, United States of America.
| |
Collapse
|
3
|
Feng J, Qin W, Wang Z, Zhai Z, Ma R, Lv H, Jiang Y. The effects of 2-aminoethoxydiphenyl borate and dantrolene on rat bones treated with NaAsO2. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1247-1249. [PMID: 34117862 DOI: 10.1093/abbs/gmab075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jia Feng
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Wenjuan Qin
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Zhen Wang
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Zijing Zhai
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rongji Ma
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Hailong Lv
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Yufeng Jiang
- School of Preclinical Medicine, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|