1
|
Bajtai E, Kiss C, Bakos É, Langó T, Lovrics A, Schád É, Tisza V, Hegedűs K, Fürjes P, Szabó Z, Tusnády GE, Szakács G, Tantos Á, Spisák S, Tóvári J, Füredi A. Therapy-induced senescence is a transient drug resistance mechanism in breast cancer. Mol Cancer 2025; 24:128. [PMID: 40312750 PMCID: PMC12044945 DOI: 10.1186/s12943-025-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Therapy-induced senescence (TIS) is considered a permanent cell cycle arrest following DNA-damaging treatments; however, its irreversibility has recently been challenged. Here, we demonstrate that escape from TIS is universal across breast cancer cells. Moreover, TIS provides a reversible drug resistance mechanism that ensures the survival of the population, and could contribute to relapse. METHODS TIS was induced in four different breast cancer cell line with high-dose chemotherapy and cultured until cells escaped TIS. Parental, TIS and repopulating cells were analyzed by bulk and single-cell RNA sequencing and surface proteomics. A genetically engineered mouse model of triple-negative breast cancer was used to prove why current senolytics cannot overcome TIS in tumors. RESULTS Screening the toxicity of a diverse panel of FDA-approved anticancer drugs revealed that TIS meditates resistance to half of these compounds, despite their distinct mechanism of action. Bulk and single-cell RNA sequencing, along with surface proteome analysis, showed that while parental and repopulating cells are almost identical, TIS cells are significantly different from both, highlighting their transient nature. Furthermore, investigating dozens of known drug resistance mechanisms offered no explanation for this unique drug resistance pattern. Additionally, TIS cells expressed a gene set associated with immune evasion and a potential KRAS-driven escape mechanism from TIS. CONCLUSION Our results reveal that TIS, as a transient drug resistance mechanism, could contribute to overcome the immune response and to relapse by reverting to a proliferative stage.
Collapse
Affiliation(s)
- Eszter Bajtai
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Semmelweis University Doctoral School, Budapest, 1085, Hungary
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary
| | - Csaba Kiss
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Éva Bakos
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Tamás Langó
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Anna Lovrics
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Éva Schád
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Viktória Tisza
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Károly Hegedűs
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Semmelweis University Doctoral School, Budapest, 1085, Hungary
| | - Péter Fürjes
- Institute of Technical Physics and Materials Science, HUN-REN Centre of Energy Research, Budapest, 1121, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6725, Hungary
| | - Gábor E Tusnády
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, 1085, Hungary
| | - Gergely Szakács
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Center for Cancer Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Ágnes Tantos
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Sándor Spisák
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| | - József Tóvári
- Semmelweis University Doctoral School, Budapest, 1085, Hungary.
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary.
| | - András Füredi
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
- Semmelweis University Doctoral School, Budapest, 1085, Hungary.
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary.
- Institute of Technical Physics and Materials Science, HUN-REN Centre of Energy Research, Budapest, 1121, Hungary.
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, Budapest, 1034, Hungary.
| |
Collapse
|
2
|
Dong Z, Luo Y, Yuan Z, Tian Y, Jin T, Xu F. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol Cancer 2024; 23:181. [PMID: 39217404 PMCID: PMC11365203 DOI: 10.1186/s12943-024-02096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular senescence (CS), a permanent and irreversible arrest of the cell cycle and proliferation leading to the degeneration of cellular structure and function, has been implicated in various key physiological and pathological processes, particularly in cancer. Initially, CS was recognized as a barrier to tumorigenesis, serving as an intrinsic defense mechanism to protect cells from malignant transformation. However, increasing evidence suggests that senescent cells can promote tumor progression to overt malignancy, primarily through a set of factors known as senescence-associated secretory phenotypes (SASPs), including chemokines, growth factors, cytokines, and stromal metalloproteinases. These factors significantly reshape the tumor microenvironment (TME), enabling tumors to evade immune destruction. Interestingly, some studies have also suggested that SASPs may impede tumor development by enhancing immunosurveillance. These opposing roles highlight the complexity and heterogeneity of CS and SASPs in diverse cancers. Consequently, there has been growing interest in pharmacological interventions targeting CS or SASPs in cancer therapy, such as senolytics and senomorphics, to either promote the clearance of senescent cells or mitigate the harmful effects of SASPs. In this review, we will interpret the concept of CS, delve into the role of SASPs in reshaping the TME, and summarize recent advances in anti-tumor strategies targeting CS or SASPs.
Collapse
Affiliation(s)
- Zening Dong
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Zhangchen Yuan
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianqiang Jin
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Feng Xu
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Xing J, Wang Y, Peng A, Li J, Niu X, Zhang K. The role of actin cytoskeleton CFL1 and ADF/cofilin superfamily in inflammatory response. Front Mol Biosci 2024; 11:1408287. [PMID: 39114368 PMCID: PMC11303188 DOI: 10.3389/fmolb.2024.1408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Dong San Dao Xiang, Taiyuan, China
| |
Collapse
|
4
|
Vielee ST, Isibor J, Buchanan WJ, Roof SH, Patel M, Meaza I, Williams A, Toyoda JH, Lu H, Wise SS, Kouokam JC, Young Wise J, Aboueissa AM, Cai J, Cai L, Wise JP. Female Rat Behavior Effects from Low Levels of Hexavalent Chromium (Cr[VI]) in Drinking Water Evaluated with a Toxic Aging Coin Approach. APPLIED SCIENCES 2024; 14:6206. [DOI: 10.3390/app14146206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
We are facing a critical aging crisis, with geriatric populations (65+) growing to unprecedented proportions and ~4 million people (a 6.5-fold increase) expected to become centenarians by 2050. This is compounded by environmental pollution, which affects individuals of all ages and contributes to age-related diseases. As we have a limited understanding of how environmental pollutants affect older populations distinctly from younger populations, these longer-lived geriatric populations present a key knowledge gap. To address this knowledge gap, we employ a “Toxic Aging Coin” approach: heads consider how age impacts chemical toxicity, and tails consider how chemicals act as gerontogens—or how they accelerate biological aging. We employed this approach to investigate hexavalent chromium (Cr[VI]) impacts on female rats exposed to 0.05 or 0.1 mg Cr(VI)/L in drinking water for 90 days; these are the maximum contaminant levels (i.e., the highest levels permitted) from the World Health Organization and U.S. Environmental Protection Agency, respectively. During exposure, rats performed a battery of behavior assays to assess grip strength, locomotor coordination, anxiety, spatial memory, sociability, and social novelty preference. We observed age differences in Cr(VI) neurotoxicity, with grip strength, locomotor function, and spatial memory in middle-aged females being particularly affected. We further compared these results in females to results in males, noting many sex differences, especially in middle-aged rats. These data emphasize the need to consider age and sex as variables in toxicology and to revisit drinking water regulations for Cr(VI).
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jessica Isibor
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - William J. Buchanan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Spencer H. Roof
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Maitri Patel
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Idoia Meaza
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Aggie Williams
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jennifer H. Toyoda
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Haiyan Lu
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sandra S. Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - J. Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jamie Young Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - John P. Wise
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
5
|
Zhang Y, Hu G, Zhang Q, Hong S, Su Z, Wang L, Wang T, Yu S, Yuan F, Zhu X, Jia G. Cellular senescence mediates hexavalent chromium-associated lung function decline: Insights from a structural equation Model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123947. [PMID: 38608856 DOI: 10.1016/j.envpol.2024.123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
There is sufficient evidence suggesting that exposure to hexavalent chromium [Cr(VI)] can cause a decline in lung function and the onset of lung diseases. However, no studies have yet explored the underlying mechanisms of these effects from various perspectives such as systemic inflammation, oxidative stress, and cellular senescence, simultaneously. This cross-sectional study was conducted among 304 workers engaged in chromate production and processing in China. Urine was used for detection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α), while RNA and DNA extraction from peripheral blood cells was used for detection of mRNA, telomere length, and ribosomal DNA copy numbers (rDNA CNs). A 2.7-fold elevation in blood chromate (Cr) corresponded to a 7.86% (95% CI: 2.57%, 13.42%) rise in urinary 8-OHdG and a 4.14% (0.02%, 8.42%) increase in urinary 8-iso-PGF2α, indicating that exposure to chromates can cause oxidative stress. Furthermore, strong correlations emerged between blood Cr concentration and mRNA levels of P16, P21, TP53, and P15 in the cellular senescence pathway. Simultaneously, a 2.7-fold elevation in blood Cr associated with a -5.47% (-8.72%, -2.1%) change in telomere length, while rDNA CNs (5S, 5.8S, 18S, and 28S) changed by -3.91% (-7.99%, 0.34%), -9.4% (-15.73%, -2.6%), -8.06% (-14.01%, -1.69%), and -5.86% (-10.67%, -0.78%), respectively. Structural equation model highlighted that cellular senescence exerted significant indirect effects on Cr(VI)-associated lung function decline, with a mediation proportion of 23.3%. This study provided data supporting for 8-iso-PGF2α, telomere length, and rDNA CNs as novel biomarkers of chromate exposure, emphasizing the significant role of cellular senescence in the mechanism underlying chromate-induced lung function decline.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Li Wang
- Department of Occupational and Environmental Health Science, Baotou Medical College, Baotou, Inner Mongolia 014030, China
| | - Tiancheng Wang
- Department of Clinical Laboratory, Third Hospital of Peking University, Beijing 100191, China
| | - Shanfa Yu
- Henan Institute for Occupational Medicine, Zhengzhou City, Henan Province 450052, China
| | - Fang Yuan
- Department of Occupational Health and Radiological Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, Beijing 102308, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
6
|
Ma Y, Li S, Ye S, Luo S, Wei L, Su Y, Zeng Y, Shi Y, Bian H, Xiao F. The role of miR-222-2p in exosomes secreted by hexavalent chromium-induced premature senescent hepatocytes as a SASP component. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123535. [PMID: 38365080 DOI: 10.1016/j.envpol.2024.123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
With the development of world industrialization, the environmental pollution of hexavalent chromium [Cr(VI)] is becoming an increasingly serious problem. In particular, the mechanisms by which long-term and low-dose exposure to Cr(VI) leading the development of related cancers are not well understood. As senescent cells gradually lose their ability to proliferate and divide, they will not be malignantly transformed. However, Senescence-associated secretory phenotype (SASP) released by senescent cells into the cellular microenvironment can act on neighboring cells. Since SASP has a bidirectional regulatory role in the malignant transformation of cells. Hence, It is very necessary to identified the composition and function of SASP which secreted by Cr(VI) induced senescent L02 hepatocytes (S-L02). Exosomes, a vesicle-like substances released extracellularly after the fusion of intracellular multivesicular bodies with cell membrane, are important components of SASP and contain a large number of microRNAs (miRNAs). By establishing Cr(VI)-induced S-L02 model, we collected the exosomes from the supernatants of S-L02 and L02 culture medium respectively, and screened out the highly expressed miRNAs in the exosomes of S-L02, namely the new SASP components. Among them, the increase of miR-222-5p was the most significant. It was validated that as SASP, miR-222-5p can inhibit the proliferation of L02 and S-L02 hepatocytes and at the same time accelerate the proliferation and migration ability of HCC cells. Further mechanistic studies revealed that miR-222-5p attenuated the regulatory effect of protein phosphatase 2A subunit B isoform R2-α (PPP2R2A) on Akt via repressing its target gene PPP2R2A, causing reduced expressions of forkhead box O3 (FOXO3a), p27 and p21, and finally increasing the proliferation of HCC cells after diminishing the negative regulation of on cell cycle. This study certainly provides valuable laboratory evidence as well as potential therapeutic targets for the prevention and further personalized treatment of Cr(VI)-associated cancers.
Collapse
Affiliation(s)
- Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Shuzi Ye
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Sijia Luo
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Lai Wei
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Ying Su
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuan Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yan Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Huanfeng Bian
- Shajing Sub-Center of Public Health Service, Bao'an District, 518125, Shenzhen, Guangdong, China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
7
|
Heng W, Yong Y, Jianhang H, Hua W. A novel method for effective solidifying chromium and preparing crude stainless steel from multi-metallic electroplating sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133068. [PMID: 38043422 DOI: 10.1016/j.jhazmat.2023.133068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Electroplating sludge (ES) is a globally prevalent hazardous waste that primarily contains Cr, Cu, Ni, and Fe. However, the residual Cr phases within the slag potentially poses an environmental risk in current vitrification. A novel method for effective recovering and solidifying Cr in ES is proposed in this work. ES was desulfurized and subsequently co-treated with ferrosilicon (Fe-Si) and spent carbon anode (SCA) for enhancing the recovery of Cr, Cu, Ni, and Fe to prepare crude stainless steel. Under optimal conditions, the recovery ratios of Cr, Cu, Ni, and Fe reached 96.96%, 99.45%, 99.92%, and 99.20%, respectively, signifying improvements of 21.4%, 0.2%, 1.5%, and 2.8%, respectively, compared with existing research. Meanwhile, the fluoride in SCA yielded CaF2, further progressing to the Si-Ca-F-Na-Al-O phase, with a solidification ratio of 97.87%. The Cr leaching content of the residual Cr-Cu-S phase in the slag remained below 5 mg/L across a pH range of 2-4, demonstrating enhanced stability compared to prior alloy, oxide, and chemically dissolved phases. An innovative approach for solidify Cr by forming matte holds implications for the treatment of Cr-containing solid wastes such as chromium slag, tannery sludge and stainless steel slag.
Collapse
Affiliation(s)
- Wang Heng
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, China; National Local Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yu Yong
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, China; National Local Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China.
| | - Hu Jianhang
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, China; National Local Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Wang Hua
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, China; National Local Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Liu Y, Wang P, Hu W, Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed Pharmacother 2023; 164:114896. [PMID: 37210897 DOI: 10.1016/j.biopha.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
Oxidative stress is one of the hallmarks of cancer. Tumorigenesis and progression are accompanied by elevated reactive oxygen species (ROS) levels and adaptive elevation of antioxidant expression levels. Peroxiredoxins (PRDXs) are among the most important antioxidants and are widely distributed in a variety of cancers. PRDXs are involved in the regulation of a variety of tumor cell phenotypes, such as invasion, migration, epithelial-mesenchymal transition (EMT) and stemness. PRDXs are also associated with tumor cell resistance to cell death, such as apoptosis and ferroptosis. In addition, PRDXs are involved in the transduction of hypoxic signals in the TME and in the regulation of the function of other cellular components of the TME, such as cancer-associated fibroblasts (CAFs), natural killer (NK) cells and macrophages. This implies that PRDXs are promising targets for cancer treatment. Of course, further studies are needed to realize the clinical application of targeting PRDXs. In this review, we highlight the role of PRDXs in cancer, summarizing the basic features of PRDXs, their association with tumorigenesis, their expression and function in cancer, and their relationship with cancer therapeutic resistance.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Pu Wang
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
9
|
Vielee ST, Wise JP. Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence. Brain Sci 2023; 13:500. [PMID: 36979310 PMCID: PMC10046019 DOI: 10.3390/brainsci13030500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3-4 decades. This swelling geriatric population will place critical stress on healthcare infrastructures due to accompanying increases in age-related diseases and comorbidities. While much research focused on long-lived individuals seeks to answer questions regarding how to age healthier, there is a deficit in research investigating what aspects of our lives accelerate or exacerbate aging. In particular, heavy metals are recognized as a significant threat to human health with links to a plethora of age-related diseases, and have widespread human exposures from occupational, medical, or environmental settings. We believe heavy metals ought to be classified as a class of gerontogens (i.e., chemicals that accelerate biological aging in cells and tissues). Gerontogens may be best studied through their effects on the "Hallmarks of Aging", nine physiological hallmarks demonstrated to occur in aged cells, tissues, and bodies. Evidence suggests that cellular senescence-a permanent growth arrest in cells-is one of the most pertinent hallmarks of aging and is a useful indicator of aging in tissues. Here, we discuss the roles of heavy metals in brain aging. We briefly discuss brain aging in general, then expand upon observations for heavy metals contributing to age-related neurodegenerative disorders. We particularly emphasize the roles and observations of cellular senescence in neurodegenerative diseases. Finally, we discuss the observations for heavy metals inducing cellular senescence. The glaring lack of knowledge about gerontogens and gerontogenic mechanisms necessitates greater research in the field, especially in the context of the global aging crisis.
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - John P. Wise
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
10
|
Kouokam JC, Meaza I, Wise JP. Inflammatory effects of hexavalent chromium in the lung: A comprehensive review. Toxicol Appl Pharmacol 2022; 455:116265. [PMID: 36208701 PMCID: PMC10024459 DOI: 10.1016/j.taap.2022.116265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
Besides smoking, lung cancer can be caused by other factors, including heavy metals such as cadmium, nickel, arsenic, beryllium and hexavalent chromium [Cr(VI)], which is used in multiple settings, resulting in widespread environmental and occupational exposures as well as heavy use. The mechanism by which Cr(VI) causes lung cancer is not completely understood. Currently, it is admitted chromosome instability is a key process in the mechanism of Cr(VI)-induced cancer, and previous studies have suggested Cr(VI) impacts the lung tissue in mice by triggering tissue damage and inflammation. However, the mechanism underlying Cr(VI)-induced inflammation and its exact role in lung cancer are unclear. Therefore, this review aimed to systematically examine previous studies assessing Cr(VI)-induced inflammation and to summarize the major inflammatory pathways involved in Cr(VI)-induced inflammation. In cell culture studies, COX2, VEGF, JAK-STAT, leukotriene B4 (LTB4), MAPK, NF-ҡB and Nrf2 signaling pathways were consistently upregulated by Cr(VI), clearly demonstrating that these pathways are involved in Cr(VI)-induced inflammation. In addition, Akt signaling was also shown to contribute to Cr(VI)-induced inflammation, although discrepant findings were reported. Few mechanistic studies were performed in animal models, in which Cr(VI) upregulated oxidative pathways, NF-kB signaling and the MAPK pathway in the lung tissue. Similar to cell culture studies, opposite effects of Cr(VI) on Akt signaling were reported. This work provides insights into the mechanisms by which Cr(VI) induces lung inflammation. However, discrepant findings and other major issues in study design, both in cell and animal models, suggest that further studies are required to unveil the mechanism of Cr(VI)-induced inflammation and its role in lung cancer.
Collapse
Affiliation(s)
- J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA.
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| |
Collapse
|
11
|
Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Handan: A Typical Heavily Polluted City in North China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to determine the pollution sources and human health risks of metal elements in PM2.5, samples were collected by a large flow particulate matter sampler in the four seasons in 2013, 2015, and 2017 (January, April, July, and October). The mass concentrations of 10 metals (Ti, V, Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) were analyzed. The sources of heavy metals were identified by Unmix, and the potential non-carcinogenic/carcinogenic risk was evaluated. The influences of local and regional sources were also explored during the high-carcinogenic risk period (HCRP). The wind field and 72 h backward trajectories were performed to identify the potential local and regional sources in HCRP. The results showed that the average annual concentrations of PM2.5 in the urban area of Handan city were 105.14, 91.18, and 65.85 μg/m3 in 2013, 2015, and 2017, respectively. The average daily concentrations of the metals in PM2.5 in January were higher than that of April, July, and October. The average mass concentrations of the 10 heavy metal elements in PM2.5 were 698.26, 486.92, and 456.94 ng·m−3 in 2013, 2015, and 2017, respectively. The main sources of the metals in PM2.5 were soil dust sources, vehicular emissions, coal burning, and industrial activities. The carcinogenic risks of Cr and As were above 1 × 10−6 over the three years. Wind direction analysis showed that the potential local sources were heavy industry enterprises and the economic development zone. The backward trajectory analysis indicated that PM2.5 long transported from Shandong, Henan, and the surrounding cities of Handan had quite an impact on the heavy metals contained in the atmosphere of the studied area. The health risk assessment results demonstrated that the trend for non-carcinogenic risk declined, and there was no non-carcinogenic risk in 2017. However, the carcinogenic risk levels were high over the three years, particularly in January.
Collapse
|