1
|
Mohammad A, Verma S, Mahmooduzzafar, Iqbal M. Morpho-Anatomical Variations in Sisymbrium irio L. Plants Raised from Seeds Treated with γ Radiation. ACS OMEGA 2024; 9:41446-41455. [PMID: 39398157 PMCID: PMC11465646 DOI: 10.1021/acsomega.4c04781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
This study determines the effect of γ irradiation on seed germination, growth, and morpho-anatomical traits of the Sisymbrium irio L. (London rocket) plant. Seeds irradiated with 2.5, 5, 10, 15, and 20 kGy of γ radiation showed a reduced germination percentage (13.68-56.84%) with reference to the control, showing an inverse relationship with radiation dose. Observations recorded at preflowering, flowering, and postflowering stages of plant growth showed a significant (P < 0.05%) dose-dependent decline in many growth parameters, such as root length, shoot length, shoot dry weight, number of leaves, and pods per plant, due to the radiation effect. However, root dry weight, leaf length, leaf dry weight, number of branches, and number of flowers per plant increased at the lowest dose (2.5 kGy) and then declined steadily with the increasing level of radiation. Likewise, several anatomical features (length of fibers and vessel elements, diameter of vessel elements, proportion of cortex, and vasculature in the stem) showed a consistent decrease with increasing γ irradiation in treated plants compared with the control. However, the pith area and the number of vessels per microscopic field decreased significantly with the lowest radiation dose (2.5 kGy) and then increased gradually with higher doses at each ontogenetic stage. The vulnerability factor in the control as well as treated plants increased with increasing plant age. In treated plants, vulnerability was higher under the effect of low-level radiation than in the control, but it showed an inverse relationship with the increasing level of radiation, thus being the lowest at 20 kGy radiation dose. Mesomorphy also showed an almost similar variation pattern with reference to the radiation dose.
Collapse
Affiliation(s)
- Anish Mohammad
- Department of Botany, School
of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sarita Verma
- Department of Botany, School
of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mahmooduzzafar
- Department of Botany, School
of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Muhammad Iqbal
- Department of Botany, School
of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
2
|
Nie X, Zhao Z, Zhang X, Bastías DA, Nan Z, Li C. Endophytes Alleviate Drought-Derived Oxidative Damage in Achnatherum inebrians Plants Through Increasing Antioxidants and Regulating Host Stress Responses. MICROBIAL ECOLOGY 2024; 87:73. [PMID: 38758374 PMCID: PMC11101377 DOI: 10.1007/s00248-024-02391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Endophytes generally increase antioxidant contents of plants subjected to environmental stresses. However, the mechanisms by which endophytes alter the accumulation of antioxidants in plant tissues are not entirely clear. We hypothesized that, in stress situations, endophytes would simultaneously reduce oxidative damage and increase antioxidant contents of plants and that the accumulation of antioxidants would be a consequence of the endophyte ability to regulate the expression of plant antioxidant genes. We investigated the effects of the fungal endophyte Epichloë gansuensis (C.J. Li & Nan) on oxidative damage, antioxidant contents, and expression of representative genes associated with antioxidant pathways in Achnatherum inebrians (Hance) Keng plants subjected to low (15%) and high (60%) soil moisture conditions. Gene expression levels were measured using RNA-seq. As expected, the endophyte reduced the oxidative damage by 17.55% and increased the antioxidant contents by 53.14% (on average) in plants subjected to low soil moisture. In line with the accumulation of antioxidants in plant tissues, the endophyte increased the expression of most plant genes associated with the biosynthesis of antioxidants (e.g., MIOX, crtB, gpx) while it reduced the expression of plant genes related to the metabolization of antioxidants (e.g., GST, PRODH, ALDH). Our findings suggest that endophyte ability of increasing antioxidant contents in plants may reduce the oxidative damage caused by stresses and that the fungal regulation of plant antioxidants would partly explain the accumulation of these compounds in plant tissues.
Collapse
Affiliation(s)
- Xiumei Nie
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhenrui Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xingxu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Daniel A Bastías
- Grasslands Research Centre, AgResearch Limited, Palmerston North, 4442, New Zealand.
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
3
|
Mishra S, Duarte GT, Horemans N, Ruytinx J, Gudkov D, Danchenko M. Complexity of responses to ionizing radiation in plants, and the impact on interacting biotic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171567. [PMID: 38460702 DOI: 10.1016/j.scitotenv.2024.171567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In nature, plants are simultaneously exposed to different abiotic (e.g., heat, drought, and salinity) and biotic (e.g., bacteria, fungi, and insects) stresses. Climate change and anthropogenic pressure are expected to intensify the frequency of stress factors. Although plants are well equipped with unique and common defense systems protecting against stressors, they may compromise their growth and development for survival in such challenging environments. Ionizing radiation is a peculiar stress factor capable of causing clustered damage. Radionuclides are both naturally present on the planet and produced by human activities. Natural and artificial radioactivity affects plants on molecular, biochemical, cellular, physiological, populational, and transgenerational levels. Moreover, the fitness of pests, pathogens, and symbionts is concomitantly challenged in radiologically contaminated areas. Plant responses to artificial acute ionizing radiation exposure and laboratory-simulated or field chronic exposure are often discordant. Acute or chronic ionizing radiation exposure may occasionally prime the defense system of plants to better tolerate the biotic stress or could often exhaust their metabolic reserves, making plants more susceptible to pests and pathogens. Currently, these alternatives are only marginally explored. Our review summarizes the available literature on the responses of host plants, biotic factors, and their interaction to ionizing radiation exposure. Such systematic analysis contributes to improved risk assessment in radiologically contaminated areas.
Collapse
Affiliation(s)
- Shubhi Mishra
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia
| | - Gustavo Turqueto Duarte
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Nele Horemans
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Joske Ruytinx
- Department of Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dmitri Gudkov
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, 04210 Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia.
| |
Collapse
|
4
|
Sansenya S, Payaka A, Mansalai P. Inhibitory Efficacy of Cycloartenyl Ferulate against α-Glucosidase and α-Amylase and Its Increased Concentration in Gamma-Irradiated Rice (Germinated Rice). Prev Nutr Food Sci 2023; 28:170-177. [PMID: 37416788 PMCID: PMC10321442 DOI: 10.3746/pnf.2023.28.2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 07/08/2023] Open
Abstract
Cycloartenyl ferulate is a derivative of γ-oryzanol with varied biological activity, including diabetes mellitus treatment. This research focused on improving the cycloartenyl ferulate accumulation in germinated rice by gamma irradiation under saline conditions. Moreover, the inhibitory potential of cycloartenyl ferulate against carbohydrate hydrolysis enzymes (α-glucosidase and α-amylase) was investigated through in vitro and in silico techniques. The results revealed that cycloartenyl ferulate increased in germinated rice under saline conditions upon gamma irradiation. A suitable condition for stimulating the highest cycloartenyl ferulate concentration (852.20±20.59 μg/g) in germinated rice was obtained from the gamma dose at 100 Gy and under 40 mM salt concentration. The inhibitory potential of cycloartenyl ferulate against α-glucosidase (31.31±1.43%) was higher than against α-amylase (12.72±1.11%). The inhibition mode of cycloartenyl ferulate against α-glucosidase was demonstrated as a mixed-type inhibition. A fluorescence study confirmed that the cycloartenyl ferulate interacted with the α-glucosidase's active site. A docking study revealed that cycloartenyl ferulate bound to seven amino acids of α-glucosidase with a binding energy of -8.8 kcal/mol and a higher binding potential than α-amylase (-8.2 kcal/mol). The results suggested that the gamma irradiation technique under saline conditions is suitable for stimulating γ-oryzanol, especially cycloartenyl ferulate. Furthermore, cycloartenyl ferulate demonstrated its potential as a candidate compound for blood glucose management in diabetes mellitus treatment.
Collapse
Affiliation(s)
- Sompong Sansenya
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Apirak Payaka
- School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Preecha Mansalai
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| |
Collapse
|
5
|
Polivanova OB, Tiurin KN, Sivolapova AB, Goryunova SV, Zhevora SV. Influence of Increased Radiation Background on Antioxidative Responses of Helianthus tuberosus L. Antioxidants (Basel) 2023; 12:antiox12040956. [PMID: 37107330 PMCID: PMC10135547 DOI: 10.3390/antiox12040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
As a result of the accident at the Chornobyl Nuclear Power Plant, significant territories were exposed to ionizing radiation. Some isotopes, such as 137Cs, are capable of making a significant impact on living organisms in the long-term perspective. The generation of reactive oxygen species is one mechanism by which ionizing radiation affects living organisms, initiating mechanisms of antioxidant protection. In this article, the effect of increased ionizing radiation on the content of non-enzymatic antioxidants and the activity of antioxidant defense enzymes of Helianthus tuberosum L. was studied. This plant is widely distributed in Europe and characterized by high adaptability to abiotic factors. We found that the activity of antioxidant defense enzymes, such as catalase and peroxidase, weakly correlated with radiation exposure. The activity of ascorbate peroxidase, on the contrary, is strongly positively correlated with radiation exposure. The samples growing on the territory with constant low exposure to ionizing radiation were also characterized by an increased concentration of ascorbic acid and water-soluble phenolic compounds compared to the controls. This study may be useful for understanding the mechanisms underlying the adaptive reactions of plants under prolonged exposure to ionizing radiation.
Collapse
Affiliation(s)
- Oksana B Polivanova
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
- Department of Biotechnology, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
| | - Kirill N Tiurin
- Laboratory of Systemic Genomics and Plant Mobilomics, Moscow Institute of Physics and Technology, Institutsky Lane, 9, 141701 Dolgoprudny, Russia
- Laboratory of Marker and Genomic Plant Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str., 42, 127550 Moscow, Russia
| | - Anastasia B Sivolapova
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
| | - Svetlana V Goryunova
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
| | - Sergey V Zhevora
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
| |
Collapse
|
6
|
Wang J, Zhang Y, Zhou L, Yang F, Li J, Du Y, Liu R, Li W, Yu L. Ionizing Radiation: Effective Physical Agents for Economic Crop Seed Priming and the Underlying Physiological Mechanisms. Int J Mol Sci 2022; 23:15212. [PMID: 36499532 PMCID: PMC9737873 DOI: 10.3390/ijms232315212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
To overcome various factors that limit crop production and to meet the growing demand for food by the increasing world population. Seed priming technology has been proposed, and it is considered to be a promising strategy for agricultural sciences and food technology. This technology helps to curtail the germination time, increase the seed vigor, improve the seedling establishment, and enhance the stress tolerance, all of which are conducive to improving the crop yield. Meanwhile, it can be used to reduce seed infection for better physiological or phytosanitary quality. Compared to conventional methods, such as the use of water or chemical-based agents, X-rays, gamma rays, electron beams, proton beams, and heavy ion beams have emerged as promising physics strategies for seed priming as they are time-saving, more effective, environmentally friendly, and there is a greater certainty for yield improvement. Ionizing radiation (IR) has certain biological advantages over other seed priming methods since it generates charged ions while penetrating through the target organisms, and it has enough energy to cause biological effects. However, before the wide utilization of ionizing priming methods in agriculture, extensive research is needed to explore their effects on seed priming and to focus on the underlying mechanism of them. Overall, this review aims to highlight the current understanding of ionizing priming methods and their applicability for promoting agroecological resilience and meeting the challenges of food crises nowadays.
Collapse
Affiliation(s)
- Jiaqi Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhang
- School of Biological Sciences, The University of Edinburgh, 57 George Square, Edinburgh EH89JU, UK
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingpeng Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yan Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyuan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Liu C, Song Q, Ao L, Zhang N, An H, Lin H, Dong Y. Highly promoted phytoremediation with endophyte inoculation in multi-contaminated soil: plant biochemical and rhizosphere soil ecological functioning behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89063-89080. [PMID: 35849233 DOI: 10.1007/s11356-022-21689-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Rhizosphere soil ecological functioning behavior is of critical importance for regulating phytoremediation efficiency during microbial-assisted phytoremediation for multi-heavy metal-polluted soils. In this study, Trifolium repens L. and its endophyte Pseudomonas putida were used to investigate the ecological responses of the microbe-plant-soil system in Cd, Cr, and Pb co-contaminated soil. The results showed that endophyte Pseudomonas putida significantly increased plant biomass by 22.26-22.78% and phytoremediation efficiency by 29.73-64.01%. The increased phytoremediation efficiency may be related to the improvement of photosynthetic pigment content and antioxidant enzyme activities in leaves and the enhancement of rhizosphere soil ecological functioning. With endophyte application, soil nutrient content was significantly increased and heavy metal bioavailability was enhanced that residual fraction was reduced by 3.79-12.87%. Besides, the relative abundance of ecologically beneficial rhizobacteria such as Bacteriovorax and Arthrobacter was increased by 3.04-8.53% and 0.80-1.64%, respectively. Endophyte inoculation also significantly increased all the functional genes involved in cellular processes, genetic information processing, environmental information processing, and metabolism. This study indicated that the application of endophytes has a positive effect on the biochemical responses of Trifolium repens L. and could significantly improve rhizosphere ecological functioning in multi-heavy metal contamination, which provided clear strategies for regulating phytoremediation.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Qian Song
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Linhuazhi Ao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haowen An
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
8
|
Gong G, Liang S, Zhang Y, Zhang Y, Sanjaa B, Zhang F, Wang Z, Li Z, Li R, Lu S. Extraction, Fractional Structure and Physiological Activities of Fulvic Acid from Yunnan Xundian Lignite. ChemistrySelect 2022. [DOI: 10.1002/slct.202202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guanqun Gong
- Laboratory of Coal Processing and Efficient Utilization of Ministry of Education School of Chemical Engineering & Technology China University of Mining and Technology Xuzhou 221116 China
| | - Shaojie Liang
- School of Chemical Engineering & Technology China University of Mining and Technology Xuzhou 221116 China
| | - Yingjie Zhang
- Laboratory of Coal Processing and Efficient Utilization of Ministry of Education School of Chemical Engineering & Technology China University of Mining and Technology Xuzhou 221116 China
| | - Yongzhen Zhang
- School of Chemical Engineering & Technology China University of Mining and Technology Xuzhou 221116 China
| | - Batbileg Sanjaa
- Institute of Chemistry and Chemical Technology Mongolian Academy of Sciences Ulaanbaatar 13330 Mongolia
| | - Fushui Zhang
- Baoqing Coal Power & Chemical Corporation CHN Energy Shuangyashan 230500 China
| | - Ziyan Wang
- School of Chemical Engineering & Technology China University of Mining and Technology Xuzhou 221116 China
| | - Zhiling Li
- School of Chemical Engineering & Technology China University of Mining and Technology Xuzhou 221116 China
| | - Ruonan Li
- School of Chemical Engineering & Technology China University of Mining and Technology Xuzhou 221116 China
| | - Shan Lu
- School of Chemical Engineering & Technology China University of Mining and Technology Xuzhou 221116 China
| |
Collapse
|
9
|
Tollefsen KE, Alonzo F, Beresford NA, Brede DA, Dufourcq-Sekatcheff E, Gilbin R, Horemans N, Hurem S, Laloi P, Maremonti E, Oughton D, Simon O, Song Y, Wood MD, Xie L, Frelon S. Adverse outcome pathways (AOPs) for radiation-induced reproductive effects in environmental species: state of science and identification of a consensus AOP network. Int J Radiat Biol 2022; 98:1816-1831. [PMID: 35976054 DOI: 10.1080/09553002.2022.2110317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Reproductive effects of ionizing radiation in organisms have been observed under laboratory and field conditions. Such assessments often rely on associations between exposure and effects, and thus lacking a detailed mechanistic understanding of causality between effects occurring at different levels of biological organization. The Adverse Outcome Pathway (AOP), a conceptual knowledge framework to capture, organize, evaluate and visualize the scientific knowledge of relevant toxicological effects, has the potential to evaluate the causal relationships between molecular, cellular, individual, and population effects. This paper presents the first development of a set of consensus AOPs for reproductive effects of ionizing radiation in wildlife. This work was performed by a group of experts formed during a workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. The work presents a series of taxon-specific case studies that were used to identify relevant empirical evidence, identify common AOP components and propose a set of consensus AOPs that could be organized into an AOP network with broader taxonomic applicability. CONCLUSION Expert consultation led to the identification of key biological events and description of causal linkages between ionizing radiation, reproductive impairment and reduction in population fitness. The study characterized the knowledge domain of taxon-specific AOPs, identified knowledge gaps pertinent to reproductive-relevant AOP development and reflected on how AOPs could assist applications in radiation (radioecological) research, environmental health assessment, and radiological protection. Future advancement and consolidation of the AOPs is planned to include structured weight of evidence considerations, formalized review and critical assessment of the empirical evidence prior to formal submission and review by the OECD sponsored AOP development program.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Frédéric Alonzo
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Nicholas A Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK.,School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elizabeth Dufourcq-Sekatcheff
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Rodolphe Gilbin
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | | | - Selma Hurem
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Faculty of Veterinary medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Patrick Laloi
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Erica Maremonti
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Olivier Simon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sandrine Frelon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| |
Collapse
|
10
|
Hussein HAA, Alshammari SO, Elkady FM, Ramadan AA, Kenawy SKM, Abdelkawy AM. Radio-Protective Effects of Stigmasterol on Wheat ( Triticum aestivum L.) Plants. Antioxidants (Basel) 2022; 11:antiox11061144. [PMID: 35740045 PMCID: PMC9220132 DOI: 10.3390/antiox11061144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Ionizing radiation is abiotic stress limiting the growth and productivity of crop plants. Stigmasterol has positive effects on the plant growth of many crops. The role of stigmasterol in alleviating the effects of ionizing radiation on plant metabolism and development is still unclear. Therefore, the study aimed to investigate the effects of pretreatments with γ-radiation (0, 25, and 50 Gy), foliar application of stigmasterol (0, 100, and 200 ppm), and their interaction on the growth, and biochemical constituents of wheat (Triticum aestivum L., var. Sids 12) plants. Gamma radiation at 25 Gy showed no significant difference in plant height, root length, no. of leaves, shoot fresh weight, root fresh weight, Chl a, ABA, soluble phenols, and MDA compared to the control values. Gamma rays at 50 Gy inhibited shoot and root lengths, flag leaf area, shoot fresh and dry weights, photosynthetic pigments, total soluble sugars, proline, and peroxidase activity. However, it stimulated total phenols, catalase activity, and lipid peroxidation. On the other hand, stigmasterol at 100 ppm showed no significant effects on some of the physiological attributes compared to control plants. Stigmasterol at 200 ppm improved plant growth parameters, photosynthetic pigments, proline, phenols, antioxidant enzyme, gibberellic acid, and indole acetic acid. Correspondingly, it inhibited total soluble sugars, abscisic acid, and lipid peroxidation. Moreover, the application of stigmasterol caused the appearance of new polypeptides and the reappearance of those missed by gamma radiation. Overall, stigmasterol could alleviate the adverse effects of gamma radiation on wheat plants.
Collapse
Affiliation(s)
- Hebat-Allah A. Hussein
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo 11754, Egypt; (S.K.M.K.); (A.M.A.)
- Biology Department, University College of Nairiyah, University of Hafr Al-Batin, Nairiyah 31991, Saudi Arabia
- Correspondence: or
| | - Shifaa O. Alshammari
- Biology Department, College of Science, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia;
| | - Fatma M. Elkady
- Department of Botany, Agriculture, Biological Research Institute, National Research Centre, Dokki, Giza 12311, Egypt; (F.M.E.); (A.A.R.)
| | - Amany A. Ramadan
- Department of Botany, Agriculture, Biological Research Institute, National Research Centre, Dokki, Giza 12311, Egypt; (F.M.E.); (A.A.R.)
| | - Sahar K. M. Kenawy
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo 11754, Egypt; (S.K.M.K.); (A.M.A.)
| | - Aisha M. Abdelkawy
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo 11754, Egypt; (S.K.M.K.); (A.M.A.)
| |
Collapse
|