1
|
Li X, Huang X, Du J, Zhang Y, Lu X, Jiang J, Wang G, Sun L. Predicting soil ecological criteria of 17 metal(loid)s in China based on quantitative ion character-activity relationship - Species sensitivity distribution (QICAR-SSD) coupled model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176266. [PMID: 39278495 DOI: 10.1016/j.scitotenv.2024.176266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Soil pollution caused by metal(loid)s is increasingly serious and poses unexpected risks to terrestrial organisms. Establishing soil quality standards is essential for assessing ecological risks of metal(loid)s and protecting soil ecosystems. However, the limited availability of metal(loid) ecotoxicological data has hampered the development of soil quality standards due to financial and practical constraints on toxicity testing. This study collected 77 normalization equations and 58 cross-species extrapolation equations to calculate the normalized EC10 (the added concentration causing a 10 % inhibition effect) of metal(loid)s under a representative scenario. A set of quantitative ion character-activity relationship (QICAR) models were then constructed using normalized EC10 and nine critical ionic characters (AR, AR/AW, BP, MP, Z/r2, Z/r, Xm, σp, and |Log(KOH)|). Subsequently, these QICAR models were employed to predict ecotoxicological EC10 of 17 metal(loid)s to 12 soil species and coupled with species sensitivity distribution (SSD) to determine Predicted No Effect Concentration (PNEC). The results demonstrated the coupled QICAR-SSD model could effectively derive terrestrial PNEC for data-poor metal(loid)s, with errors between the predicted PNEC and reported soil standards (excluding soil background levels) from different countries mostly <0.3 orders of magnitude. Finally, soil ecological criteria (SEC) for 17 metal(loid)s were calculated using an added risk approach based on PNEC and national soil background concentration. Overall, the coupled model proposed here can provide a valuable supplement to the development of soil quality standards for numerous metal(loid)s in soil components.
Collapse
Affiliation(s)
- Xuzhi Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xinghua Huang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Environment Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Junyang Du
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ya Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaosong Lu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guoqing Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Li Sun
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
2
|
Shi W, Wang X, Xia T, Pu X, Bian J. Deriving ecological risk thresholds for soil molybdenum in China based on interspecies correlation estimation and quantitative ion character-activity relationship models. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134483. [PMID: 38703684 DOI: 10.1016/j.jhazmat.2024.134483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Soil molybdenum (Mo) levels can reach ecologically hazardous levels. China has not yet established the relevant thresholds, posing challenges for environmental management. Therefore, we present our data relevant to Mo toxicity for several important species. By normalizing soil properties, we obtained a correlation model of Mo toxicity to Hordeum vulgare, as well as 31 models for the toxicity of other elements including Cu and Ni to invertebrates and microbial processes. Using interspecies correlation estimation (ICE) extrapolation, the sensitivity coefficient (0.12-0.71) for five plants were found. For invertebrates and microbial processes lacking Mo data, we used regression analysis to establish Mo toxicity models based on the soil quantitative ion character-activity relationships (s-QICAR; R2 =0.70-0.95) and known toxicities of other metal elements to invertebrate and microbial processes. Furthermore, combining species sensitivity distribution calculations, the HC5 values for protecting 95% of soil species from Mo in three typical soil scenarios in China were calculated. After correction, the predicted no-effect concentrations were 6.8, 4.8, and 3.4 mg/kg, respectively. This study innovatively combined ICE and s - QICAR to derive soil Mo thresholds. Our results can provide a basis for decision-making in the assessment and management of soil Mo pollution.
Collapse
Affiliation(s)
- Wanyang Shi
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.
| | - Tianxiang Xia
- Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, 100037 Beijing, China
| | - Xiao Pu
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.
| | - Jianlin Bian
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| |
Collapse
|
3
|
Shi W, Wang X, Yang J, Wang Y, Li M. Using the quantitative ion character-activity relationships (QICAR) model to predict the solid-liquid release of metals in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132588. [PMID: 37738849 DOI: 10.1016/j.jhazmat.2023.132588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Dissolved metals in the soil's liquid phase are more easily absorbed by biological tissues, thus posing potential risks to living organisms. Therefore, studying the solid-liquid partition coefficient (Kd) of metals in the soil helps understand their environmental risks. We collected 102 Kd data of metals in soil from the literature to build a quantitative ion character-activity relationship model (s-QICAR) based on the metals' physicochemical properties. Correlation analysis showed ten elemental physicochemical properties related to Kd, including covalent bond index, atomic mass, and first hydrolysis constant, with R2 = 0.502-0.989. Through comparative screening, 39s-QICAR models were finally established, including covalent bond index and first hydrolysis constant. The established s-QICAR model predicted the Kd values of Mo, Sb, and La in the 39 soil samples, ranging from 21 to 19978. Finally, a coupling analysis was conducted between Kd-metal and soil physicochemical properties. The s-QICAR model with covalent bond index as the independent variable was mainly affected by soil pH and cation exchange capacity, while the s-QICAR model with first hydrolysis constant was influenced primarily by clay content. Therefore, this study established a predictive model for soil Kd, providing a basis for soil environmental risk assessment and management. ENVIRONMENTAL IMPLICATION: Dissolved metals present in the soil liquid phase are more easily absorbed by biological tissues, thus posing potential risks to living organisms. Therefore, studying the solid-liquid partition coefficient (Kd) of metals in the soil helps understand their environmental risks. Common Kd values are obtained by measuring the content of soil solid and liquid phase metals. However, this method is time-material consuming. We study the relationship between element properties and their Kd, then establish a model that does not rely on measured data to predict Kd of soil elements, providing a basis for soil environmental risk assessment and management.
Collapse
Affiliation(s)
- Wanyang Shi
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.
| | - Junxing Yang
- Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Mengjia Li
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| |
Collapse
|
4
|
Parveen N, Mondal P, Vanapalli KR, Das A, Goel S. Phytotoxicity of trihalomethanes and trichloroacetic acid on Vigna radiata and Allium cepa plant models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5100-5115. [PMID: 38110686 DOI: 10.1007/s11356-023-31419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Disinfection by-products (DBPs) are a concern due to their presence in chlorinated wastewater, sewage treatment plant discharge, and surface water, and their potential for environmental toxicity. Despite some attention to their ecotoxicity, little is known about the phytotoxicity of DBPs. This study aimed to evaluate the individual and combined phytotoxicity of four trihalomethanes (THMs: trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) and their mixture (THM4)), and trichloroacetic acid (TCAA) using genotoxic and cytotoxic assays. The analysis included seed germination tests using Vigna radiata and root growth tests, mitosis studies, oxidative stress response, chromosomal aberrations (CA), and DNA laddering using Allium cepa. The results showed a progressive increase in root growth inhibition for both plant species as the concentration of DBPs increased. High concentrations of mixtures of four THMs resulted in significant (p < 0.05) antagonistic interactions. The effective concentration (EC50) value for V. radiata was 5655, 3145, 2690, 1465, 3570, and 725 mg/L for TCM, BDCM, DBCM, TBM, THM4, and TCAA, respectively. For A. cepa, the EC50 for the same contaminants was 700, 400, 350, 250, 450, and 105 mg/L, respectively. DBP cytotoxicity was observed through CAs, including C-metaphase, unseparated anaphase, lagging chromosome, sticky metaphase, and bridging. Mitotic depression (MD) increased with dose, reaching up to 54.4% for TCAA (50-500 mg/L). The electrophoresis assay showed DNA fragmentation and shearing, suggesting genotoxicity for some DBPs. The order of phytotoxicity for the tested DBPs was TCAA > TBM > DBCM > BDCM > THM4 > TCM. These findings underscore the need for further research on the phytotoxicity of DBPs, especially given their common use in agricultural practices such as irrigation and the use of sludge as manure.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India
| | - Papiya Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kumar Raja Vanapalli
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Abhijit Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
5
|
Luo X, Wang X, Xia C, Peng J, Wang Y, Tang Y, Gao F. Quantitative ion character-activity relationship methods for assessing the ecotoxicity of soil metal(loid)s to lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24521-24532. [PMID: 36336735 DOI: 10.1007/s11356-022-23914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
New pollution elements introduced by the rapid development of modern industry and agriculture may pose a serious threat to the soil ecosystem. To explore the ecotoxicity and risk of these elements, we systematically studied the acute toxicity of 18 metal(loid)s toward lettuce using hydroponic experiments and quantitative relationships between element toxicity and ionic characteristics using ion-grouping and ligand-binding theory methods, thereby establishing a quantitative ion character-activity relationship (QICAR) model for predicting the phytotoxicity threshold of data-poor elements. The toxicity of 18 ions to lettuce differed by more than four orders of magnitude (0.05-804.44 μM). Correlation and linear regression analysis showed that the ionic characteristics significantly associated with this toxicity explained only 23.8-50.3% of the toxicity variation (R2Adj = 0.238-0.503, p < 0.05). Relationships between toxicity and ionic properties significantly improved after separating metal(loid) ions into soft and hard, with R2Adj of 0.793 and 0.784 (p < 0.05), respectively. Three ligand-binding parameters showed different predictive effects on lettuce metal(loid) toxicity. Compared with the binding constant of the biotic ligand model (log K) and the hard ligand scale (HLScale) (p > 0.05), the softness consensus scale (σCon) was significantly correlated with toxicity and provided the best prediction (R2Adj = 0.844, p < 0.001). We selected QICAR equations based on soft-hard ion classification and σCon methods to predict phytotoxicity of metal(loid)s, which can be used to derive ecotoxicity for data-poor metal(loid)s, providing preliminary assessment of their ecological risks.
Collapse
Affiliation(s)
- Xiaorong Luo
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China.
| | - Cunyan Xia
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Jing Peng
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Yujie Tang
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Fan Gao
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| |
Collapse
|