1
|
Zhang M, He T, Wu P, Wang C, Zheng C. Recent advances in the nitrogen cycle involving actinomycetes: Current situation, prospect and challenge. BIORESOURCE TECHNOLOGY 2025; 419:132100. [PMID: 39848446 DOI: 10.1016/j.biortech.2025.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Actinomycetes are essential for sustaining the ecosystem's nitrogen balance and stimulating plant development. In contrast, existing detection and culture techniques for actinomycetes are still limited, making it difficult to fully assess their role in the nitrogen cycle. This review emphasized the advantages of actinomycetes in ecological restoration, outlined the current status and challenges of research on nitrogen cycling by actinomycetes. Special attention was paid to the metabolic pathways and related gene regulatory mechanisms of nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium, and ammonium assimilation processes. The limitations and strategies of actinomycetes nitrogen metabolic pathways were revealed. In addition, the involvement of carbon, sulphur and phosphorus in the nitrogen cycle of actinomycetes was pointed out. The aim of the review is to improve our understanding of the function of actinomycetes in the nitrogen cycle, which is crucial for enhancing wastewater treatment, ecological preservation, and agricultural output.
Collapse
Affiliation(s)
- Manman Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China.
| | - Pan Wu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China
| | - Cerong Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China
| | - Chunxia Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China
| |
Collapse
|
2
|
Liu R, Wei Y, Lu J, Yin D, Liang Y, Li J, Xiao J, Mo Z, Yi H, Zhang H, Shen N, Zhang B. Heterologous expression, enzymatic properties, product analysis and molecular docking of assimilative nitrite reductase (NiR) in Bacillus velezensis GXMZU-B1 derived from mariculture. Int J Biol Macromol 2025; 291:139047. [PMID: 39708852 DOI: 10.1016/j.ijbiomac.2024.139047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
High concentrations of nitrite stress aquatic animals, leading to significant fish and shrimp deaths as well as environmental pollution. Reducing nitrite levels in high-density aquaculture is crucial for both aquaculture safety and environmental protection. Nitrite reductase (NiR) can rapidly reduce nitrite in water, offering potential applications in aquaculture and water treatment. In this study, a novel NiR gene (nasD) was isolated from Bacillus velezensis GXMZU-B1, a highly effective nitrite-degrading bacterium, and expressed heterologously in Escherichia coli. The recombinant NASD was purified using Ni-NTA affinity chromatography, and its physicochemical properties and reaction products were analyzed. The enzyme showed optimal activity at 30°C and pH 6.5. Metal ions such as Fe3+, Zn2+, and Ba2+ enhanced enzyme activity, whereas Cu2+, K+, Mg2+, and Mn2+ reduced it. The best electron donors was NADPH. NASD converts nitrite (NO2-) into ammonium (NH4+), making it environmentally friendly and potentially valuable for aquaculture and water pollution control. Bioinformatics analysis indicated that the enzyme is stable, with a conserved sequence and a Pyr_redox_2 domain. Using NADPH as a coenzyme, AlphaFold3 modeling and molecular docking with nitrite identified 14 potential catalytic sites. These findings highlight the potential of recombinant NASD as a promising candidate for nitrite degradation in aquaculture.
Collapse
Affiliation(s)
- Rui Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Yuling Wei
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Junming Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Doudou Yin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Ying Liang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Jiling Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Junfeng Xiao
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Zuqin Mo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Han Yi
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| |
Collapse
|
3
|
Yin XY, Bonku EM, Yuan JF, Yang ZH. A Novel Nitrite Reductase from Acinetobacter haemolyticus for Efficient Degradation of Nitrite. Biomolecules 2025; 15:63. [PMID: 39858457 PMCID: PMC11764342 DOI: 10.3390/biom15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Nitrite reductases play a crucial role in the nitrogen cycle, demonstrating significant potential for applications in the food industry and environmental remediation, particularly for nitrite degradation and detection. In this study, we identified a novel nitrite reductase (AhNiR) from a newly isolated denitrifying bacterium, Acinetobacter haemolyticus YD01. We constructed a heterologous expression system using E. coli BL21/pET28a-AhNir, which exhibited remarkable nitrite reductase enzyme activity of 29 U/mL in the culture broth, substantially higher than that reported for other strains. Structural analysis of AhNiR revealed the presence of [Fe-S] clusters, with molecular docking studies identifying Tyr-282 and Ala-289 as key catalytic sites. The enzymatic properties of AhNiR demonstrated an optimal pH of 7.5 and an optimal catalytic temperature of 30 °C. Its kinetic parameters, Km and vmax, were 1.53 mmol/L and 10.18 mmol/min, respectively, fitting with the Michaelis-Menten equation. This study represents the first report of a nitrite reductase from a denitrifying bacterium, providing a new enzyme source for nitrite degradation applications in the food industry and environmental remediation, as well as for biosensing technologies aimed at nitrite detection.
Collapse
Affiliation(s)
- Xiao-Yan Yin
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (X.-Y.Y.); (J.-F.Y.)
| | - Emmanuel Mintah Bonku
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Jian-Feng Yuan
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (X.-Y.Y.); (J.-F.Y.)
| | - Zhong-Hua Yang
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (X.-Y.Y.); (J.-F.Y.)
| |
Collapse
|
4
|
Wei Y, Shen D, Nicholaus R, Wang Y, Lukwambe B, Zhu J, Yang W, Zheng Z. Exogenous compound bacteria enhance the nutrient removal efficiency of integrated bioremediation systems: Functional genes and microorganisms play key roles. ENVIRONMENTAL RESEARCH 2024; 252:118864. [PMID: 38574987 DOI: 10.1016/j.envres.2024.118864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
With the continuous development of intensive mariculture, the application of the integrated bioremediation system of aquaculture wastewater (IBSAW) is increasingly promoted. However, the process and nutrients removal performance of the IBSAW need to be further optimized due to its immature technologies. In this study, exogenous compound bacteria (ECB) were added to IBSAW to investigate its pollutants removal efficiency and the relevant mechanisms. High-throughput sequencing and Geochip gene array were used to analyze the correlation between nutrients and bacteria, and the abundance of N and P cycling genes were quantified. Multivariable statistics, dimensionality reduction analysis, and network analysis were applied to explore the mechanisms of IBSAW operation. The results showed that the nutrients decreased significantly after adding ECB, with the brush treatment group significantly outperforming the ceramsite in removing NO3- and PO43-. Ceramsite has an advantage in removing NO2--N. The addition of ECB and different substrates significantly affected the composition of bacterial communities. The contents of nosZ and nirKS related to denitrification in the treatment groups were significantly higher than those in the control group, and the contents in the brush treatment group were significantly higher than that of ceramsite. The biomarkers Psychroserpens and Ruegeria on the biofilm of the brush treatment group were positively correlated with nirKS, while Mycobacterium, Erythrobacter and Paracoccus, Pseudohaliea in the ceramsite group were positively correlated with nirS and nirK, respectively. Therefore, it is speculated that the ECB significantly promoted the increase of denitrification bacteria by affecting the composition of bacterial communities, and the ECB combined with functional genera improved the efficiency of nutrients removal in the system. This study provided a reference for understanding the process and mechanism of nutrients removal, optimizing the wastewater purification technology of the IBSAW and improving the performance of the system.
Collapse
Affiliation(s)
- Yingzhen Wei
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ding Shen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Regan Nicholaus
- Department of Natural Sciences, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Yangcai Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315048, China
| | - Betina Lukwambe
- School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
Zhang M, He T, Wu Q, Chen M, Liang X. Hydroxylamine supplementation accelerated the rates of cell growth, aerobic denitrification and nitrous oxide emission of Pseudomonas taiwanensis EN-F2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120826. [PMID: 38608579 DOI: 10.1016/j.jenvman.2024.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Hydroxylamine can disrupt the protein translation process of most reported nitrogen-converting bacteria, and thus hinder the reproduction of bacteria and nitrogen conversion capacity. However, the effect of hydroxylamine on the denitrification ability of strain EN-F2 is unclear. In this study, the cell growth, aerobic denitrification ability, and nitrous oxide (N2O) emission by Pseudomonas taiwanensis were carefully investigated by addition of hydroxylamine at different concentrations. The results demonstrated that the rates of nitrate and nitrite reduction were enhanced by 2.51 and 2.78 mg/L/h after the addition of 8.0 and 12.0 mg/L hydroxylamine, respectively. The N2O production from nitrate and nitrite reaction systems were strongly promoted by 4.39 and 8.62 mg/L, respectively, through the simultaneous acceleration of cell growth and both of nitrite and nitrate reduction. Additionally, the enzymatic activities of nitrate reductase and nitrite reductase climbed from 0.13 and 0.01 to 0.22 and 0.04 U/mg protein when hydroxylamine concentration increased from 0 to 6.0 and 12.0 mg/L. This may be the main mechanism for controlling the observed higher denitrification rate and N2O release. Overall, hydroxylamine supplementation supported the EN-F2 strain cell growth, denitrification and N2O emission rates.
Collapse
Affiliation(s)
- Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiwen Liang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
6
|
Wang Z, Cui T, Wang Q. Optimization of degradation conditions and analysis of degradation mechanism for nitrite by Bacillus aryabhattai 47. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171096. [PMID: 38387569 DOI: 10.1016/j.scitotenv.2024.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Excessive nitrite levels cause significant damage to aquaculture, making it crucial to explore green and reliable nitrite removal technologies. In this study, A Bacillus aryabhattai (designated as the strain 47) isolated from aquaculture wastewater was used as the experimental strain. The nitrite degradation conditions of the strain 47 were optimized, and the optimal conditions are: glucose was 12.74 g/L, fermented special soybean meal was 21.27 g/L, MgCl2 369 mg/L, pH 7.0, incubated at 30 °C with the inoculum size of 2 % and the rotation speed of 170 rpm. Under the optimal conditions, the nitrite concentration of the culture solution was 200 mg/L, and the nitrite removal rate reached 91.4 %. Meanwhile, the mechanism by which Mg2+ enhanced the nitrite degradation ability of the strain 47 was investigated by transcriptomics. An operon structure directed cellular trafficking of Mg2+, and then, the Mg2+-mediated catalytic reaction of multiple enzymes enhanced and improved cellular metabolic processes (e.g. the transport and metabolism of nitrite, central carbohydrate metabolism oxidative phosphorylation). At the same time, with the progress of cell metabolism, cells secreted a series of enzymes related to nitrite transport and metabolism to promote the metabolism of nitrite. And the process of the assimilated nitrate reduction pathway of nitrite degradation in the strain 47 was elaborated at the transcriptome level. This study provided a new insight into nitrite treatment mediated by microbial organisms.
Collapse
Affiliation(s)
- Zhenhao Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Qiang Wang
- Guangdong Yuzanchen Biotechnology Co., Ltd, Jiangmen 529100, PR China
| |
Collapse
|
7
|
Costa L, Martinez M, Suleiman M, Keiser R, Lehmann M, Lenz M. Manganese reductive dissolution coupled to Sb mobilization in contaminated shooting range soil. Appl Microbiol Biotechnol 2024; 108:295. [PMID: 38598118 PMCID: PMC11006745 DOI: 10.1007/s00253-024-13133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
A "redox-stat" RMnR bioreactor was employed to simulate moderately reducing conditions (+ 420 mV) in Sb-contaminated shooting range soils for approximately 3 months, thermodynamically favoring Mn(IV) reduction. The impact of moderately reducing conditions on elemental mobilization (Mn, Sb, Fe) and speciation [Sb(III) versus Sb(V); Fe2+/Fe3+] was compared to a control bioreactor RCTRL without a fixed redox potential. In both bioreactors, reducing conditions were accompanied by an increase in effluent Sb(V) and Mn(II) concentrations, suggesting that Sb(V) was released through microbial reduction of Mn oxyhydroxide minerals. This was underlined by multiple linear regression analysis showing a significant (p < 0.05) relationship between Mn and Sb effluent concentrations. Mn concentration was the sole variable exhibiting a statistically significant effect on Sb in RMnR, while under the more reducing conditions in RCTRL, pH and redox potential were also significant. Analysis of the bacterial community composition revealed an increase in the genera Azoarcus, Flavisolibacter, Luteimonas, and Mesorhizobium concerning the initial soil, some of which are possible key players in the process of Sb mobilization. The overall amount of Sb released in the RMnR (10.40%) was virtually the same as in the RCTRL (10.37%), which underlines a subordinate role of anoxic processes, such as Fe-reductive dissolution, in Sb mobilization. This research underscores the central role of relatively low concentrations of Mn oxyhydroxides in influencing the fate of trace elements. Our study also demonstrates that bioreactors operated as redox-stats represent versatile tools that allow quantifying the contribution of specific mechanisms determining the fate of trace elements in contaminated soils. KEY POINTS: • "Redox-stat" reactors elucidate Sb mobilization mechanisms • Mn oxyhydroxides microbial reductive dissolution has a major role in Sb mobilization in soils under moderately reducing conditions • Despite aging the soil exhibited significant Sb mobilization potential, emphasizing persistent environmental effects.
Collapse
Affiliation(s)
- Lara Costa
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132, Muttenz, Switzerland.
- Department of Environmental Science, University of Basel, Bernoullistrasse 30, 4056, Basel, Switzerland.
| | - Mathieu Martinez
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Marcel Suleiman
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Rolf Keiser
- ARMASUISSE Competence Center Soil, Guisanplatz 1, 3003, Bern, Switzerland
| | - Moritz Lehmann
- Department of Environmental Science, University of Basel, Bernoullistrasse 30, 4056, Basel, Switzerland
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132, Muttenz, Switzerland
- Sub-Department of Environmental Technology, Wageningen University, 6700 EV, Wageningen, The Netherlands
| |
Collapse
|
8
|
Wang C, He T, Zhang M, Zheng C, Yang L, Yang L. Review of the mechanisms involved in dissimilatory nitrate reduction to ammonium and the efficacies of these mechanisms in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123480. [PMID: 38325507 DOI: 10.1016/j.envpol.2024.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is currently of great interest because it is an important method for recovering nitrogen from wastewater and offers many advantages, over other methods. A full understanding of DNRA requires the mechanisms, pathways, and functional microorganisms involved to be identified. The roles these pathways play and the effectiveness of DNRA in the environment are not well understood. The objectives of this review are to describe our current understanding of the molecular mechanisms and pathways involved in DNRA from the substrate transfer perspective and to summarize the effects of DNRA in the environment. First, the mechanisms and pathways involved in DNRA are described in detail. Second, our understanding of DNRA by actinomycetes is reviewed and gaps in our understanding are identified. Finally, the effects of DNRA in the environment are assessed. This review will help in the development of future research into DNRA to promote the use of DNRA to treat wastewater and recover nitrogen.
Collapse
Affiliation(s)
- Cerong Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Manman Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Chunxia Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Lu Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
9
|
Ma B, Yang W, Li N, Kosolapov DB, Liu X, Pan S, Liu H, Li A, Chu M, Hou L, Zhang Y, Li X, Chen Z, Chen S, Huang T, Cao S, Zhang H. Aerobic Denitrification Promoting by Actinomycetes Coculture: Investigating Performance, Carbon Source Metabolic Characteristic, and Raw Water Restoration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:683-694. [PMID: 38102081 DOI: 10.1021/acs.est.3c05062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The coculture theory that promotes denitrification relies on effectively utilizing the resources of low-efficiency denitrification microbes. Here, the strains Streptomyces sp. PYX97 and Streptomyces sp. TSJ96 were isolated and showed lower denitrification capacity when cultured individually. However, the coculture of strains PYX97 and TSJ96 enhanced nitrogen removal (removed 96.40% of total nitrogen) and organic carbon reduction (removed 92.13% of dissolved organic carbon) under aerobic conditions. Nitrogen balance analysis indicated that coculturing enhanced the efficiency of nitrate converted into gaseous nitrogen reaching 70.42%. Meanwhile, the coculturing promoted the cell metabolism capacity and carbon source metabolic activity. The coculture strains PYX97 and TSJ96 thrived in conditions of C/N = 10, alkalescence, and 150 rpm shaking speed. The coculturing reduced total nitrogen and CODMn in the raw water treatment by 83.32 and 84.21%, respectively. During this treatment, the cell metabolic activity and cell density increased in the coculture strains PYX97 and TSJ96 reactor. Moreover, the coculture strains could utilize aromatic protein and soluble microbial products during aerobic denitrification processes in raw water treatment. This study suggests that coculturing inefficient actinomycete strains could be a promising approach for treating polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Huaqing College, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109 Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liyuan Hou
- Civil and Environmental Engineering Department, Utah State University, Logan, Utah 84322, United States
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500Praha-Suchdol ,Czech Republic
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shumiao Cao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Chen M, He T, Liang X, Wang C, Zheng C. Efficient transformation of hydroxylamine from wastewater after supplementation with sodium carbonate or calcium bicarbonate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115603. [PMID: 37856986 DOI: 10.1016/j.ecoenv.2023.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Hydroxylamine is a highly reactive inorganic nitrogen compound that not only has a toxic effect on microorganisms, but also makes wastewater treatment more difficult, which in turn damages the environment and even endangers human health. This study reported a new method for converting of hydroxylamine by adding sodium carbonate or calcium bicarbonate to the hydroxylamine-polluted wastewater. The conversion efficiency of hydroxylamine was more than 99% in the presence of sodium carbonate or calcium bicarbonate under the reaction conditions of 25 °C, C/N ratio 15, and dissolved oxygen 7.4 mg/L. And its maximal conversion rate can reach 3.49 mg/L/h. This method overcomes various shortcomings of the reported hydroxylamine removal technologies that require a large material dosage and high cost. The technology in this report has many advantages: low cost, 'green' environmental protection, easy market promotion, and high economic benefits.
Collapse
Affiliation(s)
- Mengping Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Xiwen Liang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Cerong Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chunxia Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
11
|
Tsujino S, Masuda R, Shimizu Y, Azuma Y, Kanada Y, Fujiwara T. Phylogenetic diversity, distribution, and gene structure of the pyruvic oxime dioxygenase involved in heterotrophic nitrification. Antonie Van Leeuwenhoek 2023; 116:1037-1055. [PMID: 37596503 DOI: 10.1007/s10482-023-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Some heterotrophic microorganisms carry out nitrification to produce nitrite and nitrate from pyruvic oxime. Pyruvic oxime dioxygenase (POD) is an enzyme that catalyzes the degradation of pyruvic oxime to pyruvate and nitrite from the heterotrophic nitrifying bacterium Alcaligenes faecalis. Sequence similarity searches revealed the presence of genes encoding proteins homologous to A. faecalis POD in bacteria of the phyla Proteobacteria and Actinobacteria and in fungi of the phylum Ascomycota, and their gene products were confirmed to have POD activity in recombinant experiments. Phylogenetic analysis further classified these POD homologs into three groups. Group 1 POD is mainly found in heterotrophic nitrifying Betaproteobacteria and fungi, and is assumed to be involved in heterotrophic nitrification. It is not clear whether group 2 POD, found mainly in species of the Gammaproteobacteria and Actinobacteria, and group 3 POD, found simultaneously with group 1 POD, are involved in heterotrophic nitrification. The genes of bacterial group 1 POD comprised a single transcription unit with the genes related to the metabolism of aromatic compounds, and many of the genes group 2 POD consisted of a single transcription unit with the gene encoding the protein homologous to 4-hydroxy-tetrahydrodipicolinate synthase (DapA). LysR- or Cro/CI-type regulatory genes were present adjacent to or in the vicinity of these POD gene clusters. POD may be involved not only in nitrification, but also in certain metabolic processes whose functions are currently unknown, in coordination with members of gene clusters.
Collapse
Affiliation(s)
- Shuhei Tsujino
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ryota Masuda
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yoshiyuki Shimizu
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuichi Azuma
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yutaro Kanada
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
12
|
Ding C, He T. Bacillus thuringiensis EM-A1: A novel bacterium for high concentration of ammonium elimination with low nitrite accumulation. CHEMOSPHERE 2023; 338:139465. [PMID: 37437615 DOI: 10.1016/j.chemosphere.2023.139465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The biological elimination of high concentration of ammonium from wastewater has attracted increasing attention in recent years. However, few studies on the efficient elimination of high concentration of ammonium by a single bacterium have been reported. Here, the efficient elimination of NH4+-N (>99%) and total nitrogen (TN) (>77%) were attained by Bacillus thuringiensis EM-A1 under 150 rpm at pH 7.2 with sodium succinate and a carbon/nitrogen ratio of 15 at 30 °C with an inoculum size (as measured by absorbance at 600 nm) of 0.2. Strain EM-A1 effectively eliminated 100 mg/L of inorganic nitrogen with maximal NH4+-N, NO3--N, and NO2--N elimination rates of 4.88, 2.57, and 3.06 mg/L/h, respectively. The elimination efficiencies of NH4+-N were 99.87% and 97.13% at initial concentrations of 500 and 1000 mg/L, respectively. Only 0.91 mg/L of NO2--N was accumulated with the elimination of 1000 mg/L NH4+-N. A concentration of 5 mg/L exogenous hydroxylamine was toxic and further inhibited heterotrophic nitrification and aerobic denitrification (HN-AD). The NH4+-N and NO2--N elimination capacities of strain EM-A1 were specifically inhibited by 2-Octyne (OCT) over 4 μmol/L and diethyldithiocarbamate (DDC) over 0.5 mmol/L, respectively. Above 25 mg/L procyanidin (PCY) inhibited the bioconversion of NO3--N and NO2--N. The results demonstrated that strain EM-A1 had HN-AD capacity under halophilic conditions, and has great potential for use in the treatment of nitrogen pollution wastewater; this study also provides new insights into this strain's nitrogen elimination mechanism, helping advance environmental biotechnology.
Collapse
Affiliation(s)
- Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Zhijuan East Road, Huaxi, Guiyang, 550025, Guizhou Province, China.
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Zhijuan East Road, Huaxi, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
13
|
Demergasso C, Neilson JW, Tebes-Cayo C, Véliz R, Ayma D, Laubitz D, Barberán A, Chong-Díaz G, Maier RM. Hyperarid soil microbial community response to simulated rainfall. Front Microbiol 2023; 14:1202266. [PMID: 37779711 PMCID: PMC10537920 DOI: 10.3389/fmicb.2023.1202266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
The exceptionally long and protracted aridity in the Atacama Desert (AD), Chile, provides an extreme, terrestrial ecosystem that is ideal for studying microbial community dynamics under hyperarid conditions. Our aim was to characterize the temporal response of hyperarid soil AD microbial communities to ex situ simulated rainfall (5% g water/g dry soil for 4 weeks) without nutrient amendment. We conducted replicated microcosm experiments with surface soils from two previously well-characterized AD hyperarid locations near Yungay at 1242 and 1609 masl (YUN1242 and YUN1609) with distinct microbial community compositions and average soil relative humidity levels of 21 and 17%, respectively. The bacterial and archaeal response to soil wetting was evaluated by 16S rRNA gene qPCR, and amplicon sequencing. Initial YUN1242 bacterial and archaeal 16S rRNA gene copy numbers were significantly higher than for YUN1609. Over the next 4 weeks, qPCR results showed significant increases in viable bacterial abundance, whereas archaeal abundance decreased. Both communities were dominated by 10 prokaryotic phyla (Actinobacteriota, Proteobacteria, Chloroflexota, Gemmatimonadota, Firmicutes, Bacteroidota, Planctomycetota, Nitrospirota, Cyanobacteriota, and Crenarchaeota) but there were significant site differences in the relative abundances of Gemmatimonadota and Chloroflexota, and specific actinobacterial orders. The response to simulated rainfall was distinct for the two communities. The actinobacterial taxa in the YUN1242 community showed rapid changes while the same taxa in the YUN1609 community remained relatively stable until day 30. Analysis of inferred function of the YUN1242 microbiome response implied an increase in the relative abundance of known spore-forming taxa with the capacity for mixotrophy at the expense of more oligotrophic taxa, whereas the YUN1609 community retained a stable profile of oligotrophic, facultative chemolithoautotrophic and mixotrophic taxa. These results indicate that bacterial communities in extreme hyperarid soils have the capacity for growth in response to simulated rainfall; however, historic variations in long-term hyperaridity exposure produce communities with distinct putative metabolic capacities.
Collapse
Affiliation(s)
- Cecilia Demergasso
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
| | - Julia W. Neilson
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Cinthya Tebes-Cayo
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
- Department of Geology, Faculty of Engineering and Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Roberto Véliz
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
| | - Diego Ayma
- Department of Mathematics, Faculty of Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Daniel Laubitz
- Steele Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Guillermo Chong-Díaz
- Department of Geology, Faculty of Engineering and Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Raina M. Maier
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
14
|
Chen M, He T, Wu Q, Zhang M, He K. Enhanced heterotrophic nitrification and aerobic denitrification performance of Glutamicibacter arilaitensis EM-H8 with different carbon sources. CHEMOSPHERE 2023; 323:138266. [PMID: 36868423 DOI: 10.1016/j.chemosphere.2023.138266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/10/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Different carbon sources for Glutamicibacter arilaitensis EM-H8 were evaluated for ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) removal. Strain EM-H8 could rapidly remove NH4+-N, NO3--N and NO2--N. The highest removal rates measured for different forms of nitrogen with different carbon sources were 5.94 mg/L/h for NH4+-N with sodium citrate, 4.25 mg/L/h for NO3--N with sodium succinate, and 3.88 mg/L/h for NO2--N with sucrose. The Nitrogen balance showed that strain EM-H8 could convert 77.88% of the initial nitrogen into nitrogenous gas when NO2--N was selected as the sole nitrogen source. The presence of NH4+-N increased the removal rate of NO2--N from 3.88 to 4.02 mg/L/h. In an enzyme assay, ammonia monooxygenase, nitrate reductase and nitrite oxidoreductase were detected at 0.209, 0.314, and 0.025 U/mg protein, respectively. These results demonstrate that strain EM-H8 performs well for nitrogen removal, and shows excellent potential for simple and efficient removal of NO2--N from wastewater.
Collapse
Affiliation(s)
- Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Kai He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
15
|
Zhang H, Yang W, Ma B, Liu X, Huang T, Niu L, Zhao K, Yang Y, Li H. Aerobic denitrifying using actinobacterial consortium: Novel denitrifying microbe and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160236. [PMID: 36427714 DOI: 10.1016/j.scitotenv.2022.160236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The aerobic denitrifying capacity of actinomycete strain has been investigated recently, while little is known about nitrogen and carbon substrate removal by mix-cultured aerobic denitrifying actinobacteria (Mix-CADA) community. Hence, three Mix-CADA consortiums, named Y23, X21, and Y27, were isolated from urban lakes to investigate their aerobic denitrification capacity, and their removal efficiency for nitrate and dissolved organic carbon were >97 % and 90 %, respectively. Illumina Miseq sequencing revealed that Streptomyces was the most dominant genus in the Mix-CADA consortium. Network analysis indicated that Streptomyces exfoliates, as the core species in the Mix-CADA consortium, majorly contributed to dissolved organic carbon and total nitrogen reduction. Moreover, the three Mix-CADA consortiums could remove 78 % of the total nitrogen and 61 % of the permanganate index from the micro-polluted l water. Meanwhile, humic-like was significantly utilized by three Mix-CADA consortiums, whereas Mix-CADA Y27 could also utilize aromatic protein and soluble microbial by-product-like in the micro-polluted raw water purification. In summary, this study will offer a novel perspective for the purification of micro-polluted raw water using the Mix-CADA consortium.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
16
|
Zhang M, He T, Wu Q, Chen M. Efficient detoxication of hydroxylamine and nitrite through heterotrophic nitrification and aerobic denitrification by Acinetobacter johnsonii EN-J1. Front Microbiol 2023; 14:1130512. [PMID: 37138626 PMCID: PMC10149794 DOI: 10.3389/fmicb.2023.1130512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The co-existence of hydroxylamine (NH2OH) and nitrite (NO2 --N) can aggravate the difficulty of wastewater treatment. The roles of hydroxylamine (NH2OH) and nitrite (NO2 --N) in accelerating the elimination of multiple nitrogen sources by a novel isolated strain of Acinetobacter johnsonii EN-J1 were investigated in this study. The results demonstrated that strain EN-J1 could eliminate 100.00% of NH2OH (22.73 mg/L) and 90.09% of NO2 --N (55.32 mg/L), with maximum consumption rates of 1.22 and 6.75 mg/L/h, respectively. Prominently, the toxic substances NH2OH and NO2 --N could both facilitate nitrogen removal rates. Compared with the control treatment, the elimination rates of nitrate (NO3 --N) and NO2 --N were enhanced by 3.44 and 2.36 mg/L/h after supplementation with 10.00 mg/L NH2OH, and those of ammonium (NH4 +-N) and NO3 --N were improved by 0.65 and 1.00 mg/L/h after the addition of 50.00 mg/L NO2 --N. Furthermore, the nitrogen balance results indicated that over 55.00% of the initial total nitrogen was transformed into gaseous nitrogen by heterotrophic nitrification and aerobic denitrification (HN-AD). Ammonia monooxygenase (AMO), hydroxylamine oxidoreductase (HAO), nitrate reductase (NR), and nitrite reductase (NIR), which are essential for HN-AD, were detected at levels of 0.54, 0.15, 0.14, and 0.01 U/mg protein, respectively. All findings confirmed that strain EN-J1 could efficiently execute HN-AD, detoxify NH2OH and NO2 --N, and ultimately promote nitrogen removal rates.
Collapse
|
17
|
Ma B, Zhang H, Zhao D, Sun W, Liu X, Yang W, Zhao K, Liu H, Niu L, Li H. Characterization of non-taste & odor produced aerobic denitrification actinomycetes strains Streptomyces spp. isolated from reservoir ecosystem: Denitrification performance and carbon source metabolism. BIORESOURCE TECHNOLOGY 2023; 367:128265. [PMID: 36347481 DOI: 10.1016/j.biortech.2022.128265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The aerobic denitrification performance of actinomycetes was investigated. Two strains of actinomycetes were isolated and identified as Streptomyces sp. LJH-12-1 and Streptomyces diastatochromogenes LJH-12-2. Strain LJH-12-1 could remove 94% of organic carbon and 91% of total nitrogen. Meanwhile, strain LJH-12-2 could reduce 96% of organic carbon and 93% of total nitrogen. Two strains of actinomycetes revealed excellent carbon source metabolism activity. Moreover, the total nitrogen removal efficiencies were 69%, and 54%, respectively for strains LJH-12-1, and LJH-12-2 during the micro-polluted landscape raw water treatment. Futhermore, strains LJH-12-1 and LJH-12-2 could utilize aromatic proteins, soluble microbial products, and humic acid to drive aerobic denitrification processes in the landscape water bodies. These results will provide a new insight into applying aerobic denitrification actinomycetes to treat micro-polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Singh AK, Nakhate SP, Gupta RK, Chavan AR, Poddar BJ, Prakash O, Shouche YS, Purohit HJ, Khardenavis AA. Mining the landfill soil metagenome for denitrifying methanotrophic taxa and validation of methane oxidation in microcosm. ENVIRONMENTAL RESEARCH 2022; 215:114199. [PMID: 36058281 DOI: 10.1016/j.envres.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/21/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the microbial community residing at different depths of the landfill was characterized to assess their roles in serving as a methane sink. Physico-chemical characterization revealed the characteristic signatures of anaerobic degradation of organic matter in the bottom soil (50-60 cm) and, active process of aerobic denitrification in the top soil (0-10 cm). This was also reflected from the higher abundance of bacterial domain in the top soil metagenome represented by dominant phyla Proteobacteria and Actinobacteria which are prime decomposers of organic matter in landfill soils. The multiple fold higher relative abundances of the two most abundant genera; Streptomyces and Intrasporangium in the top soil depicted greater denitrifying taxa in top soil than the bottom soil. Amongst the aerobic methanotrophs, the genera Methylomonas, Methylococcus, Methylocella, and Methylacidiphilum were abundantly found in the top soil metagenome that were essential for oxidizing methane generated in the landfill. On the other hand, the dominance of archaeal domain represented by Methanosarcina and Methanoculleus in the bottom soil highlighted the complete anaerobic digestion of organic components via acetoclasty, carboxydotrophy, hydrogenotrophy, methylotrophy. Functional characterization revealed a higher abundance of methane monooxygenase gene in the top soil and methyl coenzyme M reductase gene in the bottom soil that correlated with the higher relative abundance of aerobic methanotrophs in the top soil while methane generation being the active process in the highly anaerobic bottom soil in the landfill. The activity dependent abundance of endogenous microbial communities in the different zones of the landfill was further validated by microcosm studies in serum bottles which established the ability of the methanotrophic community for methane metabolism in the top soil and their potential to serve as sink for methane. The study provides a better understanding about the methanotrophs in correlation with their endogenous environment, so that these bacteria can be used in resolving the environmental issues related to methane and nitrogen management at landfill site.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Om Prakash
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Ma B, Zhang H, Huang T, Chen S, Sun W, Yang W, Liu H, Liu X, Niu L, Yang F, Yu J. Cooperation triggers nitrogen removal and algal inhibition by actinomycetes during landscape water treatment: Performance and metabolic activity. BIORESOURCE TECHNOLOGY 2022; 356:127313. [PMID: 35577220 DOI: 10.1016/j.biortech.2022.127313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The actinomycetes strain Streptomyces sp. XD-11-9-3 and Streptomyces sp. 5 were isolated and presented poor denitrification performance. Co-culture of actinomycetes triggers nitrogen removal capacity under aerobic conditions (reduced 96% of total nitrogen). Nitrogen balance analysis presented that 71% of initial nitrogen converted as gaseous nitrogen. Moreover, co-culture increased the concentrations of adenosine triphosphate (>2.1 folds) and electron-transmission system activity (>1.5 folds) significantly. The co-culture presented excellent carbon source metabolism activity (especially amines and carboxylic acids) compared with monoculture. The removal efficiency of total nitrogen in the micro-polluted landscape water water reached 61% in the co-culture system, and the algal survival could be inhibited significantly. However, the dominant niche of the co-culture system restrained the diversity of the indigenous nirS-type denitrifying bacterial community. This study provided a novel pathway to the research of co-culture inefficiency aerobic denitrifier and further application in the restoration of polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jimeng Yu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
20
|
An B, Cai L, Liu T, Tian J, Liu Y. Selective photo-reduction of NO 2- to N 2 in the presence of Fe 2+ and citric acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152963. [PMID: 35016941 DOI: 10.1016/j.scitotenv.2022.152963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The photo-reduction of NO2- has received increasing attention due to its high photo-activity. However, the intermediate products of NO2- photo-reduction might contain NOx, which are also toxic pollutants. Herein, a novel strategy to selectively photo-reduce NO2- to N2 was proposed using Fe2+ and citric acid (H3Cit) as assistant to eliminate the formation of NOx. In this strategy, NO2- was firstly reduced to NO by the combination of photon, Fe2+ and H3Cit; the generated NO was then immediately captured by Fe2+-H3Cit to form Fe2+-H3Cit-NO complex; finally, H3Cit was activated by Fe3+ and •OH in Fe2+/H3Cit/UV/NO2- system to produce carbon dioxide anion radical (CO2•-), which could reduce the NO in Fe2+-H3Cit-NO complex to N2 with high efficiency and selectivity. The removal efficiencies of NO2- and TN were 98.6% and 87.5%, respectively, and the selectivity of N2 was 81.6% in Fe2+/H3Cit/UV/NO2- system after 60-min reaction at initial pH of 2.2, Fe2+ dosage of 3.0 mmol·L-1 and H3Cit dosage of 3.0 mmol·L-1. Based on the experimental results and spectral analysis, the mechanism of NO2- selective reduction in Fe2+/H3Cit/UV/NO2- system was proposed. Our finding provides a new way for wastewater denitrification and water purification.
Collapse
Affiliation(s)
- Baohua An
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Li Cai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Ting Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Sichuan, Chengdu 610066, China.
| |
Collapse
|
21
|
Zhang M, He T, Chen M, Wu Q. Ammonium and hydroxylamine can be preferentially removed during simultaneous nitrification and denitrification by Pseudomonas taiwanensis EN-F2. BIORESOURCE TECHNOLOGY 2022; 350:126912. [PMID: 35231598 DOI: 10.1016/j.biortech.2022.126912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
To overcome a large amount of nitrite accumulation and poor removal rate for hydroxylamine, a simultaneous nitrification and denitrification (SND) bacterium was isolated and identified as Pseudomonas taiwanensis EN-F2 by DNA sequencing. Strain EN-F2 could remove 100% of ammonium (52.90 mg/L), 100% of hydroxylamine (23.32 mg/L), 86.99% of nitrite (56.32 mg/L) and 89.21% of nitrate (56.18 mg/L) with a maximum removal rate of 8.72, 2.12, 4.55 and 5.80 mg/L/h, respectively. Ammonium and hydroxylamine could be preferentially removed during the SND process. The nitrite removal rate and cell growth were substantially enhanced by 2.10 mg/L/h and 0.45 after supplementation of hydroxylamine. The specific activities of ammonia monooxygenase (AMO), hydroxylamine oxidoreductase (HAO), nitrate reductase (NR), nitrite reductase (NIR) were successfully detected as 0.95, 0.31, 0.42 and 0.03 U/mg protein, respectively. All results demonstrated that strain EN-F2 could perform SND to remove multiple nitrogen sources from wastewater.
Collapse
Affiliation(s)
- Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
22
|
He T, Zhang M, Ding C, Wu Q, Chen M, Mou S, Cheng D, Duan S, Wang Y. New insight into the nitrogen removal capacity and mechanism of Streptomyces mediolani EM-B2. BIORESOURCE TECHNOLOGY 2022; 348:126819. [PMID: 35134523 DOI: 10.1016/j.biortech.2022.126819] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The utilization of actinomycetes as the bioresources for heterotrophic nitrification and aerobic denitrification is rarely reported due to the lack of work to explore their nitrogen biodegradation capabilities. Streptomyces mediolani EM-B2 belonging to actinomycetes could effectively remove high concentration of multiple nitrogen forms, and the maximum removal rates of ammonium, nitrate and nitrite reached 3.46 mg/(L·h), 1.71 mg/(L·h) and 1.73 mg/(L·h), respectively. Nitrite was preferentially consumed from the simultaneous nitrification and denitrification reaction system. Nitrogen balance analysis uncovered that more than 37% of the initial total nitrogen was converted to nitrogenous gas by aerobic denitrification. Experiments with specific inhibitors of nitrification and denitrification revealed that strain EM-B2 contained ammonia monooxygenase, hydroxylamine oxidoreductase, nitrate reductase and nitrite oxidoreductase, which were successfully expressed and detected as 0.43, 0.59, 0.12 and 0.005 U/mg proteins, respectively. These findings may provide new insights into the actinomycetes for bioremediation of nitrogen pollution wastewater.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuanglong Mou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dujuan Cheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Sijun Duan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
23
|
Ma B, Zhang H, Ma M, Huang T, Guo H, Yang W, Huang Y, Liu X, Li H. Nitrogen removal by two strains of aerobic denitrification actinomycetes: Denitrification capacity, carbon source metabolic ability, and raw water treatment. BIORESOURCE TECHNOLOGY 2022; 344:126176. [PMID: 34688858 DOI: 10.1016/j.biortech.2021.126176] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The denitrification characteristics of actinomyetes in aquatic ecosystem under aerobic conditions are not well known. Here, two actinomyetes strains M5 and M6 were separated and annotated as Streptomyces sp. Strains M5 and M6 could reduce 95.02% and 96.84 % of total nitrogen, 98.14 % and 97.02 % of total organic carbon under aerobic condition. Nitrogen balance analysis indicated that 78.60 % and 83.01 % of nitrogen was translated into gaseous, with 13.48 % and 10.77 % of nitrogen was assimilated into biomass for strains M5 and M6. The highest removal efficiency of nitrate of strains M5 and M6 in micro-polluted water bodies were 88.61 % and 82.53 %, respectively. Moreover, strains M5 and M6 exhibited remarkable carbon metabolic capacity, especially for esters. Altogether, this study provides a new perspective for understanding the performance of actinomyetes in aerobic denitrification and micro-polluted water reparation.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuwei Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|