1
|
Luo Z, Sun Y, Tang H, Zhu B, Li X, Gong J, Shi Y. Mediating effect of diabetes in the association between long-term PM 2.5 exposure and cancer risk in CHARLS. Sci Rep 2025; 15:6930. [PMID: 40011522 DOI: 10.1038/s41598-025-89885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
Long-term exposure to air pollutants and diabetes are both linked to cancer development. However, their combined effect remains unclear. This study examined the relationship between air pollutants and cancer incidence, with diabetes as a potential mediator. Data from 10,590 participants in the 2015 China Health and Retirement Longitudinal Study (CHARLS) were analyzed. Participants were grouped based on cancer diagnosis, and air pollutant exposure levels were estimated using satellite-based spatiotemporal models. Generalized linear regression and restricted cubic spline (RCS) analysis were used to assess the impact of air pollutants and diabetes in covariates-adjusted models. Further analyses, including conditional independence test, mediation effect and sensitivity analysis based on Bayesian networks, were performed to further analyze specific air pollutants. After adjusting for covariates, particulate matter (PM) (PM ≤ 1 μm in aerodynamic diameter [PM1], PM2.5, ammonium (NH4), nitrate (NO3) and diabetes showed significant associations with cancer incidence. RCS analysis confirmed significant direct effects of PM2.5 and PM10 on cancer and the mediated effects of diabetes. The interaction between diabetes and both PM2.5 and PM10 was further supported by conditional independence tests, highlighting diabetes as a significant mediator in the PM2.5-cancer relationship. This study offers a novel perspective by identifying diabetes as a key intermediary in the association between PM2.5 exposure and cancer risk, providing evidence that diabetes plays a significant mediating role in air pollutant-related cancer development.
Collapse
Affiliation(s)
- Zhanyang Luo
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Yiqing Sun
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Haijia Tang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Bukun Zhu
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiang Li
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Youyang Shi
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
2
|
Zhang Y, Chen X, Tang O, Cheng K, Ge L, Lu W, Zheng J, Wu Y, Wang SW, Zeng XX, Xue J, Cui Y, Ji L, Shen Q. Exploring similarities and differences in anti-atherosclerotic potential bioactives among Dendrobium species by UPLC-Q-Exactive Orbitrap MS. NPJ Sci Food 2025; 9:6. [PMID: 39805828 PMCID: PMC11730587 DOI: 10.1038/s41538-025-00371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Atherosclerosis is a primary cause of cardiovascular disease, straining healthcare systems. Dendrobium officinale, a widely used food-medicine homology, has demonstrated anti-atherosclerotic (anti-AS) properties, with other species listed in pharmacopoeias exhibiting similar effects. However, their efficacy varies, and the impact of interspecies variations on compounds and mechanisms in Dendrobium's anti-AS effects remains unclear. This study aimed to explore the anti-AS compounds and mechanisms across various Dendrobium species. The chemical composition of D. fimbriatum, D. officinale, D. devonianum, D. gratiosissimum, and D. catenatum was analyzed using UPLC-Q-Exactive Orbitrap MS. Network pharmacology predicted the pharmacological basis and molecular mechanisms. Molecular docking experiments assessed the binding affinity of the identified compounds with target proteins. A total of 12 different and 65 common components were identified. Key therapeutic targets included SRC, STAT3, and PIK3CA, along with relevant signaling pathways linked to AS prevention. The study provides insights into interspecies differences in Dendrobium's anti-AS properties.
Collapse
Affiliation(s)
- Yu Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Oushan Tang
- Department of Cardiology, The Second Hospital Affiliated to ShaoXing Universit, Shaoxing, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Zheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yeshun Wu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Yiwei Cui
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China.
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
3
|
Jiang D, Cai X, Fang H, Li Y, Zhang Z, Chen H, Zheng Z, Wang W, Sun Y. Coexposure to ambient air pollution and temperature and its associations with birth outcomes in women undergoing assisted reproductive technology in Fujian, China: A retrospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136539. [PMID: 39561545 DOI: 10.1016/j.jhazmat.2024.136539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The interactions between pollutants and temperature coexposure, the mixing effects and their potential mechanisms remain uncertain. METHODS This retrospective cohort study included 11,766 women with infertility who received treatment at Fujian Hospital between 2015 and 2024. The daily mean concentrations of the six pollutants and the relative humidity and temperature data were acquired from the Fujian region. Data on genes were obtained from the Comparative Toxicogenomics Database. RESULTS O3 (aOR=0.80, 95 % CI=0.725--0.891) and temperature (aOR=0.936, 95 % CI=0.916--0.957) were negatively correlated with live birth rates. Moreover, PM10 (aOR=1.135, 95 % CI=1.028--1.252) and PM2.5 (aOR=1.146, 95 % CI=1.03--1.274) were positively associated with preterm birth. Among the effects on live births, PM2.5, PM10, NO2, CO, and SO2 had significant synergistic effects with temperature; in addition, O3 had significant antagonistic effects with temperature. A notable trend toward declining live birth rates with elevated concentrations of mixed pollutants was observed. Different infertility patients have different sensitivities to coexposure. Gene enrichment and cell experiments are associated mainly with cellular life activities. CONCLUSIONS Individual effects, interactions, and mixed effects between temperature and air pollutants and birth outcomes persist when air pollutant levels are relatively low. AAP may trigger miscarriage through cytotoxic effects.
Collapse
Affiliation(s)
- Dongdong Jiang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuefen Cai
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Hua Fang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuehong Li
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Ziqi Zhang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoting Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zixin Zheng
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Liu J, Fan Y, Song J, Song R, Li X, Liu L, Wei N, Yuan J, Yi W, Pan R, Jin X, Cheng J, Zhang X, Su H. Impaired thyroid hormone sensitivity exacerbates the effect of PM 2.5 and its components on dyslipidemia in schizophrenia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174055. [PMID: 38889814 DOI: 10.1016/j.scitotenv.2024.174055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Dyslipidemia in schizophrenia causes a serious loss of healthy life expectancy, making it imperative to explore key environmental risk factors. We aimed to assess the effect of PM2.5 and its constituents on dyslipidemia in schizophrenia, identify the critical hazardous components, and investigate the role of impaired thyroid hormones (THs) sensitivity in this association. METHODS We collected disease data on schizophrenia from the Anhui Mental Health Center from 2019 to 2022. Logistic regression was constructed to explore the effect of average annual exposure to PM2.5 and its components [black carbon (BC), organic matter (OM), sulfate (SO42-), ammonium (NH4+), and nitrate (NO3-)] on dyslipidemia, with subgroup analyses for age and gender. The degree of impaired THs sensitivity in participants was reflected by the Thyroid Feedback Quantile-based Index (TFQI), and its role in the association of PM2.5 components with dyslipidemia was explored. RESULTS A total of 5125 patients with schizophrenia were included in this study. Exposure to PM2.5 and its components (BC, OM, SO42-, NH4+, and NO3-) were associated with dyslipidemia with the odds ratios and 95 % confidence interval of 1.13 (1.04, 1.23), 1.16 (1.07, 1.26), 1.15 (1.06, 1.25), 1.11 (1.03, 1.20), 1.09 (1.00, 1.18), 1.12 (1.04, 1.20), respectively. Mixed exposure modeling indicated that BC played a major role in the effects of the mixture. More significant associations were observed in males and groups <45 years. In addition, we found that the effect of PM2.5 and its components on dyslipidemia was exacerbated as impaired THs sensitivity in the patients. CONCLUSIONS Exposure to PM2.5 and its components is associated with an increased risk of dyslipidemia in schizophrenia, which may be exacerbated by impaired THs sensitivity. Our results suggest a new perspective for the management of ambient particulate pollution and the protection of thyroid function in schizophrenia.
Collapse
Affiliation(s)
- Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Yinguang Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Xulai Zhang
- Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China.
| |
Collapse
|
5
|
Sun M, Li T, Sun Q, Ren X, Sun Z, Duan J. Associations of long-term particulate matter exposure with cardiometabolic diseases: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166010. [PMID: 37541522 DOI: 10.1016/j.scitotenv.2023.166010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND This review aimed to establish a holistic perspective of long-term PM exposure and cardiometabolic diseases, identify long-term PM-related cardiovascular and metabolic risk factors, and provide practical significance to preventative measures. METHOD A combination of computer and manual retrieval was used to search for keywords in PubMed (2903 records), Embase (2791 records), Web of Science (5488 records) and Cochrane Library (163 records). Finally, a total of 82 articles were considered in this meta-analysis. Stata 13.0 was accustomed to inspecting the studies' heterogeneity and calculating the combined effect value (RR) by selecting the matching models. The subgroup analysis, sensitivity analysis and publication bias tests were also performed. RESULTS Meta-analysis figured an association between PM and cardiometabolic diseases. PM2.5 (per 10 μg/m3 increase) boosted the risk of hypertension (RR = 1.14, 95 % CI: 1.09-1.19), coronary heart disease (CHD) (RR = 1.21, 95 % CI: 1.08-1.35), diabetes (RR = 1.16, 95 % CI: 1.11-1.21) and stroke (including ischemic stroke and hemorrhagic stroke). PM10 (per 10 μg/m3 increase) elevated the incidence of hypertension (RR = 1.11, 95 % CI: 1.07-1.16) and diabetes (RR = 1.26, 95 % CI: 1.08-1.47). PM1 (per 10 μg/m3 increase) exposure increased the risk of total dyslipidemia, yielding the RR of 1.10 (95 % CI: 1.01-1.18). Furthermore, the elderly, overweight and higher background pollutant level were potentially susceptible to related diseases. CONCLUSION There was a virtual connection between long-term exposure to PM and cardiometabolic diseases. PM2.5 or PM10 (per 10 μg/m3) increased the risk of hypertension, CHD, diabetes, stroke and dyslipidemia, causing cardiovascular "multimorbidity" in high-risk populations.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
6
|
Wang C, Meng XC, Huang C, Wang J, Liao YH, Huang Y, Liu R. Association between ambient air pollutants and lipid profile: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115140. [PMID: 37348216 DOI: 10.1016/j.ecoenv.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Studies of the effects of atmospheric pollutants on lipid profiles remain inconsistent and controversial. AIM The study was aimed to investigate the relationship between the exposure to ambient air pollutants and variations in the blood lipid profiles in the population. METHODS A comprehensive search of three different databases (PubMed, Web of Science, and the Cochrane Library) until December 17, 2022, yielded 17 origional studies fulfilling the inclusion criteria for a meta-analysis. Aggregate effect measures and 95% confidence intervals (95% CI) for the relevant ambient air pollutants were deduced employing random effects models. RESULTS The collective meta-analysis indicated that long-term exposure to PM1, PM2.5, PM10 and CO showed a substantial correlation with TC (PM1: β = 2.04, 95%CI = 0.15-3.94; PM2.5: β = 1.11, 95%CI = 0.39-1.84; PM10: β = 1.70, 95%CI = 0.67-2.73; CO: β = 0.08, 95%CI = 0.06-0.10), PM10 exhibited a significant association with TG (β = 0. 537,95% CI = 0.09-0.97), whereas HDL-C demonstrated notable relationships with PM1, PM10, SO2 and CO (PM1: β = -2.38, 95%CI = -4.00 to -2.76; PM10: β = -0.77, 95%CI = -1.33 to -0.21; SO2: β = -0.91, 95%CI = -1.73 to -0.10; CO: β = -0.03, 95%CI = -0.05 to 0.00). PM2.5, PM10 also showed significant associations with LDL-C (PM2.5: β = 1.44 95%CI = 0.48-2.40; PM10: β = 1.62 95%CI = 0.90-2.34). Subgroup analysis revealed significant or stronger correlations predominantly in cohort study designs, with higher male comparisons, and in regions exhibiting elevated contaminant levels. CONCLUSION In summary, the analysis substantiates that ambient air pollutants can be recognized as potent contributors to alterations in lipid profiles, particularly particulate pollutants which exert more obvious effects on lipid profiles.
Collapse
Affiliation(s)
- Chun Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xing-Chen Meng
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chao Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jia Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying-Hao Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yang Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
7
|
Bao H, Li B, You Q, Dun X, Zhang Z, Liang Y, Li Y, Jiang Q, Zhang R, Chen R, Chen W, Zheng Y, Li D, Cui L. Exposure to real-ambient particulate matter induced vascular hypertrophy through activation of PDGFRβ. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130985. [PMID: 36801716 DOI: 10.1016/j.jhazmat.2023.130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Vascular toxicity induced by particulate matter (PM) exposure exacerbates the onset and development of cardiovascular diseases; however, its detailed mechanism remains unclear. Platelet-derived growth factor receptor β (PDGFRβ) acts as a mitogen for vascular smooth muscle cells (VSMCs) and is therefore essential for normal vasoformation. However, the potential effects of PDGFRβ on VSMCs in PM-induced vascular toxicity have not yet been elucidated. METHODS To reveal the potential roles of PDGFRβ signalling in vascular toxicity, individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models and PDGFRβ overexpression mouse models were established in vivo, along with in vitro VSMCs models. RESULTS Vascular hypertrophy was observed following PM-induced PDGFRβ activation in C57/B6 mice, and the regulation of hypertrophy-related genes led to vascular wall thickening. Enhanced PDGFRβ expression in VSMCs aggravated PM-induced smooth muscle hypertrophy, which was attenuated by inhibiting the PDGFRβ and janus kinase 2 /signal transducer and activator of transcription 3 (JAK2/STAT3) pathways. CONCLUSION Our study identified the PDGFRβ gene as a potential biomarker of PM-induced vascular toxicity. PDGFRβ induced hypertrophic effects through the activation of the JAK2/STAT3 pathway, which may be a biological target for the vascular toxic effects caused by PM exposure.
Collapse
Affiliation(s)
- Hongxu Bao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Benying Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qing You
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Dun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanan Liang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yahui Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- Department of Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Xue Y, Luo M, Hu X, Li X, Shen J, Zhu W, Huang L, Hu Y, Guo Y, Liu L, Wang L, Luo S. Macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through IL-1β/STAT3 signaling. Commun Biol 2022; 5:1316. [PMID: 36456628 PMCID: PMC9715630 DOI: 10.1038/s42003-022-04255-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression.
Collapse
Affiliation(s)
- Yuzhou Xue
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Minghao Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiankang Hu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Shen
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Zhu
- Medical Department, Yidu Cloud (Beijing) Technology Co., Ltd., Beijing, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Longxiang Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Hu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongzheng Guo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Liu
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingbang Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanism of PM2.5-induced ischemic stroke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119827. [PMID: 35917837 DOI: 10.1016/j.envpol.2022.119827] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Under the background of global industrialization, PM2.5 has become the fourth-leading risk factor for ischemic stroke worldwide, according to the 2019 GBD estimates. This highlights the hazards of PM2.5 for ischemic stroke, but unfortunately, PM2.5 has not received the attention that matches its harmfulness. This article is the first to systematically describe the molecular biological mechanism of PM2.5-induced ischemic stroke, and also propose potential therapeutic and intervention strategies. We highlight the effect of PM2.5 on traditional cerebrovascular risk factors (hypertension, hyperglycemia, dyslipidemia, atrial fibrillation), which were easily overlooked in previous studies. Additionally, the effects of PM2.5 on platelet parameters, megakaryocytes activation, platelet methylation, and PM2.5-induced oxidative stress, local RAS activation, and miRNA alterations in endothelial cells have also been described. Finally, PM2.5-induced ischemic brain pathological injury and microglia-dominated neuroinflammation are discussed. Our ultimate goal is to raise the public awareness of the harm of PM2.5 to ischemic stroke, and to provide a certain level of health guidance for stroke-susceptible populations, as well as point out some interesting ideas and directions for future clinical and basic research.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|
11
|
Lei R, Wang Z, Wang X, Tian H, Wang B, Xue B, Xiao Y, Hu J, Zhang K, Bin Luo. Effects of long-term exposure to PM 2.5 and chemical constituents on blood lipids in an essential hypertensive population: A multi-city study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113867. [PMID: 35839530 DOI: 10.1016/j.ecoenv.2022.113867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Previous studies on the effects of fine particulate matter (PM2.5) and chemical constituents on lipid disorder among hypertension populations, particularly in China, are very limited. We aimed to examine the effects of long-term exposure to PM2.5 and chemical constituents on dyslipidemias in China. Finally, we included 34,841 participants with essential hypertension from 19 regions in China during 2010-2011. Data were modeled using the generalized additive mixed model. We found that PM2.5 and chemical constituents exposure were positively associated with the increased risk of dyslipidemias and increased levels of total cholesterol (TC) and triglyceride (TG). The odds ratio for hypercholesterolemia was 1.356 [95% confidence interval (CI): 1.246, 1.477] for PM2.5, and the strongest association with PM2.5 constituents was found for nitrate. Each 10 μg/m3 increase in PM2.5 showed a significant increase of TC by 2.60% (95% CI: 2.03, 3.17) and TG by 2.91% (95% CI: 1.60, 4.24), respectively. Meanwhile, an interquartile range increase in nitrate, ammonium and organic matter had stronger associations with TC and TG parameters than black carbon, sulfate, and mineral dust. Our findings may contribute to a better understanding of the chronic effects of PM2.5 and chemical constituents on lipid disorder in an essential hypertensive population.
Collapse
Affiliation(s)
- Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zengwu Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xin Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya Xiao
- School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jihong Hu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA.
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|