1
|
Silva AB, Montagnini DL, Katchborian-Neto A, Andrade JV, Manuquian HA, Cavallari PSSR, Almeida SG, Barbosa EP, Cunha WR, Soares MG, Santos MFC, Silva MLA, Vacari AM. Insecticidal activity of extracts of handroanthus impetiginosus on Plutella xylostella (Lepidoptera: plutellidae) larvae. Nat Prod Res 2024; 38:3823-3830. [PMID: 37732609 DOI: 10.1080/14786419.2023.2260069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Plutella xylostella is considered the main pest of cabbage in Brazil and the world, causing damage of up to 100%. Thus, this study evaluated the insecticidal activity of extracts obtained from the fruits, seeds, bark, leaves, and flowers of Handroanthus impetiginosus against the diamondback moth, P. xylostella larvae. The seed extract showed the highest mortality (97.0%) compared to the control treatment. The LC50 values indicated that the seed and flower extracts (0.01003 and 0.01288 mg/L respectively) assumed the highest toxicity to P. xylostella larvae after 24 h of exposure. The results of this study indicated that the seeds extract is the most promising toxic extract, with measured mortality of approximately 97.0% for P. xylostella larvae after 144 h of exposure in kale plants. Seed extract showed the best insecticidal activity. Thus, this extract can be applied to develop an insecticide based on H. impetiginosus seed.
Collapse
Affiliation(s)
- Andriely B Silva
- Laboratory of Entomology, Sciences and Animal Science Graduate Programs, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| | - Daniel L Montagnini
- Sciences Graduate Program, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| | | | - João V Andrade
- Department of Physics and Chemistry, Federal University of Espírito Santo - UFES Center of Exact, Natural and Health Sciences, Alegre, Brazil
| | - Hallana A Manuquian
- Sciences Graduate Program, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| | - Pedro S S R Cavallari
- Sciences Graduate Program, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| | - Samarah G Almeida
- Sciences Graduate Program, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| | - Enes P Barbosa
- Laboratory of Entomology, Sciences and Animal Science Graduate Programs, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| | - Wilson R Cunha
- Sciences Graduate Program, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| | - Marisi G Soares
- Institute of Chemistry, Federal University of Alfenas, Alfenas, Brazil
| | - Mario F C Santos
- Department of Physics and Chemistry, Federal University of Espírito Santo - UFES Center of Exact, Natural and Health Sciences, Alegre, Brazil
| | - Márcio L A Silva
- Sciences Graduate Program, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| | - Alessandra M Vacari
- Laboratory of Entomology, Sciences and Animal Science Graduate Programs, University of Franca (UNIFRAN), Franca, São Paulo, Brazil
| |
Collapse
|
2
|
Uğurlu P, Satar Eİ, Ünlü E. Toxic effects of commercial grade indoxacarb and endosulfan on Gammarus kischineffensis (Schellenberg, 1937) (Crustacea: Amphipoda). CHEMOSPHERE 2024; 360:142387. [PMID: 38801905 DOI: 10.1016/j.chemosphere.2024.142387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
This study was designed to investigate the toxic effects of two frequently used commercial insecticides containing endosulfan and indoxacarb on a freshwater amphipod Gammarus kischineffensis. In this context, the 24, 48, 72 and 96 h LC50 values of these pesticides were determined for G. kischineffensis. Then the histopathological effects of these pesticides on the gill tissues of this species were evaluated. At the end of the study, the 96 h LC50 values of commercial-grade endosulfan and indoxacarb for G. kischineffensis were determined as 1.861 μg L-1 and 20.212 mg L-1, respectively. Histopathologically, the most common histopathological alterations in individuals exposed to sublethal concentrations of commercial-grade endosulfan and indoxacarb were pillar cell hypertrophy resulting in atrophy of the hemocoelic space and hemocytic infiltration. Considering these results, it can be said that commercial-grade endosulfan is extremely and indoxacarb is slightly toxic to G. kischineffensis.
Collapse
Affiliation(s)
- Pelin Uğurlu
- Dicle University Science and Technology Application and Research Center, 21280, Diyarbakır, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Dicle University, 21280, Diyarbakir, Turkey.
| | - Elif İpek Satar
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Dicle University, 21280, Diyarbakir, Turkey
| | - Erhan Ünlü
- Department of Biology, Section of Hydrobiology, Faculty of Science, Dicle University, 21280, Diyarbakir, Turkey
| |
Collapse
|
3
|
Wu J, Yang R, Zheng Q, Wei L, Wang B, Yan W, Meng S, Cheng D, Huang S, Zhang Z, Zhang P. Effect of Brucea javanica Oil on the Toxicity of β-Cypermethrin Emulsifiable Concentrate Formulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9713-9724. [PMID: 38373060 DOI: 10.1021/acsami.3c16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Enhancing the performance of traditional pesticide formulations by improving their leaf surface wetting capabilities is a crucial approach for maximizing the pesticide efficiency. This study develops an emulsifiable concentrate (EC) of 4.5% β-cypermethrin containing Brucea javanica oil (BJO). The incorporation of BJO aims to improve the leaf-wetting properties of the EC formulation and enhance its insecticidal effectiveness. The droplet size and emulsion characteristics of β-CYP EC emulsion with varying concentrations of the emulsifier were evaluated, and changes after incorporating BJO were assessed to develop the optimal formulation. A comprehensive comparison was conducted among commercial 4.5% β-cypermethrin EC (β-CYP EC-1), 4.5% β-cypermethrin EC with BJO (β-CYP EC-2), and 4.5% β-cypermethrin EC without BJO (β-CYP EC-3). This comparison encompassed various factors including storage stability, insecticidal activity, cytotoxicity, and wetting performance on cabbage leaves. The results indicated that the ideal emulsifier concentration was 15% emulsifier 0201B. β-CYP EC-2 demonstrated superior wetting properties on cabbage leaves (the wetting performance of β-CYP EC-2 emulsion on cabbage leaves is 2.60 times that of the β-CYP EC-1 emulsion), heightened insecticidal activity against the third larvae of Plutella xylostella [diamondback moth (DBM)] [the insecticidal activity of the β-CYP EC-2 emulsion against the third larvae of DBM is 1.93 times that of the β-CYP EC-1 emulsion (12 h)], and more obvious inhibitory effects on the proliferation of DBM embryo cells than the other tested formulations. These findings have significant implications for advancing pest control strategies and promoting sustainable and effective agricultural practices.
Collapse
Affiliation(s)
- Jian Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Rongjie Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Qun Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Liting Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Botong Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Yan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Shaoke Meng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongmei Cheng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Suqing Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Peiwen Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
4
|
Wang W, Su Y, Liu X, Qi R, Li F, Li B, Sun H. Low concentration of indoxacarb interferes with the growth and development of silkworm by damaging the structure of midgut cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105567. [PMID: 37666598 DOI: 10.1016/j.pestbp.2023.105567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023]
Abstract
As an important economic insect, Bombyx mori plays an essential role in the development of the agricultural economy. Indoxacarb, a novel sodium channel blocker insecticide, has been widely used for the control of various pests in agriculture and forestry, and its environmental pollution caused by flight control operations has seriously affected the safe production of sericulture in recent years. However, the lethal toxicity and adverse effects of indoxacarb on silkworm remain largely unknown. In this study, the toxicity of indoxacarb on the 5th instar larvae of silkworm was determined, with an LC50 (72 h) of 2.07 mg/L. Short-term exposure (24 h) to a low concentration of indoxacarb (1/2 LC50) showed significantly reduced body weight and survival rate of silkworm larvae. In addition, indoxacarb also led to decreased cocoon weight and cocoon shell weight, but had no significant effects on pupation, adult eclosion, and oviposition. Histopathological and ultrastructural analysis indicated that indoxacarb could severely damage the structure of the midgut epithelial cells, and lead to physiological impairment of the midgut. A total of 3883 differentially expressed genes (DEGs) were identified by midgut transcriptome sequencing and functionally annotated using GO and KEGG. Furthermore, the transcription level and enzyme activity of the detoxification related genes were determined, and our results suggested that esterases (ESTs) might play a major role in metabolism of indoxacarb in the midgut of B. mori. Future studies to examine the detoxification or biotransformation function of candidate genes will greatly enhance our understanding of indoxacarb metabolism in B. mori. The results of this study provide a theoretical basis for elucidating the mechanism of toxic effects of indoxacarb on silkworm by interfering with the normal physiological functions of the midgut.
Collapse
Affiliation(s)
- Wanwan Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yue Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xinyue Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Ruinan Qi
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
5
|
Wang ZJ, Wang NM, Yu QT, Xue CB. Sublethal effects of an indoxacarb enantiomer insecticide on Plutella xylostella caterpillar and Chrysoperla sinica predator. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114400. [PMID: 36508809 DOI: 10.1016/j.ecoenv.2022.114400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Plutella xylostella (L.) is a migratory species and an important insect pest of cruciferous crops worldwide, and Chrysoperla sinica (Tjeder) is a predaceous insect of agricultural and forest pests in the field. Indoxacarb has two enantiomers: (+)-S-indoxacarb and (-)-R-indoxacarb. This study was conducted to clarify the selective toxicity and sublethal effects of both enantiomers on P. xylostella and C. sinica. The (+)-S-indoxacarb isomer had greater acute toxicity to P. xylostella and C. sinica, while (-)-R-indoxacarb had less toxicity to P. xylostella and low toxicity to C. sinica. Lethal concentration 25 % (LC25) of (+)-S-indoxacarb had significant effects on the development, population, and fecundity of P. xylostella and C. sinica. The LC25 concentration of (-)-R-indoxacarb had a significant effect on the oviposition of P. xylostella. The field recommended concentration of (-)-R-indoxacarb significantly affected the pupal stage, adult survival rate, oviposition, and larval survival rate of C. sinica. Both enantiomers could significantly affect the search efficiency, successful attack rate, prey handling time, and maximum predation of C. sinica larvae, and the effects of (+)-S-indoxacarb alone were greater than those of (-)-R-indoxacarb. This study provided evidence of the different selective toxicity, sublethal effects of indoxacarb enantiomers on P. xylostella and C. sinica, which of the results could provide a basis for more rational use of indoxacarb in ecosystems.
Collapse
Affiliation(s)
- Zi-Jian Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Nian-Meng Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Qi-Tong Yu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Chao-Bin Xue
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
6
|
Lu Z, Hou Z, Pan H. Degradation of anthranilic diamide insecticide tetrachlorantraniliprole in water: Kinetics, degradation pathways, product identification and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155448. [PMID: 35508239 DOI: 10.1016/j.scitotenv.2022.155448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/20/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
In the present study, aqueous behavior and fate of diamide insecticide tetrachlorantraniliprole (TCTP) were investigated under laboratory-controlled conditions. Half-lives of TCTP photolysis in natural water and pH buffers were 1.4-2.8 h, comparing with those of 1.2-231 d for hydrolysis. Both processes were highly influenced by pH with respect to degradation kinetics and routes. The hydrolysis rate of TCTP was accelerated by elevated temperatures. The presence of nitrate enhanced TCTP photolysis while fulvic acid exhibited suppression, with the extent of both effects as a function of concentration. Four degradation products were identified using a variety of spectroscopic approaches. Key reactions involved in the degradation pathways include intramolecular substitution and cyclization. There was a reduction in the acute toxicity of all four products to Daphnia magna by comparison with TCTP, whereas they were still classified as category 1 or 2 hazardous substances to the aquatic environment according to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) standards.
Collapse
Affiliation(s)
- Zhou Lu
- College of Plant Science, Jilin University, Changchun, Jilin 130062, China; College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China; Center of Quality Standard and Testing Technology for Agro-Products, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
7
|
Bilal M, Sial MU, Cao L, Huang Q. Effects of Methoxyfenozide-Loaded Fluorescent Mesoporous Silica Nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) Mortality and Detoxification Enzyme Levels Activities. Int J Mol Sci 2022; 23:ijms23105790. [PMID: 35628599 PMCID: PMC9144591 DOI: 10.3390/ijms23105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
The diamond back moth, Plutella xylostella, causes severe damage at all crop stages, beside its rising resistance to all insecticides. The objective of this study was to look for a new control strategy such as application of insecticide-loaded carbon dot-embedded fluorescent mesoporous silica nanoparticles (FL-SiO2 NPs). Two different-sized methoxyfenozide-loaded nanoparticles (Me@FL-SiO2 NPs-70 nm, Me@FL-SiO2 NPs-150 nm) were prepared, with loading content 15% and 16%. Methoxyfenozide was released constantly from Me@FL-SiO2 NPs only at specific optimum pH 7.5. The release of methoxyfenozide from Me@FL-SiO2 NPs was not observed other than this optimum pH, and therefore, we checked and controlled a single release condition to look out for the different particle sizes of insecticide-loaded NPs. This pH-responsive release pattern can find potential application in sustainable plant protection. Moreover, the lethal concentration of the LC50 value was 24 mg/L for methoxyfenozide (TC), 14 mg/L for Me@FL-SiO2 NPs-70 nm, and 15 mg/L for Me@FL-SiO2 NPs-150 nm after 72 h exposure, respectively. After calculating the LC50, the results predicted that Me@FL-SiO2 NPs-70 nm and Me@FL-SiO2 NPs-150 nm exhibited better insecticidal activity against P. xylostella than methoxyfenozide under the same concentrations of active ingredient applied. Moreover, the activities of detoxification enzymes of P. xylostella were suppressed by treatment with insecticide-loaded NPs, which showed that NPs could also be involved in reduction of enzymes. Furthermore, the entering of FL-SiO2 NPs into the midgut of P. xylostella was confirmed by confocal laser scanning microscope (CLSM). For comparison, P. xylostella under treatment with water as control was also observed under CLSM. The control exhibited no fluorescent signal, while the larvae treated with FL-SiO2 NPs showed strong fluorescence under a laser excitation wavelength of 448 nm. The reduced enzyme activities as well as higher cuticular penetration in insects indicate that the nano-based delivery system of insecticide could be potentially applied in insecticide resistance management.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.); (L.C.)
| | - Muhammad Umair Sial
- Department of Entomology, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.); (L.C.)
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.); (L.C.)
- Correspondence:
| |
Collapse
|