1
|
Zhai Y, Zhang H, Hu C, Wang Q, Wang S, Ge RS, Li X. Bisphenol Z inhibits the function of Leydig cells via upregulation of METTL3 expression in adult male rats. J Steroid Biochem Mol Biol 2025; 252:106786. [PMID: 40398521 DOI: 10.1016/j.jsbmb.2025.106786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 05/06/2025] [Accepted: 05/19/2025] [Indexed: 05/23/2025]
Abstract
The use of bisphenol A has been restricted due to its toxicity. However, the impact of its substitute, bisphenol Z (BPZ), on Leydig cell function remains uncertain. We aimed to examine the associations between BPZ exposure and the disruption of Leydig cell function via upregulating Mettl3 and inducing oxidative stress. To address this, in vivo, male adult Sprague-Dawley rats received BPZ (0, 1, 10, or 100mg/kg/d orally) for 7 days, and in vitro, purified Leydig cells were treated with BPZ (0-20μM, 24h). Leydig cell morphology and function were assessed. The results showed that BPZ did not alter Leydig cell quantity but notably decreased serum testosterone levels. Furthermore, it significantly downregulated the expression levels of genes and proteins (SCARB1, STAR, CYP17A1, HSD17B3, and INSL3) in Leydig cells. Concurrently, BPZ treatment led to diminished expression of antioxidant genes (Gpx1 and Cat), an upregulation in m6A related gene (Mettl3) subsequent to the enrichment of RNA methylation fragments in the testis. In vitro analysis of primary Leydig cells demonstrated that BPZ heightened oxidative stress and diminished testosterone production. In conclusion, BPZ reduces rat testosterone by downregulating steroidogenic genes (Star, Scarb1, Cyp17a1, and Hsd17b3) via METTL3-m6A-Camkk2 pathway, impairing Leydig cell function.
Collapse
Affiliation(s)
- Yingna Zhai
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University,Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China
| | - Huiqian Zhang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University,Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China
| | - Chunnan Hu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University,Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China
| | - Qingyuan Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University,Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China
| | - Shaowei Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University,Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University,Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China.
| | - Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University,Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
2
|
Yang T, Liu X, Kang C, Hou G, Shen Y, Liu Z. Chronic psychological stress induces testicular oxidative stress affecting reproductive behavior in rats. Reprod Biol 2025; 25:100934. [PMID: 39571501 DOI: 10.1016/j.repbio.2024.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 02/26/2025]
Abstract
The inhibitory effect of chronic psychological stress on reproductive behavior is widely recognized since long. However, the biological mechanisms underlying these effects, especially the cellular biology of the testicular cells, have not been fully investigated. This study aimed to investigate the effects of chronic psychological stress on rat reproductive behavior and its correlation with testicular cell damage and oxidative stress. The results showed that chronic psychological stress led to a decline in the preference scores of male rats for female rats and caused damage to the testicular tissue structure. Subcellular structures were particularly affected in the chronic psychological stress rats. Furthermore, the levels of MDA, NO, and NOS in testicular cells substantially increased under chronic psychological stress conditions. In conclusion, male reproductive behavioral disorders induced by chronic psychological stress are potentially linked to oxidative damage in testicular tissue.
Collapse
Affiliation(s)
- Tianfeng Yang
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinye Liu
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chunyan Kang
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gonglin Hou
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yunyun Shen
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Zheqi Liu
- TCM hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Sang J, Ji Z, Li H, Wang H, Quan H, Yu Y, Yan J, Mao Z, Wang Y, Li L, Ge RS, Lin H. Triclosan inhibits testosterone biosynthesis in adult rats via inducing m6A methylation-mediated autophagy. ENVIRONMENT INTERNATIONAL 2024; 190:108827. [PMID: 38908274 DOI: 10.1016/j.envint.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Triclosan is a potent antibacterial compound widely used in everyday products. Whether triclosan affects Leydig cell function in adult male rats remains unknown. In this study, 0, 50, 100, or 200 mg/kg/day triclosan was gavaged to Sprague-Dawley male rats from 56 to 63 days postpartum. Triclosan significantly reduced serum testosterone levels at ≥ 50 mg/kg/day via downregulating the expression of Leydig cell gene Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3 and regulatory transcription factor Nr3c2 at 100-200 mg/kg. Further analysis showed that triclosan markedly increased autophagy as shown by increasing LC3II and BECN1 and decreasing SQSTM1. The mRNA m6A modification analysis revealed that triclosan significantly downregulated Fto expression at 200 mg/kg while upregulating Ythdf1 expression at 100 and 200 mg/kg, leading to methylation of Becn1 mRNA as shown by MeRIP assay. Triclosan significantly inhibited testosterone output in rat R2C Leydig cells at ≥ 5 μM via downregulating Fto and upregulating Ythdf1. SiRNA Ythdf1 knockdown can reverse triclosan-mediated mitophagy in R2C cells, thereby reversing the reduction of testosterone output. In summary, triclosan caused Becn1 m6A methylation by downregulating Fto and upregulating Ythdf1, which accelerated Becn1 translation, thus leading to the occurrence of autophagy and the decrease of testosterone biosynthesis.
Collapse
Affiliation(s)
- Jianmin Sang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhongyao Ji
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hehua Quan
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Yu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jingyun Yan
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhixiang Mao
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Linxi Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou and Key Laboratory of Structural Malformations in Children of Zhejiang Province and, Zhejiang Province, China.
| | - Han Lin
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
4
|
Afzal A, Zhang Y, Afzal H, Saddozai UAK, Zhang L, Ji XY, Khawar MB. Functional role of autophagy in testicular and ovarian steroidogenesis. Front Cell Dev Biol 2024; 12:1384047. [PMID: 38827527 PMCID: PMC11140113 DOI: 10.3389/fcell.2024.1384047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Autophagy is an evolutionarily conserved cellular recycling process that maintains cellular homeostasis. Despite extensive research in endocrine contexts, the role of autophagy in ovarian and testicular steroidogenesis remains elusive. The significant role of autophagy in testosterone production suggests potential treatments for conditions like oligospermia and azoospermia. Further, influence of autophagy in folliculogenesis, ovulation, and luteal development emphasizes its importance for improved fertility and reproductive health. Thus, investigating autophagy in gonadal cells is clinically significant. Understanding these processes could transform treatments for endocrine disorders, enhancing reproductive health and longevity. Herein, we provide the functional role of autophagy in testicular and ovarian steroidogenesis to date, highlighting its modulation in testicular steroidogenesis and its impact on hormone synthesis, follicle development, and fertility therapies.
Collapse
Affiliation(s)
- Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Zhang
- Department of Obstetrics and Gynecology, 988 Hospital of People's Liberation Army, Zhengzhou, Henan, China
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Umair Ali Khan Saddozai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- Department of Medicine, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| |
Collapse
|
5
|
Ren YL, Liang Q, Lian CY, Zhang W, Wang L. Melatonin alleviates glyphosate-induced testosterone synthesis inhibition via targeting mitochondrial function in roosters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123828. [PMID: 38522604 DOI: 10.1016/j.envpol.2024.123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Glyphosate (GLY) is a widely used herbicide that has been revealed to inhibit testosterone synthesis in humans and animals. Melatonin (MET) is an endogenous hormone that has been demonstrated to promote mammalian testosterone synthesis via protecting mitochondrial function. However, it remains unclear whether MET targets mitochondria to alleviate GLY-inhibited testosterone synthesis in avian. In this study, an avian model using 7-day-old rooster upon chronic exposure to GLY with the treatment of MET was designed to clarify this issue. Data first showed that GLY-induced testicular Leydig cell damage, structural damage of the seminiferous tubule, and sperm quality decrease were mitigated by MET. Transcriptomic analyses of the testicular tissues revealed the potentially critical role of mitophagy and steroid hormone biosynthesis in the process of MET counteracting GLY-induced testicular damage. Also, validation data demonstrated that the inhibition of testosterone synthesis due to GLY-induced mitochondrial dynamic imbalance and concomitant Parkin-dependent mitophagy activation is alleviated by MET. Moreover, GLY-induced oxidative stress in serum and testicular tissue were significantly reversed by MET. In summary, these findings demonstrate that MET effectively ameliorates GLY-inhibited testosterone synthesis by inhibiting mitophagy activation, which provides a promising remedy for the application of MET as a potential therapeutic agent to antagonize reproductive toxicity induced by GLY and similar contaminants.
Collapse
Affiliation(s)
- Yu-Long Ren
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Qing Liang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Cai-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Wei Zhang
- Yantai Academy of Agricultural Sciences, Yan'tai City 265500, Shandong Province, China.
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
6
|
Yao Z, Tao S, Lai Y, Yu Y, Wang H, Sang J, Yang J, Li H, Li X, Li Y, Ning Y, Ge RS, Li S. The impact of tetrachlorobisphenol A exposure during puberty: Altered Leydig cell development and induced endoplasmic reticulum stress in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115895. [PMID: 38159341 DOI: 10.1016/j.ecoenv.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Tetrachlorobisphenol A (TCBPA), a halogenated flame retardant and endocrine disruptor, has been detected in human urine and serum. While previous research has shown its impact on the reproductive system, investigations into its mechanisms during puberty remain limited. This study aims to explore the effects of TCBPA on Leydig cells in adolescent mice and potential underlying mechanisms. Male C57 mice of age 28 days were gavaged with 50, 100, and 200 mg/kg/day for 28 days. TCBPA did not alter body weight and testis weight but lowered testosterone levels at 100 and 200 mg/kg and reduced sperm count in the epididymis at 200 mg/kg. TCBPA lowered Leydig cell number at 200 mg/kg while it downregulated key Leydig cell gene (Lhcgr, Scarb1, Cyp11a1, Cyp17a1, Hsd3b6, Hsd17b3 and Insl3) as low as 50 mg/kg. Further study indicated that TCBPA induced reactive oxygen species and caused endoplasmic reticulum stress. In vitro study in TM3 mouse Leydig cells showed that TCBPA indeed induced reactive oxygen species and caused endoplasmic reticulum stress at 75 μM and inhibited testosterone production at this concentration and addition of antioxidant tocopherol can reverse it. These discoveries provide new insights and references for a deeper understanding of the toxic mechanisms of TCBPA on Leydig cells during puberty.
Collapse
Affiliation(s)
- Zhiang Yao
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Shanhui Tao
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Yingji Lai
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang Yu
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianmin Sang
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jin Yang
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Li
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Yangyang Ning
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Shijun Li
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Wang Q, Wu X, Zhang J, Song M, Du J, Cui Y, Li Y. Role of ROS/JAK2/STAT3 signaling pathway in di-n-butyl phthalate-induced testosterone synthesis inhibition and antagonism of lycopene. Food Chem Toxicol 2023; 175:113741. [PMID: 36958386 DOI: 10.1016/j.fct.2023.113741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Di-n-butyl phthalate (DBP) causes adverse effects on male reproduction, especially testosterone synthesis inhibition. However, the specific mechanism of DBP-induced testosterone synthesis inhibition and its effective intervention measures of prevention and treatment are scarce presently. Lycopene (LYC) plays beneficial roles in male infertility because of its antioxidant activity. Nevertheless, it is unclear whether LYC could prevent DBP-induced male reproductive toxicity. By in vitro and in vivo investigations, this study demonstrated that DBP activated ROS/JAK2/STAT3 signaling pathway, promoted mitophagy and apoptosis, which in turn inhibited testosterone synthesis. Additionally, another major finding was that LYC supplement could reverse the above change, presenting as the restraint of ROS/JAK2/STAT3 signaling pathway, reduction of mitophagy and apoptosis, and improvement of testosterone synthesis. Our study facilitates deeper understandings of the mechanism in DBP-induced testosterone synthesis inhibition, and identifies LYC as the effective prevention and control strategies for DBP poisoning.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xia Wu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Lu L, Liu JB, Wang JQ, Lian CY, Wang ZY, Wang L. Glyphosate-induced mitochondrial reactive oxygen species overproduction activates parkin-dependent mitophagy to inhibit testosterone synthesis in mouse leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120314. [PMID: 36183875 DOI: 10.1016/j.envpol.2022.120314] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate (GLY), one of the most extensively used herbicides in the world, has been shown to inhibit testosterone synthesis in male animals. Mitochondria are crucial organelles for testosterone synthesis and its dysfunction has been demonstrated to induce the inhibition of testosterone biosynthesis. However, whether low-dose GLY exposure targets mitochondria to inhibit testosterone synthesis and its underlying mechanism remains unclear. Here, an in vitro model of 10 μM GLY-exposed mouse Leydig (TM3) cells was established to elucidate this issue. Data firstly showed that mitochondrial malfunction, mainly manifested by ultrastructure damage, disturbance of mitochondrial dynamics and mitochondrial reactive oxygen species (mtROS) overproduction, was responsible for GLY-decreased protein levels of steroidogenic enzymes, which leads to the inhibition of testosterone synthesis. Enhancement of autophagic flux and activation of mitophagy were shown in GLY-treated TM3 cells, and further studies have revealed that GLY-activated mitophagy is parkin-dependent. Notably, GLY-inhibited testosterone production was significantly improved by parkin knockdown. Finally, data showed that treatment with mitochondria-targeted antioxidant Mito-TEMPO (M-T) markedly reversed GLY-induced mitochondrial network fragmentation, activation of parkin-dependent mitophagy and consultant testosterone reduction. Overall, these findings demonstrate that GLY induces mtROS overproduction to activate parkin-dependent mitophagy, which contributes to the inhibition of testosterone synthesis. This study provides a potential mechanistic explanation for how GLY inhibits testosterone synthesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Lu Lu
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jing-Bo Liu
- College of Biological and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an City, Shandong Province, 271000, China
| | - Jin-Qiu Wang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Cai-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|