1
|
Zheng B, Shang J, Wei Y, Tao Q, Yin J, Kang A, Liu R, Lian H, Han S. Chemoproteomic profiling by bioorthogonal probes to reveal the novel targets of acrylamide in microglia. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136760. [PMID: 39637805 DOI: 10.1016/j.jhazmat.2024.136760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Neurotoxicity studies caused by exposure to acrylamide (AA) are of wide interest, but the methods for direct analysis of AA targets in living neuronal cells by cysteine profiling are still lacking. To address this, we developed a specific bioorthogonal probe, AAPA-P2, for chemical proteomics analysis of AA covalent binding sites. AAPA-P2 captured 754 target proteins, increasing the number of identified target proteins by 20-fold. Further screening revealed 96 proteins that are both highly sensitive and heavily modified by AAPA-P2, with validation performed on some potential key targets and binding sites. AA was found to induce neurotoxicity by binding to newly identified targets, Proteasome 26S Subunit, non ATPase 9 (PSMD9) and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 5 (NDUFA5), interfering with the ubiquitin-proteasome system, and inducing mitochondria-dependent apoptosis. The present work provides an effective bioorthogonal probe tool for identifying covalent binding targets of acrylamide and offers new insights into the molecular mechanisms underlying acrylamide-induced neurotoxicity.
Collapse
Affiliation(s)
- Binru Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Shang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanqing Wei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qianqian Tao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jizhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - An Kang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hongzhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China.
| | - Shuying Han
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Huang Y, Zhang H, Lv Y, Yu L, Liu H, Xu S, Chen T, Li Y. Joint association of polycyclic aromatic hydrocarbon and heavy metal exposures with sex steroid hormones in children and adolescents aged 6-19 years in NHANES 2013-2016. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:114. [PMID: 39739052 DOI: 10.1007/s10661-024-13534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Sex hormone homeostasis is crucial for the proper development of children and adolescents. Previous studies have indicated that exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) is linked to disruptions in sex hormone levels in this age group. However, there is limited research on the harm caused by exposure to chemical mixtures. Our study analyzed data from 1059 participants aged 6-19 years who participated in the 2013-2016 National Health and Nutrition Examination Survey (NHANES) to examine the association between 15 heavy metals, 8 PAH metabolites, and sex hormone levels in children and adolescents. We used various statistical models, such as generalized linear regression models, weighted quantile sum (WQS) regression models, and Bayesian kernel regression (BKMR) models, to analyze the single effects of chemicals and the combined effects of chemical mixtures. We discovered that exposure to a mixture of heavy metals and PAHs was linked to a decrease in testosterone (TT) and estradiol (E2) levels, as well as an increase in sex hormone-binding globulin (SHBG) levels. We identified Cesium (Cs), molybdenum (Mo), tin (Sn), antimony (Sb), lead (Pb), and metabolites of naphthalene and phenanthrene as significant contributors to these associations. This association was more significant in adolescents. Our results suggest that exposure to a mixture of heavy metals and PAHs can disrupt sex hormone levels in children and adolescents.
Collapse
Affiliation(s)
- Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
- Division of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants On Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Sahoo AK, Chivukula N, Madgaonkar SR, Ramesh K, Marigoudar SR, Sharma KV, Samal A. Leveraging integrative toxicogenomic approach towards development of stressor-centric adverse outcome pathway networks for plastic additives. Arch Toxicol 2024; 98:3299-3321. [PMID: 39097536 PMCID: PMC11402864 DOI: 10.1007/s00204-024-03825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Plastics are widespread pollutants found in atmospheric, terrestrial and aquatic ecosystems due to their extensive usage and environmental persistence. Plastic additives, that are intentionally added to achieve specific functionality in plastics, leach into the environment upon plastic degradation and pose considerable risk to ecological and human health. Limited knowledge concerning the presence of plastic additives throughout plastic life cycle has hindered their effective regulation, thereby posing risks to product safety. In this study, we leveraged the adverse outcome pathway (AOP) framework to understand the mechanisms underlying plastic additives-induced toxicities. We first identified an exhaustive list of 6470 plastic additives from chemicals documented in plastics. Next, we leveraged heterogenous toxicogenomics and biological endpoints data from five exposome-relevant resources, and identified associations between 1287 plastic additives and 322 complete and high quality AOPs within AOP-Wiki. Based on these plastic additive-AOP associations, we constructed a stressor-centric AOP network, wherein the stressors are categorized into ten priority use sectors and AOPs are linked to 27 disease categories. We visualized the plastic additives-AOP network for each of the 1287 plastic additives and made them available in a dedicated website: https://cb.imsc.res.in/saopadditives/ . Finally, we showed the utility of the constructed plastic additives-AOP network by identifying highly relevant AOPs associated with benzo[a]pyrene (B[a]P), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) and thereafter, explored the associated toxicity pathways in humans and aquatic species. Overall, the constructed plastic additives-AOP network will assist regulatory risk assessment of plastic additives, thereby contributing towards a toxic-free circular economy for plastics.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Nikhil Chivukula
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Shreyes Rajan Madgaonkar
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Kundhanathan Ramesh
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | | | - Krishna Venkatarama Sharma
- Ministry of Earth Sciences, National Centre for Coastal Research, Government of India, Pallikaranai, Chennai, 600100, India
| | - Areejit Samal
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
4
|
Tian M, Cao H, Gao H, Zhu L, Wu Y, Li G. Rotenone-induced cell apoptosis via endoplasmic reticulum stress and PERK-eIF2α-CHOP signalling pathways in TM3 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116972. [PMID: 39232300 DOI: 10.1016/j.ecoenv.2024.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Rotenone (ROT), a widely used natural pesticide, has an uncertain effect on reproductive toxicity. In this study, we used 20 mice distributed randomly into four groups, with each group receiving ROT doses of 0, 2, 4, and 8 mg/kg/day for 28 days. The results demonstrated that ROT induced significant testicular damage, including impaired spermatogenesis, inhibition of testosterone synthesis, and apoptosis of Leydig cells. Additionally, ROT disrupted the normal ultrastructure of the endoplasmic reticulum (ER) in testicular tissue, leading to ER stress in Leydig cells. To further explore whether ROT-induced apoptosis in Leydig cells is related to ER stress, the mouse Leydig cell line (TM3 cells) was treated with ROT at 0, 250, 500, and 1000 nM. ROT inhibited TM3 cell viability, induced cytotoxicity, and reduced testosterone content in the culture supernatants. Furthermore, ROT treatment triggered apoptosis in TM3 cells by activating ER stress and the PERK-eIF2α-CHOP signalling pathway. Pre-treatment of TM3 cells exposed to ROT with the ER stress inhibitor 4-phenylbutyric acid (4-PBA) alleviated these effects, decreasing apoptosis and preserving testosterone levels. Further intervention with the PERK inhibitor GSK2606414 reduced ROT-induced apoptosis and testosterone reduction by inhibiting PERK activity. In summary, ROT-induced male reproductive toxicity is specifically driven by apoptosis, with the PERK-eIF2α-CHOP signalling pathway activated by ER stress playing a crucial role in the apoptosis of Leydig cells triggered by ROT.
Collapse
Affiliation(s)
- Mi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hongting Cao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Haoxuan Gao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lingqin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yang Wu
- Department of Ultrasound Medicine, Ningxia Women and Children's Hospital, Peking University First Hospital, Yinchuan, Ningxia 750004, China.
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
5
|
Kyrgiafini MA, Giannoulis T, Chatziparasidou A, Mamuris Z. Elucidating the Role of OXPHOS Variants in Asthenozoospermia: Insights from Whole Genome Sequencing and an In Silico Analysis. Int J Mol Sci 2024; 25:4121. [PMID: 38612930 PMCID: PMC11012272 DOI: 10.3390/ijms25074121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Infertility is a global health challenge that affects an estimated 72.4 million people worldwide. Between 30 and 50% of these cases involve male factors, showcasing the complex nature of male infertility, which can be attributed to both environmental and genetic determinants. Asthenozoospermia, a condition characterized by reduced sperm motility, stands out as a significant contributor to male infertility. This study explores the involvement of the mitochondrial oxidative phosphorylation (OXPHOS) system, crucial for ATP production and sperm motility, in asthenozoospermia. Through whole-genome sequencing and in silico analysis, our aim was to identify and characterize OXPHOS gene variants specific to individuals with asthenozoospermia. Our analysis identified 680,099 unique variants, with 309 located within OXPHOS genes. Nine of these variants were prioritized due to their significant implications, such as potential associations with diseases, effects on gene expression, protein function, etc. Interestingly, none of these variants had been previously associated with male infertility, opening up new avenues for research. Thus, through our comprehensive approach, we provide valuable insights into the genetic factors that influence sperm motility, laying the foundation for future research in the field of male infertility.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Alexia Chatziparasidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
6
|
Yang W, Ling X, He S, Cui H, Wang L, Yang Z, An H, Zou P, Chen Q, Sun L, Yang H, Liu J, Cao J, Ao L. Perturbation of IP3R-dependent endoplasmic reticulum calcium homeostasis by PPARδ-activated metabolic stress leads to mouse spermatocyte apoptosis: A direct mechanism for perfluorooctane sulfonic acid-induced spermatogenic disorders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123167. [PMID: 38110051 DOI: 10.1016/j.envpol.2023.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) as an archetypal representative of per- and polyfluoroalkyl substances (PFAS) is ubiquitously distributed in the environment and extensively detected in human bodies. Although accumulating evidence is suggestive of the deleterious effects of PFOS on male reproduction, the direct toxicity of PFOS towards spermatogenic cells and the relevant mechanisms remain poorly understood. The aims of the present study were to explore the direct effects and underlying molecular mechanisms of PFOS on spermatogenesis. Through integrating animal study, transcriptome profiling, in silico toxicological approaches, and in vitro validation study, we identified the molecular initiating event and key events contributing to PFOS-induced spermatogenic impairments. The mouse experiments revealed that spermatocytes were involved in PFOS-induced spermatogenic disorders and the activation of peroxisome proliferator-activated receptor delta (PPARδ) was linked to spermatocyte loss in PFOS-administrated mice. GC-2spd(ts) cells were treated with an increased gradient of PFOS, which was relevant to environmental and occupational exposure levels of PFOS in populations. Following 72-h treatment, cells was harvested for RNA sequencing. The transcriptome profiling and benchmark dose (BMD) modeling identified endoplasmic reticulum (ER) stress as the key event for PFOS-mediated spermatocyte apoptosis and determined the point-of-departure (PoD) for perturbations of ER stress signaling. Based on the calculated PoD value, further bioinformatics analyses combined with in vitro and in vivo validations showed that PFOS caused metabolic stress by activating PPARδ in mouse spermatocytes, which was responsible for Beclin 1-involved inositol 1,4,5-trisphosphate receptor (IP3R) sensitization. The disruption of IP3R-mediated ER calcium homeostasis triggered ER calcium depletion, leading to ER stress and apoptosis in mouse spermatocytes exposed to PFOS. This study systematically investigated the direct impacts of PFOS on spermatogenesis and unveiled the relevant molecular mechanism of PFOS-induced spermatogenic disorders, providing novel insights and potential preventive/therapeutic targets for PFAS-associated male reproductive toxicity.
Collapse
Affiliation(s)
- Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shijun He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lihong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Huihui An
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Yang TN, Wang YX, Jian PA, Ma XY, Zhu SY, Li XN, Li JL. Holistic Assessment Based On Hepatocyte Mitochondria: Lycopene Repairs Oxidized mtDNA to Alleviate Mitochondrial Stress Induced by Atrazine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20325-20335. [PMID: 38052101 DOI: 10.1021/acs.jafc.3c05369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Atrazine (ATZ) is a highly persistent herbicide that harms organism health. Lycopene (LYC) is an antioxidant found in plants and fruits. The aim of this study is to investigate the mechanisms of atrazine-induced mitochondrial damage and lycopene antagonism in the liver. The mice were divided into seven groups by randomization: blank control (Con group), vehicle control (Vcon group), 5 mg/kg lycopene (LYC group), 50 mg/kg atrazine (ATZ1 group), ATZ1+LYC group, 200 mg/kg atrazine (ATZ2 group), and ATZ2+LYC group. The present study performed a holistic assessment based on mitochondria to show that ATZ causes the excessive fission of mitochondria and disrupts mitochondrial biogenesis. However, the LYC supplementation reverses these changes. ATZ causes increased mitophagy and exacerbates the production of oxidized mitochondrial DNA (Ox-mtDNA) and mitochondrial stress. This study reveals that LYC could act as an antioxidant to repair Ox-mtDNA and restore the disordered mitochondrial function caused by ATZ.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
8
|
Cui H, Yang W, He S, Chai Z, Wang L, Zhang G, Zou P, Sun L, Yang H, Chen Q, Liu J, Cao J, Ling X, Ao L. TERT transcription and translocation into mitochondria regulate benzo[a]pyrene/BPDE-induced senescence and mitochondrial damage in mouse spermatocytes. Toxicol Appl Pharmacol 2023; 475:116656. [PMID: 37579952 DOI: 10.1016/j.taap.2023.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Telomere and mitochondria may be the targets of Benzo[a]pyrene (BaP) -induced male reproductive damage, and further elucidation of the toxic molecular mechanisms is necessary. In this study, we used in vivo and in vitro exposure models to explore the molecular mechanisms of TERT regulation in BaP-induced telomere and mitochondrial damage in spermatocytes. The results showed that the treatment of benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the active metabolite of BaP, caused telomere dysfunction in mouse spermatocyte-derived GC-2 cells, resulting in S-phase arrest and increased senescence-associated secretory phenotype (SASP). These effects were significantly alleviated by telomerase agonist (ABG) pretreatment in GC-2 cells. SIRT1, FOXO3a, or c-MYC overexpressing GC-2 cell models were established to demonstrate that BPDE inhibited TERT transcriptional expression through the SIRT1/FOXO3a/c-MYC pathway, leading to telomere dysfunction. We also observed that BPDE induced mitochondrial compromise, including complex I damage, accompanied by reduced mitochondrial TERT expression. Based on this, we constructed wild-type TERT-overexpressing (OE-TERTwt) and mitochondria targeting TERT-overexpressing (OE-TERTmst) GC-2 cell models and found that OE-TERTmst GC-2 cells improved mitochondrial function better than OE-TERTwt GC-2 cells. Finally, ICR mice were given BaP by intragastric administration for 35 days, which verified the results of the in vitro study. The results shown that BaP exposure can lead to spermatogenesis disturbance, which is related to the telomere and mitochondrial damage in spermatocytes. In conclusion, our results suggest that BPDE causes telomere and mitochondrial damage in spermatocytes by inhibiting TERT transcription and mitochondrial TERT expression. This study elucidates the molecular mechanism of male reproductive toxicity due to environmental pollutant BaP, and also provides a new perspective for the exploration of interventions and protective measures against male reproductive damage by BaP.
Collapse
Affiliation(s)
- Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shijun He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zili Chai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Lihong Wang
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
Shi CF, Han F, Jiang X, Zhang Z, Li Y, Wang J, Sun S, Liu JY, Cao J. Benzo[b]fluoranthene induces male reproductive toxicity and apoptosis via Akt-Mdm2-p53 signaling axis in mouse Leydig cells: Integrating computational toxicology and experimental approaches. Food Chem Toxicol 2023; 179:113941. [PMID: 37473983 DOI: 10.1016/j.fct.2023.113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
This study aims to explore the male reproductive toxicity of Benzo[b]fluoranthene (BbF) and related mechanisms. The results of computational toxicology analysis indicated male reproductive toxicity of BbF was related to apoptosis of Leydig cells and that Akt/p53 pathway might play a key role. In experiments, BbF induced testosterone decline, decreased concentration and motility of sperm and aggravated testicular pathological injury in mice. Besides, BbF led to apoptosis in Leydig cells, and decreased expressions of p-Akt and Bcl2, while improving the expressions of p53, Bax and Cleaved Caspase-3 in vivo and in vitro. Further, compared with BbF group, Akt activator SC79 significantly reduced cell apoptosis rate, improved cell viability, promoted the expressions of p-Akt and p-Mdm2, and reversed the above molecular expressions. Similarly, p53 inhibitor Pifithrin-α also significantly enhanced the cell vitality, alleviated the apoptosis of TM3 cells induced by BbF, and decreased the expressions of Bax and Cleaved Caspase-3, with the up-regulation of Bcl2. To sum up, by inhibiting Akt-Mdm2 signaling, BbF activated the p53-mediated mitochondrial apoptosis pathway, further inducing the apoptosis of Leydig cells, therefore resulting in testosterone decline and male reproductive damage. Besides, this study provided a valid mode integrating computational toxicology and experimental approaches in toxicity testing.
Collapse
Affiliation(s)
- Chao-Feng Shi
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhonghao Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yingqing Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiankang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shengqi Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
10
|
Wang Q, Wu X, Zhang J, Song M, Du J, Cui Y, Li Y. Role of ROS/JAK2/STAT3 signaling pathway in di-n-butyl phthalate-induced testosterone synthesis inhibition and antagonism of lycopene. Food Chem Toxicol 2023; 175:113741. [PMID: 36958386 DOI: 10.1016/j.fct.2023.113741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Di-n-butyl phthalate (DBP) causes adverse effects on male reproduction, especially testosterone synthesis inhibition. However, the specific mechanism of DBP-induced testosterone synthesis inhibition and its effective intervention measures of prevention and treatment are scarce presently. Lycopene (LYC) plays beneficial roles in male infertility because of its antioxidant activity. Nevertheless, it is unclear whether LYC could prevent DBP-induced male reproductive toxicity. By in vitro and in vivo investigations, this study demonstrated that DBP activated ROS/JAK2/STAT3 signaling pathway, promoted mitophagy and apoptosis, which in turn inhibited testosterone synthesis. Additionally, another major finding was that LYC supplement could reverse the above change, presenting as the restraint of ROS/JAK2/STAT3 signaling pathway, reduction of mitophagy and apoptosis, and improvement of testosterone synthesis. Our study facilitates deeper understandings of the mechanism in DBP-induced testosterone synthesis inhibition, and identifies LYC as the effective prevention and control strategies for DBP poisoning.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xia Wu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Lu L, Liu JB, Wang JQ, Lian CY, Wang ZY, Wang L. Glyphosate-induced mitochondrial reactive oxygen species overproduction activates parkin-dependent mitophagy to inhibit testosterone synthesis in mouse leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120314. [PMID: 36183875 DOI: 10.1016/j.envpol.2022.120314] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate (GLY), one of the most extensively used herbicides in the world, has been shown to inhibit testosterone synthesis in male animals. Mitochondria are crucial organelles for testosterone synthesis and its dysfunction has been demonstrated to induce the inhibition of testosterone biosynthesis. However, whether low-dose GLY exposure targets mitochondria to inhibit testosterone synthesis and its underlying mechanism remains unclear. Here, an in vitro model of 10 μM GLY-exposed mouse Leydig (TM3) cells was established to elucidate this issue. Data firstly showed that mitochondrial malfunction, mainly manifested by ultrastructure damage, disturbance of mitochondrial dynamics and mitochondrial reactive oxygen species (mtROS) overproduction, was responsible for GLY-decreased protein levels of steroidogenic enzymes, which leads to the inhibition of testosterone synthesis. Enhancement of autophagic flux and activation of mitophagy were shown in GLY-treated TM3 cells, and further studies have revealed that GLY-activated mitophagy is parkin-dependent. Notably, GLY-inhibited testosterone production was significantly improved by parkin knockdown. Finally, data showed that treatment with mitochondria-targeted antioxidant Mito-TEMPO (M-T) markedly reversed GLY-induced mitochondrial network fragmentation, activation of parkin-dependent mitophagy and consultant testosterone reduction. Overall, these findings demonstrate that GLY induces mtROS overproduction to activate parkin-dependent mitophagy, which contributes to the inhibition of testosterone synthesis. This study provides a potential mechanistic explanation for how GLY inhibits testosterone synthesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Lu Lu
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jing-Bo Liu
- College of Biological and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an City, Shandong Province, 271000, China
| | - Jin-Qiu Wang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Cai-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|