1
|
Zhao Z, Huang S, Feng Q, Peng L, Zhao Q, Wang Z. Characterizing the Ovarian Cytogenetic Dynamics of Sichuan Bream ( Sinibrama taeniatus) During Vitellogenesis at a Single-Cell Resolution. Int J Mol Sci 2025; 26:2265. [PMID: 40076886 PMCID: PMC11900179 DOI: 10.3390/ijms26052265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Vitellogenesis in fish represents a critical phase of oogenesis, significantly influencing the nutritional provisioning for oocyte maturation and subsequent offspring development. However, research on the physiological mechanisms governing vitellogenesis at the single-cell level remains limited. In this study, we performed single-nucleus RNA sequencing (snRNA-seq) on the ovaries of Sichuan bream (Sinibrama taeniatus). We first identified six distinct cell types (germ cells, follicular cells, immune cells, stromal cells, endothelial cells, and epithelial cells) in the ovaries based on typical functional marker genes. Subsequently, we reconstructed the developmental trajectory of germ cells using pseudotime analysis, which describes the transcriptional dynamics of germ cells at various developmental stages. Additionally, we identified transcription factors (TFs) specific to germ cells that exhibit high activity at each developmental stage. Furthermore, we analyzed the genetic functional heterogeneity of germ cells and follicular cells at different developmental stages to elucidate their contributions to vitellogenesis. Finally, cell interaction analysis revealed that germ cells communicate with somatic cells or with each other via multiple receptors and ligands to regulate growth, development, and yolk acquisition. These findings enhance our understanding of the physiological mechanisms underlying vitellogenesis in fish, providing a theoretical foundation for regulating ovarian development in farmed fish.
Collapse
Affiliation(s)
- Zhe Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| | - Shixia Huang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| | - Qilin Feng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| | - Li Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China;
| | - Qiang Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| | - Zhijian Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| |
Collapse
|
2
|
Wu CC, Li CJ, Lin LT, Lin PH, Wen ZH, Cheng JT, Tsui KH. Cuproptosis-Related Gene FDX1 Identified as a Potential Target for Human Ovarian Aging. Reprod Sci 2025; 32:867-875. [PMID: 38689081 DOI: 10.1007/s43032-024-01573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Cuproptosis is a recently discovered mode of cell death that has garnered attention due to its association with various diseases. However, the intricate genetic relationship between cuproptosis and ovarian aging has remained largely unexplored. This study aimed to bridge this knowledge gap by leveraging data sets related to ovarian aging and cuproptosis. Through comprehensive bioinformatics analyses, facilitated by R software, we uncovered FDX1 as a potential cuproptosis-related gene with relevance to ovarian aging. To gain insights into FDX1's role, we conducted spatial transcriptome analyses in the ovaries of both young and aged female mice. These experiments revealed a significant reduction in FDX1 expression in the aging group compared to the young group. To substantiate these findings at the genetic level, we turned to clinical infertility biopsies. Impressively, we observed consistent results in biopsies from elderly infertile patients, reinforcing the link between FDX1 and ovarian aging. Moreover, we delved into the pharmacogenomics of ovarian cell lines and discovered that FDX1 expression levels were intricately associated with heightened sensitivity to specific small molecule drugs. This observation suggests that modulating FDX1 could potentially be a strategy to influence drug responses in ovarian-related therapies. In sum, this study marks a pioneering effort in identifying FDX1 as a cuproptosis-related gene implicated in ovarian aging. These findings hold substantial promise, not only in shedding light on the underlying mechanisms of ovarian aging but also in positioning FDX1 as a potential diagnostic biomarker and therapeutic target. With further research, FDX1 could play a pivotal role in advancing precision medicine and therapies for ovarian-related conditions.
Collapse
Affiliation(s)
- Chia-Chun Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Pei-Hsuan Lin
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Kuan-Hao Tsui
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan.
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
3
|
Tang W, Wang K, Feng Y, Tsui KH, Singh KK, Stout MB, Wang S, Wu M. Exploration of the mechanism and therapy of ovarian aging by targeting cellular senescence. LIFE MEDICINE 2025; 4:lnaf004. [PMID: 40110109 PMCID: PMC11916902 DOI: 10.1093/lifemedi/lnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
The ovary is a crucial gonadal organ that supports female reproductive and endocrine functions. Ovarian aging can result in decreased fertility and dysfunction across multiple organs. Research has demonstrated that cellular senescence in various cell types within the ovary can trigger a decline in ovarian function through distinct stress responses, resulting in ovarian aging. This review explores how cellular senescence may contribute to ovarian aging and reproductive failure. Additionally, we discuss the factors that cause ovarian cellular senescence, including the accumulation of advanced glycation end products, oxidative stress, mitochondrial dysfunction, DNA damage, telomere shortening, and exposure to chemotherapy. Furthermore, we discuss senescence in six distinct cell types, including oocytes, granulosa cells, ovarian theca cells, immune cells, ovarian surface epithelium, and ovarian endothelial cells, inside the ovary and explore their contribution to the accelerated ovarian aging. Lastly, we describe potential senotherapeutics for the treatment of ovarian aging and offer novel strategies for ovarian longevity.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kaichen Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yourong Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813779, Taiwan, China
- Department of Obstetrics and Gynecology, Yang-Ming University, Taipei 112304, Taiwan, China
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 900391, Taiwan, China
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
4
|
Mehdinejadiani S, Khosravizadeh Z, Alizadeh A, Azad N. Effects of substance exposure on gametes and pre-implantation embryos: a narrative review. ZYGOTE 2024; 32:405-420. [PMID: 39523991 DOI: 10.1017/s0967199424000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Substance use refers to the consumption of drugs that have varying degrees of impact on a persons' physical, mental and emotional well-being. While the adverse health effects of drugs have been extensively documented, further research is needed to understand their impact on fertility. Studies have indicated that substance use affects both the male and female reproductive systems. As substance use is more prevalent among young adults compared with the elderly, it appears that individuals of reproductive age are particularly vulnerable to the reproductive impairments associated with substance use. Although numerous studies have reported detrimental effects of substance use on pregnant women and their foetus during the post-implantation stages, there are limited studies on critical pre-implantation period and gamete stages. In this narrative review, we aimed to focus on the most significant evidence regarding the impact of substances on gametes and pre-implantation embryos.
Collapse
Affiliation(s)
- Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khosravizadeh
- Department of Gynecology and Obstetrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nahid Azad
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
5
|
Idrees SM, Waite SL, Granados Aparici S, Fenwick MA. Nicotine exposure is associated with targeted impairments in primordial follicle phenotype in cultured neonatal mouse ovaries. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117302. [PMID: 39546863 DOI: 10.1016/j.ecoenv.2024.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The ovarian reserve consists of a limited supply of primordial follicles (PFs), each containing an oocyte surrounded by a layer of granulosa cells (GCs). PFs are relatively quiescent and must remain viable for a long period, thereby making them susceptible to environmental and lifestyle influences. Given the widespread prevalence of e-cigarette use, this study aimed to investigate the effects of nicotine and its metabolite cotinine in a mouse model and to elucidate the mechanisms by which nicotine influences the ovarian reserve. Neonatal ovaries were cultured for 7-days in nicotine or cotinine reflective of concentrations in plasma of e-cigarette users. From histological evaluation, nicotine or cotinine had no impact on the number of PFs or early growing follicles; however, the medium (15 ng/ml) and high (45 ng/ml) concentrations of nicotine (but not cotinine) caused a small reduction in oocyte and GC size within PFs relative to controls (0 ng/ml; both P<0.01). These morphological effects were not associated with changes in immunofluorescent markers of apoptosis (active caspase-3) or proliferation (Pcna), but were associated with increased gH2AX in PF oocytes, indicative of DNA damage and repair. RNA-sequencing of cultured ovaries exposed to nicotine (45 ng/ml) relative to control (0 ng/ml), revealed a suite of differentially expressed candidates, as well as numerous gene ontology biological processes associated with increased DNA damage, metabolism, respiration and immune function, alongside suppression of meiosis, cell adhesion, differentiation and morphogenesis. Findings from this study indicate that direct nicotine exposure has a limited effect on the quantity of PFs, but importantly highlights a range of processes that could impinge on the quality of the ovarian reserve.
Collapse
Affiliation(s)
- Sara M Idrees
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2SF, UK
| | - Sarah L Waite
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2SF, UK
| | - Sofia Granados Aparici
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2SF, UK
| | - Mark A Fenwick
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2SF, UK.
| |
Collapse
|
6
|
Tao Q, Zhao Z, Yang R, Li Q, Qiao J. Fine particulate matter and ovarian health: A review of emerging risks. Heliyon 2024; 10:e40503. [PMID: 39650185 PMCID: PMC11625118 DOI: 10.1016/j.heliyon.2024.e40503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/26/2024] [Accepted: 11/17/2024] [Indexed: 12/11/2024] Open
Abstract
Fine particulate matter (PM2.5) pollution has raised significant public concerns, especially for vulnerable populations. Studies have indicated the association between PM2.5 and ovarian disorders, although the mechanisms underlying the effects have not yet been fully elucidated. In this review, we elucidated three main conditions pertaining to ovarian function that may result from exposure to PM2.5: diminished ovarian reserve, polycystic ovary syndrome, and infertility. Specific effects of ovarian disorders caused by PM2.5 are discussed, including reactive oxygen species, apoptosis, DNA damage, and inflammation.
Collapse
Affiliation(s)
- Qingqing Tao
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Zhengyang Zhao
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Qin Li
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
7
|
Hong H, Xiao C, Weng L, Wang Q, Lai D. The effect of norepinephrine on ovarian dysfunction by mediating ferroptosis in mice model. Acta Biochim Biophys Sin (Shanghai) 2024; 57:542-553. [PMID: 39439417 DOI: 10.3724/abbs.2024187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Studies have shown that stress is associated with ovarian dysfunction. Norepinephrine (NE), a classic stress hormone involved in the stress response, is less recognized for its role in ovarian function. In this study, an NE-treated mouse model is induced by intraperitoneal injection of NE for 4 weeks. Compared with normal control mice, NE-treated mice show disturbances in the estrous cycle, decreased levels of anti-Mullerian hormone (AMH) and estradiol (E2), and increased level of follicle-stimulating hormone (FSH). Additionally, the numbers of primordial follicles, primary follicles, secondary follicles, and antral follicles are decreased, whereas the number of atretic follicles is increased in NE-treated mice, indicating NE-induced ovarian dysfunction. RNA sequencing further reveals that genes associated with ferroptosis are significantly enriched in NE-treated ovarian tissues. Concurrently, the levels of reactive oxygen species (ROS), ferrous ions, and malondialdehyde (MDA) are increased, whereas the expression level of glutathione peroxidase 4 (GPX4) is decreased. To elucidate the mechanism of NE-induced ferroptosis in ovaries and the potential reversal by Coenzyme Q10 (CoQ10), an antioxidant, we conduct both in vitro and in vivo experiments. In vitro, the granulosa cell line KGN, when treated with NE, shows decreased cell viability, reduced expression of GPX4, elevated levels of ferrous ion and ROS, and increased MDA level. However, these NE-induced changes are reversed by the addition of CoQ10. Compared with the NE group, the NE-treated mice supplemented with CoQ10 present increased GPX4 level and decreased iron, ROS, and MDA levels. Moreover, the differential expression of genes associated with ferroptosis induced by NE is ameliorated by CoQ10 in NE-treated mice. Additionally, CoQ10 improves ovarian function, as evidenced by increased ovarian weight, more regular estrous cycles, and an increase in follicles at various stages of growth in NE-treated mice. In conclusion, NE induces ovarian dysfunction by triggering ferroptosis in ovarian tissues, and CoQ10 represents a promising approach for protecting reproductive function by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hanqing Hong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Chengqi Xiao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Lichun Weng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Qian Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| |
Collapse
|
8
|
Duan H, Wang F, Wang K, Yang S, Zhang R, Xue C, Zhang L, Ma X, Du X, Kang J, Zhang Y, Zhao X, Hu J, Xiao L. Quercetin ameliorates oxidative stress-induced apoptosis of granulosa cells in dairy cow follicular cysts by activating autophagy via the SIRT1/ROS/AMPK signaling pathway. J Anim Sci Biotechnol 2024; 15:119. [PMID: 39232832 PMCID: PMC11375867 DOI: 10.1186/s40104-024-01078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/14/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Follicular cysts contribute significantly to reproductive loss in high-yield dairy cows. This results from the death of follicular granulosa cells (GCs) caused by oxidative stress. Quercetin is known to have significant antioxidant and anti-apoptotic effects. However, the effect of quercetin on follicular cysts has yet been elucidated. Therefore, this study aimed to explore the anti-oxidant and anti-apoptosis effects and potential molecular mechanisms of quercetin in H2O2-induced primary cow GCs and 3-nitropropionic acid (3-NPA)-induced mouse model of oxidative stress and thus treat ovarian cysts in dairy cows. RESULTS In this study, compared with estrus cows, cows with follicular cysts showed heightened levels of oxidative stress and increased follicular cell apoptosis, while autophagy levels were reduced. A model of oxidative stress was induced in vitro by H2O2 and showed significant increases in apoptosis together with reduced autophagy. These effects were significantly ameliorated by quercetin. Effects similar to those of quercetin were observed after treatment of cells with the reactive oxygen species (ROS) inhibitor N-acetylcysteine (NAC). Further investigations using chloroquine (autophagy inhibitor), rapamycin (autophagy activator), selisistat (SIRT1 inhibitor), and compound C (AMPK inhibitor) showed that chloroquine counteracted the effects of quercetin on oxidative stress-induced apoptosis, while rapamycin had the same effect as quercetin. In addition, the SIRT1/AMPK pathway inhibitors antagonized quercetin-mediated mitigation of the effects of oxidative stress on increased apoptosis and reduced autophagy. Consistent with the results in vitro, in mouse ovarian oxidative stress model induced by 3-NPA, quercetin activated autophagy through the SIRT1/AMPK signaling pathway, while alleviating oxidative stress damage and inhibiting apoptosis in mouse ovaries. CONCLUSIONS These findings indicate that quercetin can inhibit apoptosis in GCs and restore ovarian function by activating autophagy through the SIRT1/ROS/AMPK signaling pathway, suggesting a new direction for the treatment of ovarian follicular cysts in high-yield dairy cows.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Fang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Ke Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Institute of Animal Husbandry and Veterinary, Pingliang, 744000, Gansu, China
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Rong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Chen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Xianghong Du
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Jian Kang
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, 510640, Guangdong, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China.
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
9
|
Zhao R, Ran L, Yao H, He Y, Lu X, Zhu W, Zhang Y, Zhang T, Shi S, Luo Z, Zhang C. Moxibustion ameliorates ovarian function in premature ovarian insufficiency rats by activating cAMP/PKA/CREB to promote steroidogenesis in ovarian granulosa cells. J Steroid Biochem Mol Biol 2024; 242:106547. [PMID: 38754522 DOI: 10.1016/j.jsbmb.2024.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Premature ovarian insufficiency (POI) presents a substantial challenge to women's physiological and psychological well-being. Hormone replacement therapy, as the preferred therapeutic approach, involves solely exogenous supplementation of estrogen. Moxibustion, a traditional Chinese external treatment, has been investigated in our previous studies. It not only improves hormone levels and clinical symptoms in POI patients but also safeguards ovarian reserve. This study aims to explore the regulatory mechanisms by which moxibustion modulates hormone levels and restores ovarian function in POI. A POI rat model was established using cyclophosphamide, and moxibustion treatment was applied at acupoints "CV4" and "SP6" for a total of four courses. Subsequently, ovaries from each group were subjected to transcriptome sequencing (Bulk RNA-seq). Target pathways and key genes were selected through enrichment analysis and GSVA scoring, with validation using various techniques including electron microscopy, ELISA, Western blot, and immunohistochemistry. The results demonstrated that moxibustion restored the estrous cycle in POI rats, improved sex hormone levels, reduced the number of atretic follicles, and increased the count of dominant follicles (P<0.05). Bulk RNA-seq analysis revealed that moxibustion downregulated pathways associated with ovarian dysfunction, infertility, and immune responses, upregulated pathways related to follicular development and ovarian steroidogenesis. Furthermore, our data confirmed that moxibustion significantly increased the number of ovarian granulosa cells (GCs) and upregulated the expression of proteins related to steroidogenesis in GCs, including FSHR, P450 arom, cAMP, PKA, and CREB (P<0.05), with no significant effect observed on proteins related to steroidogenesis in theca cells. These outcomes aligned with the RNA-seq results. In conclusion, these findings propose that moxibustion enhances steroidogenesis in GCs through the activation of the cAMP/PKA/CREB pathway, consequently improving impaired ovarian function in POI rats. This study provides robust evidence supporting moxibustion as a targeted intervention for treating POI by specifically regulating steroidogenesis in GCs.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Lingxiang Ran
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China; Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Hanyue Yao
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Yizhi He
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Xinru Lu
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Weina Zhu
- Central Laboratory, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China; Department of Biobank, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China; Department of Biobank, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Tianyi Zhang
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Shijie Shi
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Zheng Luo
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Cairong Zhang
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China.
| |
Collapse
|
10
|
Hatai D, Levenson MT, Rehan VK, Allard P. Inter- and trans-generational impacts of environmental exposures on the germline resolved at the single-cell level. CURRENT OPINION IN TOXICOLOGY 2024; 38:100465. [PMID: 38586548 PMCID: PMC10993723 DOI: 10.1016/j.cotox.2024.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Reproduction is a remarkably intricate process involving the interaction of multiple cell types and organ systems unfolding over long periods of time and that culminates with the production of gametes. The initiation of germ cell development takes place during embryogenesis but only completes decades later in humans. The complexity inherent to reproduction and its study has long hampered our ability to decipher how environmental agents disrupt this process. Single-cell approaches provide an opportunity for a deeper understanding of the action of toxicants on germline function and analyze how the response to their exposure is differentially distributed across tissues and cell types. In addition to single-cell RNA sequencing, other single-cell or nucleus level approaches such as ATAC-sequencing and multi-omics have expanded the strategies that can be implemented in reproductive toxicological studies to include epigenomic and the nuclear transcriptomic data. Here we will discuss the current state of single-cell technologies and how they can best be utilized to advance reproductive toxicological studies. We will then discuss case studies in two model organisms (Caenorhabditis elegans and mouse) studying different environmental exposures (alcohol and e-cigarettes respectively) to highlight the value of single-cell and single-nucleus approaches for reproductive biology and reproductive toxicology.
Collapse
Affiliation(s)
- Dylan Hatai
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Max T. Levenson
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Virender K. Rehan
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick Allard
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Xu M, Li F, Xu X, Hu N, Miao J, Zhao Y, Ji S, Wang Y, Wang L. Proteomic analysis reveals that cigarette smoke exposure diminishes ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell proliferation-apoptosis balance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115989. [PMID: 38242047 DOI: 10.1016/j.ecoenv.2024.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Exposure to cigarette smoke (CS) adversely affects ovarian health and it is currently unknown how CS exposure causes ovarian injury. This study compared the differences in proteomics between CS exposure and healthy control groups using liquid chromatography-tandem mass spectrometry quantitative proteomics to further understand the molecular mechanism of ovarian cell injury in mice exposed to CS. Furthermore, western blotting and qPCR were carried out to validate the proteomic analysis outcomes. CREB1 was selected from the differentially expressed proteins, and then the down-regulation of CREB1 and phosphorylated CREB1(Ser133) expressions were confirmed in mice ovarian tissue and human ovarian granulosa cells (KGN cells) after CS exposure. In addition, the expressions of apoptosis-related proteins BCL-2 and BCL-XL were downregulated, and BAX expression was up-regulated. Moreover, the results of cellular immunofluorescence, flow cytometry, and transmission electron microscopy (TEM) showed that cigarette smoke extract (CSE) efficiently stimulated the production of reactive oxygen species, apoptosis, G1 phase arrest, mitochondrial membrane potential decreases, and ultrastructural changes in KGN cells. KG-501 (CREB inhibitor) aggravated CSE-induced mitochondrial dysfunction and apoptosis-proliferation imbalance in KGN cells mediated by down-regulated CREB1/BCL-2 axis. In addition, CREB1 over-expression partially restores mitochondrial dysfunction and apoptosis-proliferation imbalance of KGN cells induced by CSE. The results suggested that CSE diminished ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell (GCs) proliferation-apoptosis balance and provided possible therapeutic targets for the clinical intervention of premature ovarian failure (POI) caused by CS exposure.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - XiaoYan Xu
- Assisted Reproduction Centre of Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Nengyin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Jianing Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Yanhui Zhao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Sailing Ji
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China.
| |
Collapse
|
12
|
Cui J, Wang Y. Premature ovarian insufficiency: a review on the role of tobacco smoke, its clinical harm, and treatment. J Ovarian Res 2024; 17:8. [PMID: 38191456 PMCID: PMC10775475 DOI: 10.1186/s13048-023-01330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Premature ovarian insufficiency (POI) is a condition in which the quantity of follicles and the quality of oocytes gradually decrease. This results in an estrogen secretion disorder and abnormal follicle development, which can lead to related diseases, early onset of menopause, sexual dysfunction, and an increased risk of cardiovascular issues, osteoporosis, and depression, among others. This disease significantly impacts the physical and mental health and overall quality of life of affected women. Factors such as genetic abnormalities, oophorectomy, radiotherapy for malignancy, idiopathic conditions, and an unhealthy lifestyle, including smoking, can accelerate the depletion of the follicular pool and the onset of menopause. Extensive research has been conducted on the detrimental effects of tobacco smoke on the ovaries. This article aims to review the advancements in understanding the impact of tobacco smoke on POI, both in vivo and in vitro. Furthermore, we explore the potential adverse effects of common toxicants found in tobacco smoke, such as polycyclic aromatic hydrocarbons (PAHs), heavy metals like cadmium, alkaloids like nicotine and its major metabolite cotinine, benzo[a]pyrene, and aromatic amines. In addition to discussing the toxicants, this article also reviews the complications associated with POI and the current state of research and application of treatment methods. These findings will contribute to the development of more precise treatments for POI, offering theoretical support for enhancing the long-term quality of life for women affected by this condition.
Collapse
Affiliation(s)
- Jinghan Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| |
Collapse
|
13
|
Zhu X, Liu M, Dong R, Gao L, Hu J, Zhang X, Wu X, Fan B, Chen C, Xu W. Mechanism Exploration of Environmental Pollutants on Premature Ovarian Insufficiency: a Systematic Review and Meta-analysis. Reprod Sci 2024; 31:99-106. [PMID: 37612521 DOI: 10.1007/s43032-023-01326-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
As a public health problem, premature ovarian insufficiency leads to infertility or sub-fertility. In addition to premature ovarian insufficiency (POI) increases the lifetime risk of bone fragility, cardiovascular disease, and cognitive impairment. To investigate the effects of environmental pollutants on the occurrence of POI and explore its mechanism, we conducted a computer search for articles published in electronic databases by December 13, 2022. Three reviewers independently examined all included studies and scored the qualities of included studies using the Newcastle-Ottawa Scale criteria. In this meta-analysis, eight clinical studies as well as ten preclinical findings showed a pooled OR of 2.331 and 95% CI of 1.968-2.760. This confirms that environmental pollutants, including POPs, heavy metals, PAEs, PAHs, cosmetic and pharmaceutical products, and cigarette smoke, are indeed significant risk factors for POI. In addition, it is demonstrated from the results of this study that signaling pathway of calcium and PI3K Akt and Xpnpep2, Col1, Col3, Col4, Cx43, Egr3, Tff1, and Ptgs2 genes may all be involved in the process. Environmental pollutants, including POPs, heavy metals, PAEs, PAHs, cosmetic and pharmaceutical products, and cigarette smoke, are indeed significant risk factors for POI.
Collapse
Affiliation(s)
- Xiaodan Zhu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Meixia Liu
- Occupational Health Department, Shanghai Municipal Center for Disease Control and Prevention/Shanghai Institute for Prevention Medicine, Shanghai, China
| | - Ruoxi Dong
- Department of Anal & Intestinal Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqun Gao
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Jiazhen Hu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Xinpei Zhang
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Xiaomei Wu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Bozhen Fan
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| | - Chao Chen
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| | - Wenjuan Xu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| |
Collapse
|
14
|
Jia ZC, Li YQ, Zhou BW, Xia QC, Wang PX, Wang XX, Sun ZG, Guo Y. Transcriptomic profiling of human granulosa cells between women with advanced maternal age with different ovarian reserve. J Assist Reprod Genet 2023; 40:2427-2437. [PMID: 37589858 PMCID: PMC10504181 DOI: 10.1007/s10815-023-02915-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Age-related diminished ovarian reserve (DOR) is not absolute. Some advanced maternal age (AMA) still have normal ovarian reserve (NOR) and often show better pregnancy outcomes. Exploring the transcriptomic profile of granulosa cells (GCs) in AMA could lead to new ideas for mitigating age-related diminished ovarian reserve. AIM This study aimed to analyze the transcriptomic profile of GCs in AMA with different ovarian reserve. RESULTS In total, 6273 statistically significant differential expression genes (DEGs) (|log2fc|> 1, q < 0.05) were screened from the two groups, among which 3436 genes were upregulated, and 2837 genes were downregulated in the DOR group. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the potential functions of dysregulated genes in AMA with DOR or NOR were predicted. The GO enrichment analysis revealed that the DEGs were mainly enriched in obsolete oxidation-reduction process, mitochondrion, metal ion binding, ATP binding, etc. The KEGG pathway enrichment analysis revealed that the above-mentioned DEGs were mainly enriched in ferroptosis, regulation of actin cytoskeleton, oxidative phosphorylation, etc. Meanwhile, verification of the mRNA expression levels of DEGs revealed the possible involvement of "ferroptosis" in age-related diminished ovarian reserve. CONCLUSIONS From a new clinical perspective, we presented the first data showing the transcriptomic profile in GCs between AMA with different ovarian reserve. At the same time, we identified the role of ferroptosis in the GCs of AMA, providing a new biological basis for studying ovarian aging and improving pregnancy outcomes of AMA.
Collapse
Affiliation(s)
- Zhi-Cheng Jia
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong-Qian Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo-Wen Zhou
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Chang Xia
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pei-Xuan Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Xuan Wang
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Gao Sun
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Guo
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
15
|
Du R, Cheng X, Ji J, Lu Y, Xie Y, Wang W, Xu Y, Zhang Y. Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin. Sci Rep 2023; 13:4463. [PMID: 36932163 PMCID: PMC10023701 DOI: 10.1038/s41598-023-31712-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis is widely present in fibrosis-related diseases. The basic pathology of premature ovarian insufficiency (POI) involves ovarian tissue fibrosis, and there are currently fewer relevant studies addressing the association between ferroptosis and POI. This study aimed to demonstrate that ferroptosis induced by cisplatin (CDDP) caused ovarian tissue fibrosis, leading to POI. Vitamin E (VE), a ferroptosis inhibitor, could repair damaged ovarian function. CDDP was used to establish a rat model of POI, and VE was administered to reverse the reproductive toxicity of CDDP. Ovarian function was assessed by histological section staining, follicle counts, sex hormone levels, as well as fertility assays. The extent of ferroptosis was assessed by transmission electron microscopy (TEM), malondialdehyde (MDA), Perls staining. CCK-8, Ethynyl-2-Deoxyuridine (EdU), and scratch assays were used to determine the effect of CDDP and VE on ovarian granulosa cell (GC) viability. Western blot, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were performed to evaluate ferroptosis-related molecular changes. Our results showed that CDDP caused follicle development disorders and ovarian tissue fibrosis, the levels of sex hormones suggested impaired ovarian function, and VE could reverse the reproductive toxicity of CDDP. The results of TEM, MDA and Perls staining suggested that the typical mitochondrial signature of ferroptosis was altered in ovarian GCs from the CDDP group, with significantly higher levels of lipid peroxidation and significant iron deposition in ovarian tissue, whereas VE mitigated the extent of ferroptosis. Molecular experiments then confirmed that the ferroptosis-related molecules acetyl CoA synthetase long chain family member 4 (ACSl4), 15-lipoxygenase-1 (ALOX15), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) were differentially expressed in each group. In summary, our study preliminarily demonstrated that CDDP may promote GCs to undergo ferroptosis, cause follicle development disorders, ovarian tissue fibrosis, and induce POI by regulating the expression of ACSl4, ALOX15, SLC7A11, and GPX4, while VE improved impaired ovarian function.
Collapse
Grants
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
Collapse
Affiliation(s)
- Rong Du
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jingjing Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yang Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yuanyuan Xie
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Weina Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yanhua Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
16
|
Perkins RS, Singh R, Abell AN, Krum SA, Miranda-Carboni GA. The role of WNT10B in physiology and disease: A 10-year update. Front Cell Dev Biol 2023; 11:1120365. [PMID: 36814601 PMCID: PMC9939717 DOI: 10.3389/fcell.2023.1120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
WNT10B, a member of the WNT family of secreted glycoproteins, activates the WNT/β-catenin signaling cascade to control proliferation, stemness, pluripotency, and cell fate decisions. WNT10B plays roles in many tissues, including bone, adipocytes, skin, hair, muscle, placenta, and the immune system. Aberrant WNT10B signaling leads to several diseases, such as osteoporosis, obesity, split-hand/foot malformation (SHFM), fibrosis, dental anomalies, and cancer. We reviewed WNT10B a decade ago, and here we provide a comprehensive update to the field. Novel research on WNT10B has expanded to many more tissues and diseases. WNT10B polymorphisms and mutations correlate with many phenotypes, including bone mineral density, obesity, pig litter size, dog elbow dysplasia, and cow body size. In addition, the field has focused on the regulation of WNT10B using upstream mediators, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). We also discussed the therapeutic implications of WNT10B regulation. In summary, research conducted during 2012-2022 revealed several new, diverse functions in the role of WNT10B in physiology and disease.
Collapse
Affiliation(s)
- Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rishika Singh
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy N. Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gustavo A. Miranda-Carboni
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States,Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Gustavo A. Miranda-Carboni,
| |
Collapse
|