1
|
Shang J, Chen Y, Wang F, Yang J, Li Y, Yang L, Liu X, Zhong Z, Yue C, Zhou M. A Multifunctional MIL-101-NH 2(Fe) Nanoplatform for Synergistic Melanoma Therapy. Int J Nanomedicine 2025; 20:969-988. [PMID: 39867313 PMCID: PMC11766718 DOI: 10.2147/ijn.s502089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Background Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes. Methods In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH2(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG). MIL-101-NH2(Fe) was synthesized via a hydrothermal method. Drug release was evaluated under different pH conditions, and the photothermal effect was tested under near-infrared (NIR) laser irradiation. Hydroxyl radical and reactive oxygen species generation capacities were quantified. Cellular studies using B16F10 cells assessed cytotoxicity, cellular uptake, migration inhibition, and colony formation suppression. In vivo experiments in melanoma-bearing mice evaluated antitumor efficacy and systemic safety through tumor growth inhibition, histological analyses, and toxicity assessments. Results MIL@DOX@ICG exhibited a uniform octahedral structure with a particle size of approximately 139 nm and high drug loading efficiencies for DOX (33.70%) and ICG (30.59%). The nanoplatform demonstrated pH-responsive drug release and potent photothermal effects. The generation of hydroxyl radicals via the Fenton reaction and reactive oxygen species production under NIR laser irradiation by MIL@DOX@ICG were confirmed. In vitro assessments revealed significant cytotoxicity of MIL@DOX@ICG against B16F10 cells under NIR laser irradiation, with improved efficacy in inhibiting cell proliferation and migration. In vivo studies confirmed the superior antitumor efficacy of MIL@DOX@ICG + NIR treatment, synergistically harnessing chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy effects while maintaining excellent biocompatibility. Conclusion Our findings underscore the potential of MIL-101-NH2(Fe) nanoparticles as a versatile and effective platform for synergistic melanoma therapy, offering a promising strategy for overcoming the limitations of conventional treatment modalities.
Collapse
Affiliation(s)
- Jinlu Shang
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, Sichuan, 610400, People’s Republic of China
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yongjun Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Fangliang Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yi Li
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiuqiong Liu
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, Sichuan, 610400, People’s Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chaochi Yue
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| |
Collapse
|
2
|
Balakrishnan A, Vijaya Suryaa K, Chinthala M, Kumar A. Mechanistic insights of PO 43- functionalized carbon nitride homojunction hydrogels in photocatalytic-self-Fenton-peroxymonosulfate system for tetracycline degradation. J Colloid Interface Sci 2024; 669:366-382. [PMID: 38718590 DOI: 10.1016/j.jcis.2024.04.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/27/2024]
Abstract
In this study, metal-free PO43- enriched g-C3N4/g-C3N4 (PGCN) homojunction alginate 3D beads were developed for in-situ H2O2 production under visible light. Later, the photocatalytic-self-Fenton system was integrated with peroxymonosulfate for tetracycline degradation. Initially, the PO43- enriched g-C3N4 (PCN) and a homojunction composed of PCN and g-C3N4 (GCN) were prepared via the wet-impregnation method. Later, PGCN homojunction was formulated into 3D alginate beads through the blend-crosslinking method. The comprehensive characterization of the homojunction beads affirmed the closer contact between the semiconductors, alteration of the bandgap, faster channelization of electron-hole pairs, and improved separation of charge carriers that attributed to higher catalytic efficacy. The PGCN beads exhibited a maximum H2O2 production of 535 ± 12 µM under visible light irradiation for 60 min. The homojunction hydrogels displayed 99 ± 0.25 % tetracycline degradation in 20 min in the photocatalytic-self-Fenton-PMS system. The experimental studies also claimed a maximum chemical oxygen demand removal of 81 ± 3.6 % in 20 min with maximum reusability of beads up to 20 cycles. The Z-scheme electron migration mechanism is proposed based on the results aided by scavenger and electron spin resonance analysis. Overall, the as-synthesized alginate-supported homojunction-based photocatalytic-self-Fenton-peroxymonosulfate system is highly versatile and reusable for energy and environmental remediation.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - K Vijaya Suryaa
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - Mahendra Chinthala
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India.
| | - Arvind Kumar
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| |
Collapse
|
3
|
Wang Q, Hao M, Yu F, Giannakoudakis DA, Sun Y. Enhanced degradation of 2,4-dichlorophenol in groundwater by defective iron-based metal-organic frameworks: Role of SO 3- and electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173644. [PMID: 38823695 DOI: 10.1016/j.scitotenv.2024.173644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The purposeful formation of crystal defects was regarded as an attractive strategy to enhance the catalytic activity of Fe-MOFs. In this study, the pyrolytic hydrochloric acid-modulated MIL-101-NH2 (P250HMN-2) was fabricated for the first time, and the important role of pyrolysis in the formation of crystal defects was confirmed. PDS was introduced as an enhancer for the P250HMN-2/Na2SO3 system. Without pH adjustment, 99.7 % of 2,4-DCP was removed by the P250HMN-2/Na2SO3/PDS system in 180 min. The catalytic performance of P250HMN-2 improved 2.5-fold than that of MIL-101-NH2. It was found that the high density of Fe-CUSs on P250HMN-2 were the major active sites, which could efficiently react with SO32- to generate ROS through electron transfer. The results of quenching experiments, probe tests, and EPR tests indicated that SO3-, SO4-, 1O2, OH, and SO5- were involved in the 2,4-DCP degradation process, with SO3-, SO4-, and 1O2 playing major roles. Moreover, P250HMN-2 could effectively degrade 2,4-DCP for 148 h in a fixed-bed reactor with excellent stability and reusability, indicating a promising catalyst for practical applications.
Collapse
Affiliation(s)
- Qiongyao Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Mingge Hao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Fangxin Yu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | | | - Yongchang Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
4
|
Li M, Cen P, Huang L, Yan J, Zhou S, Yeung KL, Mo CH, Zhang H. Iron complex regulated synergistic effect between the current and peroxymonosulfate enhanced ultrafast oxidation of perfluorooctanoic acid via free radical dominant electrochemical reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134155. [PMID: 38552391 DOI: 10.1016/j.jhazmat.2024.134155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Iron complex regulated electrochemical reaction was triggered for revealing the reaction mechanism, degradation pathway, and applied potential of perfluorooctanoic acid (PFOA). The increased PMS concentrations, electrode spacing, and current density significantly enhanced PFOA elimination, with current density exhibiting a relatively strong interdependency to PFOA complete mineralization. The synergy between PMS and electrochemical reactions greatly accelerated PFOA decomposition by promoting the generation of key reaction sites, such as those for PMS activation and electrochemical processes, under various conditions. Furthermore, density functional theory calculations confirmed that the reciprocal transformation of Fe2+ and Fe3+ complexes was feasible under the electrochemical effect, further promoting the generation of active sites. The developed electrochemical oxidation with PMS reaction (EO/PMS) system can rapidly decompose and mineralize PFOA while maintaining strong tolerance to changing water matrices and organic and inorganic ions. Overall, it holds promise for use in treating and purifying wastewater containing PFOA.
Collapse
Affiliation(s)
- Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China.
| | - Peitong Cen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Guizhou University, 2708 Huaxi Road, Guiyang 550025, PR China
| | - King Lun Yeung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Ruan M, Zhou H, Zhao L, Hu T, He L, Shan S. The ortho-substituent effect regulating the separation of photogenerated carriers to efficiently photodegrade tetracycline on the surface of FeCo-based MOFs. CHEMOSPHERE 2024; 352:141296. [PMID: 38296214 DOI: 10.1016/j.chemosphere.2024.141296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
It is feasible to improve the photodegradation efficiency of organic pollutants by metal-organic frameworks (MOF)-based semiconductors via ligand engineering. In this work, three (Fe/Co)-XBDC-based MOFs were synthesized by introducing different ortho-functional groups X (X = -H, -NO2, -NH2) next to the carboxyl group of the organic ligand (i.e., terephthalic acid). The analysis focused on the influence mechanism of the adjacent functional group effect of the ligand on the physicochemical properties of the material and the actual photodegradation activity of TC. Multiple pieces of evidences suggested that the differences in electron-induced and photocharge-transfer mechanisms of the above ortho functional groups affect the crystal morphology and photocatalytic activity of FeCo-MOF during pyrolysis. Interestingly, (Fe/Co)-NH2BDC exhibited the highest photocatalytic activity under neutral conditions. The results of density functional theory show that the introduction of a strong donor-NH2 group can enhance light absorption and act as an "electron pump" to supply electrons to the iron center, accelerating the separation and efficient transport of photogenerated carriers on the ligand-metal bridge. In conclusion, this study is a proposal for a strategy of structural regulation for the enhancement of the catalytic activity of (Fe/Co)-MOFs in the photodegradation of TC.
Collapse
Affiliation(s)
- Ming Ruan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Lingxiang Zhao
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
6
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Xiang S, Lin Y, Chang T, Mei B, Liang Y, Wang Z, Sun W, Cai C. Oxygen doped graphite carbon nitride as efficient metal-free catalyst for peroxymonosulfate activation: Performance, mechanism and theoretical calculation. CHEMOSPHERE 2023; 338:139539. [PMID: 37474028 DOI: 10.1016/j.chemosphere.2023.139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
In this study, oxygen-doped graphitic carbon nitride (g-C3N4), named O-g-C3N4, was successfully fabricated and characterized, and its performance in activating peroxymonosulfate (PMS, HSO5-) for the removal of phenol, 2,4-dichlorophenol (2,4-DCP), bisphenol A (BPA), rhodamine B (RhB), reactive brilliant blue (RBB) and acid orange 7 (AO7) was evaluated. The catalytic performance of O-g-C3N4 for AO7 removal increased by 14 times compared to g-C3N4. In the presence of 0.2 g L-1 O-g-C3N4, 3.5 mM PMS at natural pH 5.8, 96.4% of AO7 could be removed in 60 min, reduced toxicity of the treated AO7 solution was obtained, and the mineralization efficiency was 47.2% within 120 min. Density functional theory (DFT) calculations showed that the charge distribution changed after oxygen doping, and PMS was more readily adsorbed by O-g-C3N4 with the adsorption energy (Eads) of -0.855 kcal/mol than that of the pristine g-C3N4 (Eads: -0.305 kcal/mol). Mechanism investigation implied that AO7 was primarily removed by the sulfate radicals (SO4•-) and hydroxyl radicals (•OH) on the surface of O-g-C3N4, but the role of singlet oxygen (1O2) to AO7 elimination was negligible. The results of cyclic experiments and catalyst characterization after reaction confirmed the favorable catalytic activity and structural stability of O-g-C3N4 particles. Furthermore, the O-g-C3N4/PMS system was very resistant to most of the environmental impacts, and AO7 removal was still acceptable in natural water environment. This study may provide an efficient metal-free carbonaceous activator with low dosage for PMS activation to remove recalcitrant organic pollutants (ROPs).
Collapse
Affiliation(s)
- Shaofeng Xiang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| | - Yu Lin
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Tongda Chang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Bingrui Mei
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Yuhang Liang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Ziqian Wang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Wenwu Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chun Cai
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
8
|
Kumari M, Pulimi M. Sulfate Radical-Based Degradation of Organic Pollutants: A Review on Application of Metal-Organic Frameworks as Catalysts. ACS OMEGA 2023; 8:34262-34280. [PMID: 37779959 PMCID: PMC10536895 DOI: 10.1021/acsomega.3c02977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
The degradation of organic pollutants present in domestic and industrial effluents is a matter of concern because of their high persistence and ecotoxicity. Recently, advanced oxidation processes (AOPs) are being emphasized for organic pollutant removal from effluents, as they have shown higher degradation efficiencies when compared to conventional activated sludge processes. Sulfate radical-based methods are some of the AOPs, mainly carried out using persulfate (PS) and peroxymonosulfate (PMS), which have gained attention due to the ease of sulfate radical generation and the effective degradation of organic molecules. PMS is gaining more popularity because of its high reactivity and ability to generate excess sulfate radicals. PMS has been the major focus; therefore, its mechanism has been explained, and limitations have been elaborated. The involvement of metal-organic frameworks for PMS/PS activation applied to organic pollutant removal and recent advances in the application of biochar and hydrogel-assisted metal-organic frameworks have been discussed.
Collapse
Affiliation(s)
- Madhu Kumari
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
9
|
Wu Q, Dong C, Chen M, Zhang Y, Cai M, Chen Y, Jin M, Wei Z. Silica enhanced activation and stability of Fe/Mn decorated sludge biochar composite for tetracycline degradation. CHEMOSPHERE 2023; 328:138614. [PMID: 37023899 DOI: 10.1016/j.chemosphere.2023.138614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/07/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In this study, SiO2-composited biochar decorated with Fe/Mn was prepared by co-pyrolysis method. The degradation performance of the catalyst was evaluated by activating persulfate (PS) to degrade tetracycline (TC). The effects of pH, initial TC concentration, PS concentration, catalyst dosage and coexisting anions on degradation efficiency and kinetics of TC were investigated. Under optimal conditions (TC = 40 mg L-1, pH = 6.2, PS = 3.0 mM, catalyst = 0.1 g L-1), the kinetic reaction rate constant could reach 0.0264 min-1 in Fe2Mn1@BC-0.3SiO2/PS system, which was 12 times higher than that in the BC/PS system (0.00201 min-1). The electrochemical, X-ray diffractometer (XRD), Fourier transform infrared spectrum (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis showed that both metal oxides and oxygen-containing functional groups provide more active sites to activate PS. The redox cycle between Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) accelerated the electron transfer and sustained the catalytic activation of PS. Radical quenching experiments and electron spin resonance (ESR) measurements confirmed that surface sulfate radical (SO4•-) play a key role in TC degradation. Three possible degradation pathways of TC were proposed based on high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis, the toxicity of TC and its intermediates was analyzed by bioluminescence inhibition test. In addition to the enhanced catalytic performance, the presence of silica also improved the stability of the catalyst, as confirmed by cyclic experiment and metal ion leaching analysis. The Fe2Mn1@BC-0.3SiO2 catalyst, derived from low-cost metals and bio-waste materials, offer an environmentally friendly option to design and implement heterogenous catalyst system for pollutant removal in water.
Collapse
Affiliation(s)
- Qiong Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chunying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Maoxiang Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yu Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meiqiang Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yan Chen
- Zhejiang Industrial Environmental Design and Research Institute Co., Ltd., Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Micong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China.
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| |
Collapse
|