1
|
Song J, Yang K, Ding A, Jin N, Sun Y, Zhang D. Antagonistic effects of polystyrene microplastics and tetracycline on Chlorella pyrenoidosa as revealed by infrared spectroscopy coupled with multivariate analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137896. [PMID: 40101633 DOI: 10.1016/j.jhazmat.2025.137896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Microplastics and antibiotics are typical emerging contaminants in the environment, posing considerable risks to the ecosystem and human health. Previous studies have reported synergistic or antagonistic effects in the presence of both microplastics and antibiotics, destructing cell membrane, inhibiting photosynthetic capability, and inducing antioxidant enzyme activity. However, there is still lack of comprehensive understanding of the mechanisms. This study applied infrared biospectroscopy and multivariate analysis to explore the physiological and biochemical toxicity of polystyrene microplastics and tetracycline co-exposure on Chlorella pyrenoidosa. Either tetracycline or polystyrene microplastics alone posed toxicities on C. pyrenoidosa, mainly due to changes in photosynthetic content, cell membrane permeability, MDA content and antioxidant enzyme activity. Co-exposure of tetracycline and polystyrene microplastics exhibited an antagonistic effect. Infrared spectroscopy coupled with multivariate analysis isolated the discriminating biomarkers representing different toxicity mechanisms, successfully explaining the mechanism of antagonism as reducing ROS production, regulating antioxidant enzyme activity, stabilizing cell membrane, and interfering with signaling and protein synthesis. A random forest model was developed and satisfactorily recognized the toxicity of individual toxins (accuracy of 98.75 %, sensitivity of 99.22 % and specificity of 99.65 %). It also rapidly apportioned toxicity origin and evidenced that tetracycline contributed to the majority of binary toxicities. This study provided scientific guidance and a theoretical basis for assessing and apportioning the binary toxicities of emerging contaminants.
Collapse
Affiliation(s)
- Jiaxuan Song
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regiaonal Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China.
| |
Collapse
|
2
|
Yadav DS, Mantri VA. The microplastic menace: a critical review of its impact on marine photoautotrophs and their environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4387-4402. [PMID: 39885075 DOI: 10.1007/s11356-025-35981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
Seaweeds contribute to the energy input in marine communities and affect the chemical makeup, species composition, nutrient availability, pH, and seawater oxygen levels. However, the annual introduction of 28.5 million tons of plastic waste into oceans makes up 85% of marine litter, which is expected to grow fourfold in the next 25 years, causing a rise in concern for human health and the environment. Microplastics are small plastic particles of 1-5 mm that are either manufactured or formed due to the degradation of large plastic materials. This study analyzes the prevalence of microplastics in marine environments, their interaction with marine macro- and microalgae, environmental implications, genetic responses to microplastic exposure, and potential strategies for mitigating microplastic pollution. The leading causes identified were high plastic production rate (390 million tons annually), increased usage, inefficient waste management, meager recycling (9% is recycled), slow degradation (up to 1200 years), easy distribution via oceanic currents, and industrialization that has led to the accumulation of microplastics in the marine ecosystems. Therefore, it is recommended that the waste management system be strengthened, focusing on recycling, repurposing, reducing single-use plastics, and redirecting plastic waste away from water bodies. Developing reliable detection technologies, studying the long-term effects of microplastics in marine ecosystems, and collaborating with the public and private sectors may be encouraged. Further investigations on microplastic-seaweed interaction, the bioremediation potential of various species, and the involved molecular mechanisms may lead to new strategies for reducing microplastic loads in marine ecosystems.
Collapse
Affiliation(s)
- Digvijay Singh Yadav
- Applied Phycology and Biotechnology Department, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, India, 364002
| | - Vaibhav A Mantri
- Applied Phycology and Biotechnology Department, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, India, 364002.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Lu X, Yu Q, Johari SA, Wang Z. Microplastics with different functional groups modulate cellular and molecular mechanisms of reduced graphene oxide toxicity on the green microalga, Scenedesmus obliquus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108949. [PMID: 39053316 DOI: 10.1016/j.plaphy.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Even though microplastics (MPs) and graphene nanomaterials (GNMs) have demonstrated individual toxicity towards aquatic organisms, the knowledge gap lies in the lack of understanding regarding their combined toxicity. The difference between the combined toxicity of MPs and GNMs, in contrast to their individual toxicities, and furthermore, the elucidation of the mechanism of this combined toxicity are scientific questions that remain to be addressed. In this study, we examined the individual and combined toxicity of three polystyrene microplastics (MPs) with different functional groups-unmodified, carboxyl-modified (COOH-), and amino-modified (NH2-) MPs-in combination with reduced graphene oxide (RGO) on the freshwater microalga Scenedesmus obliquus. More importantly, we explored the cellular and molecular mechanisms responsible for the observed toxicity. The results indicated that the growth inhibition toxicity of RGO, either alone or in combination with the three MPs, against S. obliquus increased gradually with higher particle concentrations. The mitigating effect of MPs-NH2 on RGO-induced toxicity was most significant at a higher concentration, surpassing the effect of unmodified MPs. However, the MPs-COOH did not exhibit a substantial impact on the toxicity of RGO. Unmodified MPs and MPs-COOH aggravated the inhibition effects of RGO on the cell membrane integrity and oxidative stress-related biomarkers. Additionally, MPs-COOH exhibited a stronger inhibition effect on RGO-induced biomarkers compared to unmodified MPs. In contrast, the MPs-NH2 alleviated the inhibition effect of RGO on the biomarkers. Furthermore, the presence of differently functionalized MPs did not significantly affect RGO-induced oxidative stress and photosynthesis-related gene expression in S. obliquus, indicating a limited ability to modulate RGO genotoxicity at the molecular level. These findings can offer a more accurate understanding of the combined risks posed by these micro- and nano-materials and assist in designing more effective mitigation strategies.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Qi Yu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou, 510535, PR China
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
4
|
Li L, Liu Q, Li B, Zhao Y. The Effecting Mechanisms of 100 nm Sized Polystyrene Nanoplastics on the Typical Coastal Alexandrium tamarense. Int J Mol Sci 2024; 25:7297. [PMID: 39000403 PMCID: PMC11242399 DOI: 10.3390/ijms25137297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Due to the increase in nanoplastics (NPs) abundance in aquatic environments, their effects on phytoplankton have aroused large research attention. In this study, 100 nm sized polystyrene NPs were chosen to investigate their effecting performance and mechanisms on a typical dinoflagellates Alexandrium tamarense. The results indicated the population growth and photosynthetic efficiencies of A. tamarense were significantly inhibited by NPs exposure, as well as the increase in cellular total carotenoids and paralytic shellfish toxins (PSTs). Meanwhile, the cellar ROS levels increased, corresponding to the increased activities or contents of multiple antioxidant components, including SOD, CAT, GPX, GR, GSH and GSSG. The transcriptional results support the physiological-biochemical results and further revealed the down-regulation of genes encoding the light reaction centers (PSI and PSII) and up-regulation of genes encoding the antioxidant components. Up-regulation of genes encoding key enzymes of the Calvin cycle and glycolytic pathway together with the TCA cycle could accelerate organic carbon and ATP production for A. tamarense cells resistant to NPs stress. Finally, more Glu and acetyl-CoA produced by the enhanced GSH cycle and the glycolytic pathway, respectively, accompanied by the up-regulation of Glu and Arg biosynthesis genes supported the increase in the PST contents under NPs exposure. This study established a data set involving physiological-biochemical changes and gene information about marine dinoflagellates responding to NPs, providing a data basis for further evaluating the ecological risk of NPs in marine environments.
Collapse
Affiliation(s)
- Luying Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China;
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Qian Liu
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China;
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao 266104, China
| | - Bo Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Yan Zhao
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
5
|
Shukla S, Pei Y, Li WG, Pei DS. Toxicological Research on Nano and Microplastics in Environmental Pollution: Current Advances and Future Directions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106894. [PMID: 38492287 DOI: 10.1016/j.aquatox.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
This review explains the sources of nanoplastics (NPs) and microplastics (MPs), their release, fate, and associated health risks in the aquatic environment. In the 21st century, scientists are grappling with a major challenge posed by MPs and NPs. The global production of plastic has skyrocketed from 1.5 million tons in the 1950s to an astonishing 390.7 million tons in 2021. This pervasive presence of these materials in our environment has spurred scientific inquiry into their potentially harmful effects on living organisms. Studies have revealed that while MPs, with their larger surface area, are capable of absorbing contaminants and pathogens from the surroundings, NPs can easily be transferred through the food chain. As a result, living organisms may ingest them and accumulate them within their bodies. Due to their minuscule size, NPs are particularly difficult to isolate and quantify. Furthermore, exposure to both NPs and MPs has been linked to various adverse health effects in aquatic species, including neurological impairments, disruption of lipid and energy metabolism, and increased susceptibility to cytotoxicity, oxidative stress, inflammation, and reactive oxygen species (ROS) production. It is alarming to note that MPs have even been detected in commercial fish, highlighting the severity of this issue. There are also challenges associated with elucidating the toxicological effects of NPs and MPs, which are discussed in detail in this review. In conclusion, plastic pollution is a pressing issue that governments should tackle by ensuring proper implementation of rules and regulations at national and provincial levels to reduce its health risks.
Collapse
Affiliation(s)
- Saurabh Shukla
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.; Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, India
| | - Yang Pei
- Chongqing No.11 Middle School, Chongqing 400061, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Lu X, Wang Z. Molecular mechanism for combined toxicity of micro(nano)plastics and carbon nanofibers to freshwater microalgae Chlorella pyrenoidosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123403. [PMID: 38244907 DOI: 10.1016/j.envpol.2024.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The understanding of the environmental consequences resulting from the presence of micro(nano)plastics and carbon nanofibers (CNFs) in aquatic ecosystems is currently limited. This research endeavor sought to investigate the underlying molecular mechanisms by which engineered polystyrene-based microplastics (MPs)/nanoplastics (NPs) and CNFs, both individually and in combination, elicit toxic effects on an algal species Chlorella pyrenoidosa. The findings revealed that the combined toxicity of MPs/NPs and CNFs depended on the concentration of the mixture. As the concentration increased, the combined toxicity of MPs/NPs and CNFs was significantly greater than the toxicity of each component on its own. Furthermore, the combined toxicity of NPs and CNFs was higher than that of MPs and CNFs. The study integrated data on cell membrane integrity, oxidative stress, and antioxidant modulation to create an Integrated Biomarker Response index, which demonstrated that the co-exposure of algae to NPs and CNFs resulted in more severe cellular stress compared to exposure to NPs alone. Similarly, the combination of NPs and CNFs caused greater cellular stress than the combination of MPs and CNFs. Additionally, significant changes in the expression of stress-related genes caused by MPs/NPs alone and in combination with CNFs indicated that oxidative stress response, glucose metabolism, and energy metabolism played critical roles in particle-induced toxicity. Overall, this study provides the first insight into the toxicological mechanism of MPs/NPs and CNFs mixtures at the molecular level in freshwater microalgae.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|