1
|
Baral R, Adhikari B, Paudel RP, Kadariya R, Subedi N, Dhakal BK, Shimozuru M, Tsubota T. Predicting the potential habitat of bears under a changing climate in Nepal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1097. [PMID: 39443401 PMCID: PMC11549196 DOI: 10.1007/s10661-024-13253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
In Nepal, the distributions of three bear species vary: sloth bears (Melursus ursinus) in the lowlands, Asiatic black bears (Ursus thibetanus) in the mid-hills, and brown bears (Ursus arctos) in the high Himalayas. We utilized 179 occurrence points for sloth bears, 199 for Asiatic black bears, and 41 points for brown bears to construct a habitat model incorporating climate and topographic variables. Employing various species distribution modeling algorithms in BIOMOD2, the model predicts suitable habitats spanning 10,971.75 km2 for sloth bears; 29,470.75 km2 for Asiatic black bears; and 6152.97 km2 for brown bears. Within protected areas, the habitat for sloth bears is 4120.56 km2, that for Asiatic black bears is 9688.67 km2, and that for brown bears is 4538.67 km2. Chitwan National Park emerged as the prime sloth bear habitat with a core area of 918.55 km2 and a buffer zone of 726.485 km2. The Annapurna Conservation Area was deemed suitable for Asiatic black bears and brown bears, covering 2802.23 km2 and 2795.91 km2, respectively. The models projected a significant reduction in the habitat of these bear species both inside and outside protected areas. As predicted under the Shared Socioeconomic Pathways (SSP)2-4.5 scenario, sloth bears may experience 54.9% (2050) and 44.7% (2070) losses, respectively, of habitat; Asiatic black bears, 11.2% (2050) and 16.8% (2070); and brown bears, 68.41% (2050) and 82.20% (2070) losses. The overlap between sloth bears and black bears spans 38.7 km2, and that between brown bears and black bears is 26.6 km2. Notably, all three bear species exhibited suitability correlations with the intermediate temperature of the driest quarter. Examining current and projected habitats provides essential information for guiding conservation strategies and ensuring the conservation of these bear species in the face of climate change.
Collapse
Affiliation(s)
- Rishi Baral
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Binaya Adhikari
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Rajan Prasad Paudel
- National Trust for Nature Conservation, POB 3712, Khumaltar, Lalitpur, Nepal
| | - Rabin Kadariya
- National Trust for Nature Conservation, POB 3712, Khumaltar, Lalitpur, Nepal
| | - Naresh Subedi
- National Trust for Nature Conservation, POB 3712, Khumaltar, Lalitpur, Nepal
| | - Bed Kumar Dhakal
- Department of National Parks and Wildlife Conservation, Babarmahal, Babar Mahal, Kathmandu, Nepal
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Identifying stable and overlapping habitats for a predator (common leopard) and prey species (Himalayan grey goral & Himalayan grey langur) in northern Pakistan. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
3
|
Tariq A, Mumtaz F. Modeling spatio-temporal assessment of land use land cover of Lahore and its impact on land surface temperature using multi-spectral remote sensing data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23908-23924. [PMID: 36331729 DOI: 10.1007/s11356-022-23928-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Urban sprawl, also widely known as urbanization, is one of the significant problems in the world. This research aims to assess and predict the urban growth and impact on land surface temperature (LST) of Lahore as well as land use and land cover (LULC) with a cellular automata Markov chain (CA-Markov chain). LULC and LST distributions were mapped using Landsat (5, 7, and 8) data from 1990, 2004, and 2018. Long-term changes to the landscape were simulated using a CA-Markov model at 14-year intervals from 2018 to 2046. Results indicate that the built-up area was increased from 342.54 (18.41%) to 720.31 (38.71%) km2. Meanwhile, barren land, water, and vegetation area was decreased from 728.63 (39.16%) to 544.83 (29.28%) km2, from 64.85 (3.49%) to 34.78 (1.87%) km2, and from 724.53 (38.94%) to 560.63 (30.13%) km2, respectively. In addition, urban index, a non-vegetation index, accurately predicted LST, showing the maximum correlation R2 = 0.87 with respect to retrieved LST. According to CA-Markov chain analysis, we can predict the growth of built-up area from 830.22 to 955.53 km2 between 2032 and 2046, based on the development from 1990 to 2018. As urban index as the predictor anticipated that the LST 20-23 °C and 24-27 °C, regions would all decline in coverage from 5.30 to 4.79% and 15.79 to 13.77% in 2032 and 2046, while the temperature 36-39 °C regions would all grow in coverage from 15.60 to 17.21% of the city. Our results indicate severe conditions, and the authorities should consider some strategies to mitigate this problem. These findings are significant for the planning and development division to ensure the long-term usage of land resources for urbanization expansion projects in the future.
Collapse
Affiliation(s)
- Aqil Tariq
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, 775 Stone Boulevard, Starkville, MS, 39762, USA.
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, 430079, China.
| | - Faisal Mumtaz
- University of Chinese Academy of Sciences (UCAS), Beijing, 101408, China
- State Key Laboratory of Remote Sensing Sciences, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Zahoor B, Liu X, Ahmad B. Activity patterns of Asiatic black bear (Ursus thibetanus) in the moist temperate forests of Machiara National Park, Azad Jammu and Kashmir, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8036-8047. [PMID: 36048393 DOI: 10.1007/s11356-022-22646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The Asiatic black bear (Ursus thibetanus) is an environmental indicator species whose activity patterns may be highly impacted by habitat changes. We monitored the monthly and daily activity patterns of black bears in the moist temperate forests of Machiara National Park. We used infrared camera traps and local ecological knowledge for data collection from April 2019 to April 2021. Camera traps recorded 109 [inside forest = 107, outside forest (near crop fields and human settlements) = 2] independent registrations (IR) in 5541 (692.63 ± 36.72, mean ± SD) camera days. We found (i) spring and autumn to be the lowest activity seasons for black bears inside the forest. (ii) The highest activity was recorded in summer, with a peak in August followed closely by July. (iii) The activity level sharply declined after August and halted from December to March, indicative of the bears' hibernation period. Local knowledge revealed that (i) bears remained active from May to November and hibernated the rest of the period. (ii) Bear activity was at its peak inside the forest in summer and outside the forest in autumn when bears sought to raid the widely cultivated maize crop (Zea mays) planted along forest edges. This increased activity outside of the forest is likely driven by decreased food availability inside the forest area and maize crop being a preferred anthropogenic food type for bears. Based on the daily activity pattern, bears exhibited cathemeral behavior (i.e., active throughout the day) with maximum overlap between camera trap and local ecological knowledge data. Human activity may be impacting the daily activity patterns of bears via disturbance and interference. The data collected in this study can help mitigate conflicts between humans and black bears and consequently assist in future conservation of black bears in the area.
Collapse
Affiliation(s)
- Babar Zahoor
- State Key Joint Laboratory of Environment Simulation and Pollution Control, and School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xuehua Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, and School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Basharat Ahmad
- Department of Zoology, Faculty of Sciences, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
5
|
Khattak RH, Mehmood T, Teng L, Ahmad S, Rehman EU, Liu Z. Assessing human–Asiatic black bear (Ursus thibetanus) conflicts in Kumrat Valley—Western flanks of Hindu Kush Region, northern Pakistan. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
6
|
Zahoor B, Liu X, Songer M. The impact of climate change on three indicator Galliformes species in the northern highlands of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54330-54347. [PMID: 35297000 DOI: 10.1007/s11356-022-19631-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The rise in global temperature is one of the main threats of extinction to many vulnerable species by the twenty-first century. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest-dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha, and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current (average for 1960-1990) and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (ii) Across the provinces in the NHP, the species were predicted to average lose around one-third (35%) in 2050 and one-half (47%) by 2070 of the current suitable habitat. (iii) The maximum area of climate refugia was projected between the altitudinal range of 2000 to 4000 m and predicted to shift towards higher altitudes primarily > 3000 m in the future. Our results help inform management plans and conservation strategies for mitigating the impacts of climate change on three indicator Galliforms species in the NHP.
Collapse
Affiliation(s)
- Babar Zahoor
- State Key Joint Laboratory of Environment Simulation and Pollution Control, and School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xuehua Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, and School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Melissa Songer
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
| |
Collapse
|