1
|
Liu S, Baret F, Abichou M, Manceau L, Andrieu B, Weiss M, Martre P. Importance of the description of light interception in crop growth models. PLANT PHYSIOLOGY 2021; 186:977-997. [PMID: 33710303 PMCID: PMC8253170 DOI: 10.1093/plphys/kiab113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/11/2021] [Indexed: 05/22/2023]
Abstract
Canopy light interception determines the amount of energy captured by a crop, and is thus critical to modeling crop growth and yield, and may substantially contribute to the prediction uncertainty of crop growth models (CGMs). We thus analyzed the canopy light interception models of the 26 wheat (Triticum aestivum) CGMs used by the Agricultural Model Intercomparison and Improvement Project (AgMIP). Twenty-one CGMs assume that the light extinction coefficient (K) is constant, varying from 0.37 to 0.80 depending on the model. The other models take into account the illumination conditions and assume either that all green surfaces in the canopy have the same inclination angle (θ) or that θ distribution follows a spherical distribution. These assumptions have not yet been evaluated due to a lack of experimental data. Therefore, we conducted a field experiment with five cultivars with contrasting leaf stature sown at normal and double row spacing, and analyzed θ distribution in the canopies from three-dimensional canopy reconstructions. In all the canopies, θ distribution was well represented by an ellipsoidal distribution. We thus carried out an intercomparison between the light interception models of the AgMIP-Wheat CGMs ensemble and a physically based K model with ellipsoidal leaf angle distribution and canopy clumping (KellC). Results showed that the KellC model outperformed current approaches under most illumination conditions and that the uncertainty in simulated wheat growth and final grain yield due to light models could be as high as 45%. Therefore, our results call for an overhaul of light interception models in CGMs.
Collapse
Affiliation(s)
- Shouyang Liu
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
- CAPTE-EMMAH, Université d'Avignon et des Pays de Vaucluse, INRAE, Avignon, France
- PheniX, Plant Phenomics Research Centre, Nanjing Agricultural University, Nanjing, China
| | - Frédéric Baret
- CAPTE-EMMAH, Université d'Avignon et des Pays de Vaucluse, INRAE, Avignon, France
| | | | - Loïc Manceau
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Bruno Andrieu
- EcoSys, INRAE, AgroParisTech, Thiverval-Grignon, France
| | - Marie Weiss
- CAPTE-EMMAH, Université d'Avignon et des Pays de Vaucluse, INRAE, Avignon, France
| | - Pierre Martre
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
- Author for communication:
| |
Collapse
|
2
|
Peng B, Guan K, Tang J, Ainsworth EA, Asseng S, Bernacchi CJ, Cooper M, Delucia EH, Elliott JW, Ewert F, Grant RF, Gustafson DI, Hammer GL, Jin Z, Jones JW, Kimm H, Lawrence DM, Li Y, Lombardozzi DL, Marshall-Colon A, Messina CD, Ort DR, Schnable JC, Vallejos CE, Wu A, Yin X, Zhou W. Towards a multiscale crop modelling framework for climate change adaptation assessment. NATURE PLANTS 2020; 6:338-348. [PMID: 32296143 DOI: 10.1038/s41477-020-0625-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Predicting the consequences of manipulating genotype (G) and agronomic management (M) on agricultural ecosystem performances under future environmental (E) conditions remains a challenge. Crop modelling has the potential to enable society to assess the efficacy of G × M technologies to mitigate and adapt crop production systems to climate change. Despite recent achievements, dedicated research to develop and improve modelling capabilities from gene to global scales is needed to provide guidance on designing G × M adaptation strategies with full consideration of their impacts on both crop productivity and ecosystem sustainability under varying climatic conditions. Opportunities to advance the multiscale crop modelling framework include representing crop genetic traits, interfacing crop models with large-scale models, improving the representation of physiological responses to climate change and management practices, closing data gaps and harnessing multisource data to improve model predictability and enable identification of emergent relationships. A fundamental challenge in multiscale prediction is the balance between process details required to assess the intervention and predictability of the system at the scales feasible to measure the impact. An advanced multiscale crop modelling framework will enable a gene-to-farm design of resilient and sustainable crop production systems under a changing climate at regional-to-global scales.
Collapse
Affiliation(s)
- Bin Peng
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Kaiyu Guan
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jinyun Tang
- Climate Sciences Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth A Ainsworth
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Senthold Asseng
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA
| | - Carl J Bernacchi
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mark Cooper
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Evan H Delucia
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua W Elliott
- Department of Computer Science, University of Chicago, Chicago, IL, USA
| | - Frank Ewert
- Crop Science Group, INRES, University of Bonn, Bonn, Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Robert F Grant
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | | | - Graeme L Hammer
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhenong Jin
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - James W Jones
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA
| | - Hyungsuk Kimm
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | | | - Amy Marshall-Colon
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Donald R Ort
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James C Schnable
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - C Eduardo Vallejos
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Alex Wu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, The University of Queensland, Brisbane, Queensland, Australia
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Wang Zhou
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Charbonnier F, Roupsard O, le Maire G, Guillemot J, Casanoves F, Lacointe A, Vaast P, Allinne C, Audebert L, Cambou A, Clément-Vidal A, Defrenet E, Duursma RA, Jarri L, Jourdan C, Khac E, Leandro P, Medlyn BE, Saint-André L, Thaler P, Van Den Meersche K, Barquero Aguilar A, Lehner P, Dreyer E. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. PLANT, CELL & ENVIRONMENT 2017; 40:1592-1608. [PMID: 28382683 DOI: 10.1111/pce.12964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.
Collapse
Affiliation(s)
- Fabien Charbonnier
- CONACyT research fellow, El Colegio de la Frontera Sur, San Cristóbal de las Casas, 29290, Chiapas, Mexico
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| | - Olivier Roupsard
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
| | | | | | - Fernando Casanoves
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
| | - André Lacointe
- Inra, Université Blaise Pascal, UMR 547 PIAF, F-63100, Clermont-Ferrand, France
| | - Philippe Vaast
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
- World Agroforestry Centre (ICRAF), United Nations Avenue, PO Box 30677, 00100, Nairobi, Kenya
| | - Clémentine Allinne
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
- CIRAD, Inra, SupAgro-Montpellier, UMR System, 34060, Montpellier, France
| | | | | | | | | | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, New South West, Australia
| | - Laura Jarri
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| | | | | | - Patricia Leandro
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, New South West, Australia
| | - Laurent Saint-André
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
- Inra, Biogéochimie des Ecosystèmes Forestiers, F-54280, Champenoux, France
| | | | - Karel Van Den Meersche
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
| | | | - Peter Lehner
- Cafetalera Aquiares S.A., PO Box 362-7150, Turrialba, 7150, Costa Rica
| | - Erwin Dreyer
- Inra, Université de Lorraine, UMR 1137 'Ecologie et Ecophysiologie Forestières', F54280, Champenoux, France
| |
Collapse
|
9
|
Tiwari S, Grote R, Churkina G, Butler T. Ozone damage, detoxification and the role of isoprenoids - new impetus for integrated models. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:324-336. [PMID: 32480464 DOI: 10.1071/fp15302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/22/2015] [Indexed: 06/11/2023]
Abstract
High concentrations of ozone (O3) can have significant impacts on the health and productivity of agricultural and forest ecosystems, leading to significant economic losses. In order to estimate this impact under a wide range of environmental conditions, the mechanisms of O3 impacts on physiological and biochemical processes have been intensively investigated. This includes the impact on stomatal conductance, the formation of reactive oxygen species and their effects on enzymes and membranes, as well as several induced and constitutive defence responses. This review summarises these processes, discusses their importance for O3 damage scenarios and assesses to which degree this knowledge is currently used in ecosystem models which are applied for impact analyses. We found that even in highly sophisticated models, feedbacks affecting regulation, detoxification capacity and vulnerability are generally not considered. This implies that O3 inflicted alterations in carbon and water balances cannot be sufficiently well described to cover immediate plant responses under changing environmental conditions. Therefore, we suggest conceptual models that link the depicted feedbacks to available process-based descriptions of stomatal conductance, photosynthesis and isoprenoid formation, particularly the linkage to isoprenoid models opens up new options for describing biosphere-atmosphere interactions.
Collapse
Affiliation(s)
- Supriya Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Rüdiger Grote
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Galina Churkina
- Institute of Advanced Sustainable Studies, Berliner St. 130, 14467 Potsdam, Germany
| | - Tim Butler
- Institute of Advanced Sustainable Studies, Berliner St. 130, 14467 Potsdam, Germany
| |
Collapse
|