1
|
Gómez JM, González-Megías A, Armas C, Narbona E, Navarro L, Perfectti F. The role of phenotypic plasticity in shaping ecological networks. Ecol Lett 2023; 26 Suppl 1:S47-S61. [PMID: 37840020 DOI: 10.1111/ele.14192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 10/17/2023]
Abstract
Plasticity-mediated changes in interaction dynamics and structure may scale up and affect the ecological network in which the plastic species are embedded. Despite their potential relevance for understanding the effects of plasticity on ecological communities, these effects have seldom been analysed. We argue here that, by boosting the magnitude of intra-individual phenotypic variation, plasticity may have three possible direct effects on the interactions that the plastic species maintains with other species in the community: may expand the interaction niche, may cause a shift from one interaction niche to another or may even cause the colonization of a new niche. The combined action of these three factors can scale to the community level and eventually expresses itself as a modification in the topology and functionality of the entire ecological network. We propose that this causal pathway can be more widespread than previously thought and may explain how interaction niches evolve quickly in response to rapid changes in environmental conditions. The implication of this idea is not solely eco-evolutionary but may also help to understand how ecological interactions rewire and evolve in response to global change.
Collapse
Affiliation(s)
- José M Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Zoología, Universidad de Granada, Granada, Spain
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, Vigo, Spain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Genética, Universidad de Granada, Granada, Spain
| |
Collapse
|
2
|
Shao J, Li G, Li Y, Zhou X. Intraspecific responses of plant productivity and crop yield to experimental warming: A global synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156685. [PMID: 35714738 DOI: 10.1016/j.scitotenv.2022.156685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Maintaining plant productivity and crop yield in a warming world requires local adaptation to new environment and selection of high-yield cultivars, which both depend on the genetically-based intraspecific differences in the plant response to warming (referred to as "genetically-based intraspecific responses"). However, how the genetically-based intraspecific responses mediate warming effects on plants remains unclear, especially at the global scale. Here, a dataset was compiled from 118 common-garden experiments to examine the responses of plant growth, productivity, and crop yield to warming among different ecotypes/genotypes/cultivars. Our results showed that the genetically-based intraspecific responses on average accounted for 34.7 % of the total variance in the warming responses across all the studies but with large variability (2 %-77 %). The intraspecific responses of plant productivity and crop yield were larger than those of organ level traits and biomass allocation, suggesting that plant growth was mainly achieved by iterating the relatively invariant terminal modules (e.g., leaves). The warming-induced changes in intraspecific variability of aboveground biomass were larger in woody plants, non-leguminous herbs, perennial herbs and noncrops than those in nonwoody, leguminous, annual and crop ones, respectively, indicating the potential important role of plant longevity in mediating the change in intraspecific variability. Moreover, larger intraspecific responses reduced the consistence of relative performance between control and warming treatments for both plant productivity and crop yield. These results highlight the unneglectable role of genetically-based intraspecific differences in plant responses to warming, indicating the difficulty of maintaining high crop yield and tree productivity under global climate change, and posing a grave threat to the food security and wood supply in the near future.
Collapse
Affiliation(s)
- Junjiong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Gaobo Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China; Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
3
|
Taseski GM, Keith DA, Dalrymple RL, Cornwell WK. Shifts in fine root traits within and among species along a fine-scale hydrological gradient. ANNALS OF BOTANY 2021; 127:473-481. [PMID: 32966560 PMCID: PMC7988525 DOI: 10.1093/aob/mcaa175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Lessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory? METHODS We sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species. KEY RESULTS Root traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory. CONCLUSIONS One of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.
Collapse
Affiliation(s)
- Guy M Taseski
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - David A Keith
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Rhiannon L Dalrymple
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- For correspondence. E-mail
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Chen D, Liao J, Bearup D, Li Z. Habitat heterogeneity mediates effects of individual variation on spatial species coexistence. Proc Biol Sci 2020; 287:20192436. [PMID: 31964303 PMCID: PMC7015336 DOI: 10.1098/rspb.2019.2436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 11/12/2022] Open
Abstract
Numerous studies have documented the importance of individual variation (IV) in determining the outcome of competition between species. However, little is known about how the interplay between IV and habitat heterogeneity (i.e. variation and spatial autocorrelation in habitat quality) affects species coexistence at the landscape scale. Here, we incorporate habitat heterogeneity into a competition model with IV, in order to explore the mechanism of spatial species coexistence. We find that individual-level variation and habitat heterogeneity interact to promote species coexistence, more obviously at lower dispersal rates. This is in stark contrast to early non-spatial models, which predicted that IV reinforces competitive hierarchies and therefore speeds up species exclusion. In essence, increasing variation in patch quality and/or spatial habitat autocorrelation moderates differences in the competitive ability of species, thereby allowing species to coexist both locally and globally. Overall, our theoretical study offers a mechanistic explanation for emerging empirical evidence that both habitat heterogeneity and IV promote species coexistence and therefore biodiversity maintenance.
Collapse
Affiliation(s)
- Dongdong Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinbao Liao
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Ziyang Road 99, 330022 Nanchang, People's Republic of China
| | - Daniel Bearup
- School of Mathematics, Statistics and Actuarial Sciences, University of Kent, Parkwood Road, Canterbury CT2 7FS, UK
| | - Zhenqing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Zakharova L, Meyer K, Seifan M. Trait-based modelling in ecology: A review of two decades of research. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Brückner A, Schuster R, Wehner K, Heethoff M. Nutritional quality modulates trait variability. Front Zool 2018; 15:50. [PMID: 30534185 PMCID: PMC6282258 DOI: 10.1186/s12983-018-0297-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022] Open
Abstract
Background Trait based functional and community ecology is en vogue. Most studies, however, ignore phenotypical diversity by characterizing entire species considering only trait means rather than their variability. Phenotypical variability may arise from genotypical differences or from ecological factors (e.g., nutritionally imbalanced diet), and these causes can usually not be separated in natural populations. We used a single genotype from a parthenogenetic model system (the oribatid mite Archegozetes longisetosus Aoki) to exclude genotypical differences. We investigated patterns of dietary (10 different food treatments) induced trait variation by measuring the response of nine different traits (relating to life history, morphology or exocrine gland chemistry). Results Nutritional quality (approximated by carbon-to-nitrogen ratios) influenced all trait means and their variation. Some traits were more prone to variation than others. Furthermore, the “threshold elemental ratio”- rule of element stoichiometry applied to phenotypic trait variation. Imbalanced food (i.e. food not able to fully meet the nutritional demands of an animal) led to lower trait mean values, but also to a higher variation of traits. Conclusion Imbalanced food led not only to lower trait value averages, but also to higher trait variability. There was a negative relationship between both parameters, indicating a direct link of both, average trait levels and trait variation to nutritional quality. Hence, variation of trait means may be a predictor for general food quality, and further indicate trade-offs in specific traits an animal must deal with while feeding on imbalanced diets. Electronic supplementary material The online version of this article (10.1186/s12983-018-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrian Brückner
- 1Ecological Networks, Technische Universität Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany.,2Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 USA
| | - Romina Schuster
- 1Ecological Networks, Technische Universität Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
| | - Katja Wehner
- 1Ecological Networks, Technische Universität Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
| | - Michael Heethoff
- 1Ecological Networks, Technische Universität Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Adam N, Kallenbach M, Meldau S, Veit D, van Dam NM, Baldwin IT, Schuman MC. Functional variation in a key defense gene structures herbivore communities and alters plant performance. PLoS One 2018; 13:e0197221. [PMID: 29874269 PMCID: PMC5991399 DOI: 10.1371/journal.pone.0197221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
Plant genetic diversity structures animal communities and affects plant population productivity. However, few studies have investigated which traits are involved and the mechanisms mediating these effects. We studied the consequences of varying the expression of a single biosynthetic gene in jasmonate (JA) defense hormones, which are essential for defense against herbivores but constrain plant growth, in experimental mesocosm populations of wild tobacco (Nicotiana attenuata) plants under attack from three native herbivores. Empoasca leafhoppers preferentially attack JA-deficient N. attenuata plants in nature, and the specialist Tupiocoris notatus mirids avoid Empoasca-damaged plants. However, in experimental mesocosm populations having equal numbers of wild-type (WT) and JA-deficient plants that are silenced in the expression of the biosynthetic gene lipoxygenase 3 (LOX3), Empoasca sp. attacked both genotypes. Empoasca sp. damage, rather than JA, determined T. notatus damage, which was reduced in mixed populations. The growth of specialist Manduca sexta larvae was reduced on WT vs. asLOX3 monocultures, but differed in mixtures depending on caterpillar density. However, seed capsule number remained similar for WT and asLOX3 plants in mixtures, not in monocultures, in two experimental scenarios reflecting high and low caterpillar attack. At high caterpillar density, WT plants growing in mixtures produced more seed capsules than those growing in monocultures while seed production of asLOX3 plants did not differ by population type. However, at low caterpillar density, asLOX3 plants growing in mixed populations produced more seed capsules than those growing in monoculture, while seed capsule production did not differ for WT by population type. Thus, mixed populations had a more stable output of seed capsules under the two scenarios. This may result from a balance between JA-mediated herbivore defense and plant competitive ability in mixed populations.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
8
|
Melián CJ, Baldó F, Matthews B, Vilas C, González-Ortegón E, Drake P, Williams RJ. Individual Trait Variation and Diversity in Food Webs. ADV ECOL RES 2014. [DOI: 10.1016/b978-0-12-801374-8.00006-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Pavoine S, Izsák J. New biodiversity measure that includes consistent interspecific and intraspecific components. Methods Ecol Evol 2013. [DOI: 10.1111/2041-210x.12142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandrine Pavoine
- UMR 7204 CNRS UPMC; Department of Ecology and Biodiversity Management; Museum national d'Histoire naturelle; 55-61 rue Buffon 75005 Paris France
- Mathematical Ecology Research Group; Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS UK
| | - Janos Izsák
- Department of Systematic Zoology and Ecology; Eötvös Loránd University; Pázmány Péter sétány 1/A H-1117 Budapest Hungary
| |
Collapse
|
10
|
Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 2012; 27:689-97. [PMID: 22959162 DOI: 10.1016/j.tree.2012.08.005] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022]
Abstract
The global biodiversity crisis concerns not only unprecedented loss of species within communities, but also related consequences for ecosystem function. Community ecology focuses on patterns of species richness and community composition, whereas ecosystem ecology focuses on fluxes of energy and materials. Food webs provide a quantitative framework to combine these approaches and unify the study of biodiversity and ecosystem function. We summarise the progression of food-web ecology and the challenges in using the food-web approach. We identify five areas of research where these advances can continue, and be applied to global challenges. Finally, we describe what data are needed in the next generation of food-web studies to reconcile the structure and function of biodiversity.
Collapse
|
11
|
Toorop PE, Cuerva RC, Begg GS, Locardi B, Squire GR, Iannetta PPM. Co-adaptation of seed dormancy and flowering time in the arable weed Capsella bursa-pastoris (shepherd's purse). ANNALS OF BOTANY 2012; 109:481-9. [PMID: 22147546 PMCID: PMC3268546 DOI: 10.1093/aob/mcr301] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/03/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd's purse. METHODS Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy. KEY RESULTS Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds. CONCLUSIONS In shepherd's purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields.
Collapse
Affiliation(s)
- Peter E Toorop
- Seed Conservation Department, Royal Botanic Gardens, Kew, Ardingly, West Sussex, UK.
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA. Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 2011; 26:183-92. [PMID: 21367482 PMCID: PMC3088364 DOI: 10.1016/j.tree.2011.01.009] [Citation(s) in RCA: 1266] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/17/2022]
Abstract
Natural populations consist of phenotypically diverse individuals that exhibit variation in their demographic parameters and intra- and inter-specific interactions. Recent experimental work indicates that such variation can have significant ecological effects. However, ecological models typically disregard this variation and focus instead on trait means and total population density. Under what situations is this simplification appropriate? Why might intraspecific variation alter ecological dynamics? In this review we synthesize recent theory and identify six general mechanisms by which trait variation changes the outcome of ecological interactions. These mechanisms include several direct effects of trait variation per se and indirect effects arising from the role of genetic variation in trait evolution.
Collapse
Affiliation(s)
- Daniel I Bolnick
- Howard Hughes Medical Institute, Section of Integrative Biology, University of Texas at Austin, TX 78712, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Worthman CM. Habits of the heart: life history and the developmental neuroendocrinology of emotion. Am J Hum Biol 2009; 21:772-81. [PMID: 19621433 PMCID: PMC3772087 DOI: 10.1002/ajhb.20966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The centrality of emotion in cognition and social intelligence as well as its impact on health has intensified investigation into the causes and consequences of individual variation in emotion regulation. Central processing of experience directly informs regulation of endocrine axes, essentially forming a neuro-endocrine continuum integrating information intake, processing, and physiological and behavioral response. Two major elements of life history-resource allocation and niche partitioning-are served by linking cognitive-affective with physiologic and behavioral processes. Scarce cognitive resources (attention, memory, and time) are allocated under guidance from affective co-processing. Affective-cognitive processing, in turn, regulates physiologic activity through neuro-endocrine outflow and thereby orchestrates energetic resource allocation and trade-offs, both acutely and through time. Reciprocally, peripheral activity (e.g., immunologic, metabolic, or energetic markers) influences affective-cognitive processing. By guiding attention, memory, and behavior, affective-cognitive processing also informs individual stances toward, patterns of activity in, and relationships with the world. As such, it mediates processes of niche partitioning that adaptively exploit social and material resources. Developmental behavioral neurobiology has identified multiple factors that influence the ontogeny of emotion regulation to form affective and behavioral styles. Evidence is reviewed documenting roles for genetic, epigenetic, and experiential factors in the development of emotion regulation, social cognition, and behavior with important implications for understanding mechanisms that underlie life history construction and the sources of differential health. Overall, this dynamic arena for research promises to link the biological bases of life history theory with the psychobehavioral phenomena that figure so centrally in quotidian experience and adaptation, particularly, for humans.
Collapse
Affiliation(s)
- Carol M Worthman
- Department of Anthropology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
15
|
Cianciaruso MV, Silva IA, Batalha MA. Diversidades filogenética e funcional: novas abordagens para a Ecologia de comunidades. BIOTA NEOTROPICA 2009. [DOI: 10.1590/s1676-06032009000300008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Embora a diversidade pareça ser o conceito ecológico mais intuitivo, nenhuma definição consensual foi formulada. As medidas tradicionais de diversidade, que levam em conta apenas o número de espécies e suas contribuições relativas, têm se mostrado estimativas pouco preditivas da estrutura e do funcionamento das comunidades. Medidas de diversidade que incorporem informações sobre as relações filogenéticas das espécies ou suas características funcionais podem ser melhores do que as medidas tradicionais para muitas finalidades. Apresentamos uma pequena revisão das propriedades e aplicações de algumas medidas de diversidade. Enfatizamos aqui duas abordagens recentes e promissoras, as diversidades filogenética e funcional, que têm se mostrado mais sensíveis para detectar respostas das comunidades às mudanças ambientais. Na diversidade filogenética, as relações de parentesco entre as espécies são levadas em conta, enquanto que na diversidade funcional traços que devem ter relações com o funcionamento das comunidades são considerados. Discutimos ainda os desafios e as perspectivas para o uso dessas duas abordagens na ecologia.
Collapse
|
16
|
Cianciaruso MV, Batalha MA, Gaston KJ, Petchey OL. Including intraspecific variability in functional diversity. Ecology 2009; 90:81-9. [PMID: 19294915 DOI: 10.1890/07-1864.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Linking species and ecosystems often relies on approaches that consider how the traits exhibited by species affect ecosystem processes. One method is to estimate functional diversity (FD) based on the dispersion of species in functional trait space. Individuals within a species also differ, however, and an unresolved challenge is how to include such intraspecific variability in a measure of functional diversity. Our solution is to extend an existing measure to variation among individuals within species. Here, simulations demonstrate how the new measure behaves relative to one that does not include individual variation. Individual-level FD was less well associated with species richness than species-level FD in a single trait dimension, because species differed in their intraspecific variation. However, in multiple trait dimensions, there was a strong association between individual- and species-level FD and richness, because many traits result in a tight relationship between functional diversity and species richness. The correlation between the two FD measures weakened as the amount of intraspecific variability increased. Analyzing natural plant communities we found no relationship between species richness and functional diversity. In these analyses, we did not have to specify the source of intraspecific variation. In fact, the variation was only among individuals. The measure can, however, include differences in the amount of intraspecific variation at different sites, as we demonstrate. Including intraspecific variation should allow a more complete understanding of the processes that link individuals and ecosystems and provide better predictions about the consequences of extinctions for ecosystem processes.
Collapse
Affiliation(s)
- M V Cianciaruso
- Department of Botany, Federal University of São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil.
| | | | | | | |
Collapse
|
17
|
Montès N, Maestre FT, Ballini C, Baldy V, Gauquelin T, Planquette M, Greff S, Dupouyet S, Perret JB. On the relative importance of the effects of selection and complementarity as drivers of diversity-productivity relationships in Mediterranean shrublands. OIKOS 2008. [DOI: 10.1111/j.0030-1299.2008.16910.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|