1
|
Singh Aidhen I, Thoti N. Natural Products & Bioactivity Inspired Synthetic Pursuits Interfacing with Carbohydrates: Ongoing Journey with C-Glycosides. CHEM REC 2021; 21:3131-3177. [PMID: 34714570 DOI: 10.1002/tcr.202100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Natural products, remains the most important source for the discovery of new drugs for the treatment of human diseases. This has inspired the synthetic community to design and develop mimics of natural products either to answer important questions in biology or to explore their therapeutic potentials. Glycosides present themselves abundantly in nature, right from the cell surface receptors to natural products of any origin. The O-Glycosides are hydrolytically less stable compared to C-glycosides and this feature has presented a great opportunity for drug discovery. The discovery of Dapagliflozin, an SGLT inhibitor and C-glucoside, for the treatment of diabetes is one such example. Aryl acyl-anion chemistry has been explored for the synthesis of 2-deoxy-C-aryl furanoside/pyranoside/septanosides. Besides success, the studies have provided valuable insight into the natural propensities of the architectural framework for the cascade to furan derivatives. The aryl acyl-anion chemistry has also enabled the synthesis of biologically active diaryl heptanoids. Inspired from sucesss of Dapagliflozin, new analogues have been synthesized with pyridine and isocoumarin heterocycle as the proximal ring. C-glucosides of isoliquiritigenin have been synthesized for the first time and evaluated as an efficient aldose reductase inhibitor. The synthesis and evaluation of acyl-C-β-D-glucosides and benzyl-C-β-D-glucoside as glucose-uptake promoters has revealed promise in small molecules. The concept of building blocks has been used to obtain natural oxylipins, D-xylo and L-xylo-configured alkane tetrols and novel lipophilic ketones with erythro/threo configured trihydroxy polar head-group as possible anti-mycobacterial agents.
Collapse
Affiliation(s)
- Indrapal Singh Aidhen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Naveenkumar Thoti
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
2
|
Hussain H, Mamadalieva NZ, Ali I, Elizbit, Green IR, Wang D, Zou L, Simal-Gandara J, Cao H, Xiao J. Fungal glycosides: Structure and biological function. Trends Food Sci Technol 2021; 110:611-651. [DOI: 10.1016/j.tifs.2021.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Mu Y, Zhang T, Cheng Y, Fu W, Wei Z, Chen W, Liu G. Efficient synthesis of tetrahydrofurans with chiral tertiary allylic alcohols catalyzed by Ni/P-chiral ligand DI-BIDIME. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02470h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efficient nickel-catalyzed stereoselective asymmetric intramolecular reductive cyclization of O-alkynones with P-chiral bisphosphorus ligand DI-BIDIME is reported.
Collapse
Affiliation(s)
- Yu Mu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Tao Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Yaping Cheng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Wenzhen Fu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Zuting Wei
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Wanjun Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| |
Collapse
|
4
|
V. Andreev M, Potapov VA, Musalov MV, Amosova SV. ( Z, Z)-Selanediylbis(2-propenamides): Novel Class of Organoselenium Compounds with High Glutathione Peroxidase-Like Activity. Regio- and Stereoselective Reaction of Sodium Selenide with 3-Trimethylsilyl-2-propynamides. Molecules 2020; 25:E5940. [PMID: 33333920 PMCID: PMC7765452 DOI: 10.3390/molecules25245940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022] Open
Abstract
The efficient regio- and stereoselective synthesis of (Z,Z)-3,3'-selanediylbis(2-propenamides) in 76-93% yields was developed based on the reaction of sodium selenide with 3-trimethylsilyl-2-propynamides. (Z,Z)-3,3'-Selanediylbis(2-propenamides) are a novel class of organoselenium compounds. To date, not a single representative of 3,3'-selanediylbis(2-propenamides) has been described in the literature. Studying glutathione peroxidase-like properties by a model reaction showed that the activity of the obtained products significantly varies depending on the organic moieties in the amide group. Divinyl selenide, which contains two lipophilic cyclohexyl substituents in the amide group, exhibits very high glutathione peroxidase-like activity and this compound is considerably superior to other products in this respect.
Collapse
Affiliation(s)
| | - Vladimir A. Potapov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of The Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia; (M.V.A.); (M.V.M.); (S.V.A.)
| | | | | |
Collapse
|
5
|
Tiara K, Potopnyk MA, Świder P, Jarosz S. Stereocontrolled Debenzylative Cycloetherification Reaction as a Route to Enantiopure C-Furanosides with Amino Substituents in the Side Chain. J Org Chem 2020; 85:3517-3526. [PMID: 31970981 PMCID: PMC7497649 DOI: 10.1021/acs.joc.9b03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A highly
efficient methodology of the preparation of synthetically
important tetrahydrofuran derivatives with an amino substituent in
the side chain is reported. This process is based on the stereocontrolled
debenzylative cycloetherification (DBCE) reaction applied for chirons
from the d-gluco- and d-manno-series and provides derivatives with new stereogenic
centers. The influence of the electron-withdrawing group (EWG), present
in the acyclic substrates with the mesyl leaving group, on the reactivity
in the DBCE reaction was investigated both “in the flask”
and by density functional theory (DFT) calculations. It was demonstrated
that tetrahydrofuran derivatives with the benzoxime group (EWG = CHNOBn)
are very good candidates for the subsequent highly stereoselective
Grignard reaction.
Collapse
Affiliation(s)
- Karolina Tiara
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mykhaylo A Potopnyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Paweł Świder
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sławomir Jarosz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Aksamentova TN, Chipanina NN, Andreev MV, Sterkhova IV, Pavlov DV, Medvedeva AS. Molecular structure of β-oxy-bis-acrylamides on the pathway of the dimers formation. DFT and FTIR study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Kgk D, Kumari S, G S, Malla RR. Marine natural compound cyclo(L-leucyl-L-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling. Chem Biol Interact 2019; 315:108872. [PMID: 31669320 DOI: 10.1016/j.cbi.2019.108872] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Cyclo (L-Leucyl-L-Prolyl) peptide/CLP is a marine natural metabolite and well recognized as an antimicrobial and antioxidant agent with limited studies on anticancer activity. The current study aims to determine the effect of CLP on migration and growth of triple negative breast cancer cell lines. The anti-growth potential was evaluated by MTT, BrdU and TUNEL assays; DNA damage by γH2AX and Dead green assays; antimigration activity by Boyden chamber invasion and wound healing assays. Interaction of CLP with CD151 was resolved by PatchDock. Effect of CLP on the expression of transmembrane CD151 was evaluated by cell-based ELISA assay. The interaction between CD151 and EGFR was predicted by using FireDoc Web server. Impact of CLP on the interaction of CD151 with EGFR was evaluated by co-immunoprecipitation assay. The effect of CLP on the cell cycle and its controlling proteins was determined by Western blotting. CLP reduced the viability of MDA-MB-231 and MDA-MB-468 TNBC cell lines but not human breast healthy epithelial cell line (MCF-12A) similar to eribulin, standard. CLP also inhibited proliferation; cell cycle and migration. It induced DNA strand breaks, DNA damage, and cell death. It showed the most favorable interactions with CD151 in in silico docking and significantly reduced the expression of membrane-bound CD151 proteins. FireDoc Web study predicted the association between CD151 and EGFR with -29.13 kcal/mol of binding energy. CLP reduced the interaction of CD151 with EGFR along with the expression of cyclin D, CDK4, PAK, RAC1, and P27kiP1. This study concludes that CLP suppresses growth and migration by attenuating cell cycle of TNBC cell lines via EGFR and CD151 signaling. Thus, exploring the EGFR and CD151 signaling pathway targeted by CLP may provide a new approach in the treatment of TNBC.
Collapse
Affiliation(s)
- Deepak Kgk
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Shailender G
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
8
|
Dembitsky VM, Levitsky DO, Gloriozova TA, Poroikov VV. Acetylenic Aquatic Anticancer Agents and Related Compounds. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although acetylenes are common as components of terrestrial plants, it is only within the last 30 years that biologically active polyacetylenes having unusual structural features have been reported from aquatic organisms: cyanobacteria, algae, fungi, invertebrates, and other sources. Naturally occurring aquatic acetylenes are of particular interest since many of them display important biological activities and possess antitumor, antibacterial, antimicrobial, antifouling, antifungal, pesticidal, phototoxic, HIV inhibitory, and immuno-suppressive properties. There is no doubt that they are of great interest, especially for the medicinal and/or pharmaceutical industries. This review presents structures and describes cytotoxic and anticancer activities of more than 230 acetylenic metabolites isolated from aquatic organisms. With the computer program PASS some additional biological activities are also predicted, which point toward possible new applications of these compounds. This review emphasizes the role of aquatic acetylenic compounds as an important source of leads for drug discovery.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dmitri O Levitsky
- CNRS UMR 6204, Biotechnologie, Biocatalyse et Biorégulation, Faculté des Sciences et des Techniques, Université de Nantes, P.O. Box 92208, 44322 Nantes Cedex 3, France
| | - Tatyana A Gloriozova
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow 119121, Russia
| | - Vladimir V Poroikov
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow 119121, Russia
| |
Collapse
|
9
|
Kamizela A, Gawdzik B, Urbaniak M, Lechowicz Ł, Białońska A, Gonciarz W, Chmiela M. Synthesis, Characterization, Cytotoxicity, and Antibacterial Properties of trans-γ-Halo-δ-lactones. ChemistryOpen 2018; 7:543-550. [PMID: 30038879 PMCID: PMC6055027 DOI: 10.1002/open.201800110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 11/24/2022] Open
Abstract
A new four-step pathway for the synthesis of γ-halo-δ-lactones is described from simple, commercially available substrates: aryl bromides and 3-methyl crotonaldehyde. The halogenolactonization reaction of β,δ-substituted, γ,δ-unsaturated carboxylic acid 4 a-c is regio- and stereoselective and gives only the trans-isomers of lactones 5 a-c, 6 a-c, and 7 a-c. The structures of all synthesized compounds were confirmed by using spectroscopic methods. For bromolactone, containing a naphthyl moiety in the structure, crystallographic analysis was also performed. The lactones were tested for their cytotoxic activity against L929 cell lines (mouse fibroblasts) and antibacterial activity against Escherichia coli strains ATCC 8739 and Staphylococcus aureus ATCC 65389. Compounds 5 a, 5 c, 7 a, and 7 b statistically significantly inhibited the metabolic activity of mouse fibroblasts L929. Compounds 5 b and 6 a were not cytotoxic towards L929 cells, but showed moderate bactericidal properties.
Collapse
Affiliation(s)
- Angelika Kamizela
- Institute of ChemistryJan Kochanowski UniversityŚwiętokrzyska 15 G25–406KielcePoland
| | - Barbara Gawdzik
- Institute of ChemistryJan Kochanowski UniversityŚwiętokrzyska 15 G25–406KielcePoland
| | - Mariusz Urbaniak
- Institute of ChemistryJan Kochanowski UniversityŚwiętokrzyska 15 G25–406KielcePoland
| | - Łukasz Lechowicz
- Institute of BiologyJan Kochanowski UniversityŚwiętokrzyska 15 G25–406KielcePoland
| | - Agata Białońska
- Department of ChemistryUniversity of WroclawF. Joliot-Curie 1450–383WrocławPoland
| | - Weronika Gonciarz
- Dept. of Immunology and Infectious BiologyUniversity of LódzBanacha 12/1690–237ŁódźPoland
| | - Magdalena Chmiela
- Dept. of Immunology and Infectious BiologyUniversity of LódzBanacha 12/1690–237ŁódźPoland
| |
Collapse
|
10
|
Sánchez-Eleuterio A, García-Santos WH, Díaz-Salazar H, Hernández-Rodríguez M, Cordero-Vargas A. Stereocontrolled Nucleophilic Addition to Five-Membered Oxocarbenium Ions Directed by the Protecting Groups. Application to the Total Synthesis of (+)-Varitriol and of Two Diastereoisomers Thereof. J Org Chem 2017; 82:8464-8475. [DOI: 10.1021/acs.joc.7b01211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alma Sánchez-Eleuterio
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán C.P. 04510, México City, México
| | - William H. García-Santos
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán C.P. 04510, México City, México
| | - Howard Díaz-Salazar
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán C.P. 04510, México City, México
| | - Marcos Hernández-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán C.P. 04510, México City, México
| | - Alejandro Cordero-Vargas
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán C.P. 04510, México City, México
| |
Collapse
|
11
|
Singh P, Singh RS, Rani A, Bast F. Homology modeling of chemokine CCR7, molecular docking, and in vitro studies evidenced plausible immunotherapeutic anticancer natural compounds. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1647-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Ruocco N, Costantini S, Costantini M. Blue-Print Autophagy: Potential for Cancer Treatment. Mar Drugs 2016; 14:md14070138. [PMID: 27455284 PMCID: PMC4962028 DOI: 10.3390/md14070138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023] Open
Abstract
The marine environment represents a very rich source of biologically active compounds with pharmacological applications. This is due to its chemical richness, which is claiming considerable attention from the health science communities. In this review we give a general overview on the marine natural products involved in stimulation and inhibition of autophagy (a type of programmed cell death) linked to pharmacological and pathological conditions. Autophagy represents a complex multistep cellular process, wherein a double membrane vesicle (the autophagosome) captures organelles and proteins and delivers them to the lysosome. This natural and destructive mechanism allows the cells to degrade and recycle its cellular components, such as amino acids, monosaccharides, and lipids. Autophagy is an important mechanism used by cells to clear pathogenic organism and deal with stresses. Therefore, it has also been implicated in several diseases, predominantly in cancer. In fact, pharmacological stimulation or inhibition of autophagy have been proposed as approaches to develop new therapeutic treatments of cancers. In conclusion, this blue-print autophagy (so defined because it is induced and/or inhibited by marine natural products) represents a new strategy for the future of biomedicine and of biotechnology in cancer treatment.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy.
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80131 Napoli, Italy.
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
13
|
Long S, Sousa E, Kijjoa A, Pinto MMM. Marine Natural Products as Models to Circumvent Multidrug Resistance. Molecules 2016; 21:molecules21070892. [PMID: 27399665 PMCID: PMC6273648 DOI: 10.3390/molecules21070892] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 02/01/2023] Open
Abstract
Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.
Collapse
Affiliation(s)
- Solida Long
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto 4050-123, Portugal.
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto 4050-123, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-123, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto 4050-123, Portugal.
| |
Collapse
|
14
|
Yao R, Han Z, Wang M, Chen S, Wang C, Han B. Extract from Arca granosa L. Inhibits Proliferation of Human Tumour Cell Lines with Kidney and Lung Origin. J Int Med Res 2016; 34:355-61. [PMID: 16989490 DOI: 10.1177/147323000603400403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Marine organisms are being considered increasingly as sources of anti-tumour agents. The extract from Arca granosa L. has been shown to decrease the growth of tumours and this study was undertaken to determine its ability and mechanism of inhibition. The extract inhibited the proliferation of six human tumour cell lines from different origins with varying sensitivity. The cell lines Ketr-3, A549 and NCI-H460 with kidney or lung origins were more sensitive to the extract than those of the HepG-2, MCF-7 and MGC-803 cells from other origins. In the three sensitive cell lines (Ketr-3, A549 and NCI-H460) the extract was shown to block different phases of the cell cycle progression and inhibit DNA synthesis in a concentration-dependent manner. It was concluded that the extract from A. granosa is potentially a novel anti-tumour agent, especially on kidney and lung tumour cell lines.
Collapse
Affiliation(s)
- R Yao
- Department of Life Science and Technology, Ocean University of China, China
| | | | | | | | | | | |
Collapse
|
15
|
Gomes NGM, Dasari R, Chandra S, Kiss R, Kornienko A. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem". Mar Drugs 2016; 14:E98. [PMID: 27213412 PMCID: PMC4882572 DOI: 10.3390/md14050098] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal.
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Sunena Chandra
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, CP205/1, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
16
|
Koszelewski D, Brodzka A, Żądło A, Paprocki D, Trzepizur D, Zysk M, Ostaszewski R. Dynamic Kinetic Resolution of 3-Aryl-4-pentenoic Acids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Żądło
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Daniel Paprocki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Damian Trzepizur
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Małgorzata Zysk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
17
|
Singh P, Bast F. Screening of multi-targeted natural compounds for receptor tyrosine kinases inhibitors and biological evaluation on cancer cell lines, in silico and in vitro. Med Oncol 2015; 32:233. [PMID: 26298529 DOI: 10.1007/s12032-015-0678-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Abstract
Receptors for growth factors encompass within the superfamily of receptor tyrosine kinases and are known to regulate numerous biological processes including cellular growth, proliferation, metabolism, survival, cell differentiation and apoptosis. These receptors have recently caught the attention of the researchers as an attractive target to combat cancer owing to the evidence suggesting their over-expression in cancer cells. Therefore, we studied receptor-based molecular docking of IR (PDB; 3ETA), IGF1R (PDB; 1K3A), EGFR (PDB; 1M17), VEGFIR (PDB; 3HNG), and VEGFIIR (PDB; 2OH4) against natural compounds. Further, in vitro investigation of the biological effect of lead molecules in an array of cancer cell lines was done. All selected natural compounds were docked with the X-ray crystal structure of selected protein by employing GLIDE (Grid-based Ligand Docking with Energetics) Maestro 9.6. InterBioScreen natural compounds docked with each selected protein molecules by using GLIDE high throughput virtual screening. On the basis of Gscore, we select 20 compounds along with 68 anticancer compounds for GLIDE extra precision molecular docking. It was discovered in this study that compound epigallocatechin gallate (EGCG) yielded magnificent Gscore with IGF1R (PDB; 1K3A) and VEGFIIR (PDB; 2OH4), and protein-ligand interactions are chart out. Effect of EGCG on biological activity such as mRNA expression of selected protein, cell proliferation, oxidative stress, and cell migration was reported after the 48 h treatments in cancer cell lines. The RT-PCR densitometric bands analysis showed that compound EGCG reduced the mRNA expression of IGF1R, VEGFIIR, and mTOR at 80 μM concentration. Moreover, EGCG significantly reduced cell proliferation and ROS generation after 48 h treatments. Our result also indicated a reduction in the potential for cell migration that might show in vivo anti-metastasis activity of EGCG.
Collapse
Affiliation(s)
- Pushpendra Singh
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, Punjab, India
| | | |
Collapse
|
18
|
Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 2015; 13:202-21. [PMID: 25574736 PMCID: PMC4306932 DOI: 10.3390/md13010202] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/22/2014] [Indexed: 01/08/2023] Open
Abstract
Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development.
Collapse
|
19
|
Martins MAP, Frizzo CP, Tier AZ, Moreira DN, Zanatta N, Bonacorso HG. Update 1 of: Ionic Liquids in Heterocyclic Synthesis. Chem Rev 2014; 114:PR1-70. [DOI: 10.1021/cr500106x] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marcos A. P. Martins
- Núcleo de Química
de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| | - Clarissa P. Frizzo
- Núcleo de Química
de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| | - Aniele Z. Tier
- Núcleo de Química
de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| | - Dayse N. Moreira
- Núcleo de Química
de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| | - Nilo Zanatta
- Núcleo de Química
de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| | - Helio G. Bonacorso
- Núcleo de Química
de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| |
Collapse
|
20
|
Bansal R, Acharya PC. Man-Made Cytotoxic Steroids: Exemplary Agents for Cancer Therapy. Chem Rev 2014; 114:6986-7005. [DOI: 10.1021/cr4002935] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical
Sciences, Panjab University, Chandigarh-160014, India
| | - Pratap Chandra Acharya
- University Institute of Pharmaceutical
Sciences, Panjab University, Chandigarh-160014, India
| |
Collapse
|
21
|
Mahadevegowda SH, Khan FA. Synthesis of the tetrahydrofuran unit of varitriol and γ-butyrolactones from 5-oxabicyclo[2.1.1]hexane derivative via oxidative cleavage reactions. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Gładkowski W, Skrobiszewski A, Mazur M, Siepka M, Pawlak A, Obmińska-Mrukowicz B, Białońska A, Poradowski D, Drynda A, Urbaniak M. Synthesis and anticancer activity of novel halolactones with β-aryl substituents from simple aromatic aldehydes. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.09.094] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Wzorek A, Gawdzik B, Gładkowski W, Urbaniak M, Barańska A, Malińska M, Woźniak K, Kempińska K, Wietrzyk J. Synthesis, characterization and antiproliferative activity of β-aryl-δ-iodo-γ-lactones. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Sudhakar G, Raghavaiah J. Total Synthesis of Varitriol, Varioxirane, and Enantiomer of the Proposed Biosynthetic Precursor. J Org Chem 2013; 78:8840-6. [DOI: 10.1021/jo4011766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Gangarajula Sudhakar
- Division
of CPC (Organic
Chemistry-II), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Jakka Raghavaiah
- Division
of CPC (Organic
Chemistry-II), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
25
|
Vamshikrishna K, Srihari P. A conventional approach to the total synthesis of (−)-varitriol. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
|
27
|
Sun T, Deutsch C, Krause N. Combined coinage metal catalysis in natural product synthesis: total synthesis of (+)-varitriol and seven analogs. Org Biomol Chem 2012; 10:5965-70. [DOI: 10.1039/c2ob25069a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Efficacy of albendazole combined with a marine fungal extract (m2-9) against Angiostrongylus cantonensis-induced meningitis in mice. J Helminthol 2011; 86:410-7. [PMID: 22050968 DOI: 10.1017/s0022149x11000630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pathogenesis of angiostrongyliasis, resulting from Angiostrongylus cantonensis invasion of the human central nervous system, remains elusive. Anthelmintics are usually used to kill worms, although dead worms in the brain may cause severe inflammation which will lead to central nervous system damage. Therefore, combination therapy with anthelmintics and anti-inflammatory drugs in the treatment of human angiostrongyliasis needs further study. To evaluate the efficacy of albendazole combined with a marine fungal extract (m2-9) in A. cantonensis infection, BALB/c mice infected by the third-stage larvae of A. cantonensis were divided into three groups: mice treated with albendazole or m2-9 alone or in combination from day 5 post-inoculation (PI). Several efficacy parameters were recorded, including weight change, worm recovery, neurological function, behavioural analysis, eosinophil and leucocyte counts. The results showed that combination therapy increased body weight, reduced worm burden, improved learning ability, memory and action, decreased neurological dysfunction and leucocyte response in these mice. The combination of albendazole and m2-9 treatment significantly decreased leucocyte response and increased the frequency of rearing, compared to infected mice treated with either drug alone. Therefore, m2-9 is a natural product with potentially significant therapeutic value for angiostrongyliasis and is worthy of further study.
Collapse
|
29
|
Rocha J, Peixe L, Gomes NC, Calado R. Cnidarians as a source of new marine bioactive compounds--an overview of the last decade and future steps for bioprospecting. Mar Drugs 2011; 9:1860-1886. [PMID: 22073000 PMCID: PMC3210609 DOI: 10.3390/md9101860] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022] Open
Abstract
Marine invertebrates are rich sources of bioactive compounds and their biotechnological potential attracts scientific and economic interest worldwide. Although sponges are the foremost providers of marine bioactive compounds, cnidarians are also being studied with promising results. This diverse group of marine invertebrates includes over 11,000 species, 7500 of them belonging to the class Anthozoa. We present an overview of some of the most promising marine bioactive compounds from a therapeutic point of view isolated from cnidarians in the first decade of the 21st century. Anthozoan orders Alcyonacea and Gorgonacea exhibit by far the highest number of species yielding promising compounds. Antitumor activity has been the major area of interest in the screening of cnidarian compounds, the most promising ones being terpenoids (monoterpenoids, diterpenoids, sesquiterpenoids). We also discuss the future of bioprospecting for new marine bioactive compounds produced by cnidarians.
Collapse
Affiliation(s)
- Joana Rocha
- Instituto de Ciencias Biomedicas Abel Salazar, Universidade do Porto, Largo Professor Abel Salazar no. 2, 4099-003 Porto, Portugal
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal; E-Mail:
| | - Luisa Peixe
- REQUIMTE, Laboratorio de Microbiologia, Faculdade de Farmacia, Universidade do Porto, Rua Anibal Cunha no. 164, 4050-047 Porto, Portugal; E-Mail:
| | - Newton C.M. Gomes
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal; E-Mail:
| | - Ricardo Calado
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal; E-Mail:
| |
Collapse
|
30
|
Herpandi NH, Rosma A, Wan Nadiah W. The Tuna Fishing Industry: A New Outlook on Fish Protein Hydrolysates. Compr Rev Food Sci Food Saf 2011. [DOI: 10.1111/j.1541-4337.2011.00155.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Fusetani N. Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:191-222. [PMID: 20826228 PMCID: PMC7110230 DOI: 10.1016/j.cbpc.2010.08.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 11/23/2022]
Abstract
The peer-reviewed marine pharmacology literature in 2007-8 is covered in this review, which follows a similar format to the previous 1998-2006 reviews of this series. The preclinical pharmacology of structurally characterized marine compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 74 marine natural products. Additionally, 59 marine compounds were reported to affect the cardiovascular, immune and nervous systems as well as to possess anti-inflammatory effects. Finally, 65 marine metabolites were shown to bind to a variety of receptors and miscellaneous molecular targets, and thus upon further completion of mechanism of action studies, will contribute to several pharmacological classes. Marine pharmacology research during 2007-8 remained a global enterprise, with researchers from 26 countries, and the United States, contributing to the preclinical pharmacology of 197 marine compounds which are part of the preclinical marine pharmaceuticals pipeline. Sustained preclinical research with marine natural products demonstrating novel pharmacological activities, will probably result in the expansion of the current marine pharmaceutical clinical pipeline, which currently consists of 13 marine natural products, analogs or derivatives targeting a limited number of disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | | | | | | |
Collapse
|
32
|
López JC, Plumet J. Metathesis Reactions of Carbohydrates: Recent Highlights in Alkyne Metathesis. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001518] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- J. Cristóbal López
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Joaquín Plumet
- Universidad Complutense, Facultad de Química, Departamento de Química Orgánica, Ciudad Universitaria s/n, 28040 Madrid, Spain, Fax: +34‐91‐394‐4103
| |
Collapse
|
33
|
Elkin GJ, Rojas JJ, Martínez A. Pharmacological Developments Obtained from Marine Natural Products and Current Pipeline Perspective. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Marine organisms represent a new extensive source for bioactive molecules. They have the potential to provide new therapeutic alternatives to treat human diseases. In this paper, we describe and discuss a variety of isolated and semisynthetic molecules obtained from marine sources. These compounds are in phase II, phase III and at the commercialization stage of new drug development. A description of the mechanism of action, dosage used and side effects are also reported. The positive results obtained from these studies have triggered the development of new studies to evaluate the prospects for utilization of marine organisms.
Collapse
Affiliation(s)
- Galeano J. Elkin
- Marine Natural Products Research Group, School of Pharmaceutical Chemistry, The University of Antioquia Medellin, Colombia
| | - Jhon J. Rojas
- School of Pharmaceutical Chemistry, University of Antioquia, Medellin, Colombia
| | - Alejandro Martínez
- Marine Natural Products Research Group, School of Pharmaceutical Chemistry, The University of Antioquia Medellin, Colombia
| |
Collapse
|
34
|
Ghosal P, Sharma D, Kumar B, Meena S, Sinha S, Shaw AK. Diastereoselective one-pot Wittig olefination–Michael addition and olefin cross metathesis strategy for total synthesis of cytotoxic natural product (+)-varitriol and its higher analogues. Org Biomol Chem 2011; 9:7372-83. [DOI: 10.1039/c1ob06039b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
|
36
|
Kang B, Chang S, Decker S, Britton R. Regioselective and stereoselective cyclizations of chloropolyols in water: rapid synthesis of hydroxytetrahydrofurans. Org Lett 2010; 12:1716-9. [PMID: 20297827 DOI: 10.1021/ol100260z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A concise, stereoselective synthesis of functionalized tetrahydrofuranols has been developed that involves heating readily available chloropolyols in water. These reactions are operationally straightforward and chemoselective for the formation of tetrahydrofurans, obviating the need for complicated protecting group strategies. The efficiency of this process is demonstrated in a short asymmetric synthesis of the natural product (+)-goniothalesdiol.
Collapse
Affiliation(s)
- Baldip Kang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | |
Collapse
|
37
|
Palík M, Karlubíková O, Lackovičová D, Lásiková A, Gracza T. Formal synthesis of (+)-varitriol. Application of Pd(II)/Cu(II)-catalysed bicyclisation of unsaturated polyols. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.04.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Synthesis of two marine farnesylacetones that dilate the basilar arteries of rabbits. Bioorg Med Chem Lett 2010; 20:4206-9. [DOI: 10.1016/j.bmcl.2010.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/08/2010] [Accepted: 05/12/2010] [Indexed: 11/21/2022]
|
39
|
Ghosh S, Pradhan TK. Stereoselective total synthesis of (+)-varitriol, (-)-varitriol, 5'-epi-(+)-varitriol, and 4'-epi-(-)-varitriol from D-mannitol. J Org Chem 2010; 75:2107-10. [PMID: 20180524 DOI: 10.1021/jo100001p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stereoselective total syntheses of natural (+)-varitriol (1), (-)-varitriol (2), 5'-epi-(+)-varitriol (3), and 4'-epi-(-)-varitriol (4) have been accomplished with use of D-mannitol as a chiral pool material. The Heck reaction was used to assemble the olefinic sugar moiety and the aromatic triflate moiety.
Collapse
Affiliation(s)
- Subhash Ghosh
- Indian Institute of Chemical Technology, Hyderabad 500607, India.
| | | |
Collapse
|
40
|
Senthilmurugan A, Aidhen IS. Synthesis of (+)-Varitriol Analogues via Novel and Versatile Building Blocks Based on Julia Olefination. European J Org Chem 2010. [DOI: 10.1002/ejoc.200901012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Corminboeuf O, Overman LE, Pennington LD. A unified strategy for enantioselective total synthesis of cladiellin and briarellin diterpenes: total synthesis of briarellins E and F and the putative structure of alcyonin and revision of its structure assignment. J Org Chem 2009; 74:5458-70. [PMID: 19534538 PMCID: PMC2744073 DOI: 10.1021/jo9010156] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enantioselective total syntheses of briarellin E (12) and briarellin F (13), as well as the structure originally proposed for the cladiellin diterpene alcyonin (10), have been realized. Comparison of the spectral data for synthetic 10, natural alcyonin, cladiellisin (33), and cladiellaperoxide (34), as well as chemical transformations of 10 and natural alcyonin, suggest that the structure of this coral metabolite is allylic peroxide 11. The unified approach detailed herein can be used to access both C4-deoxygenated and C4-oxygenated cladiellins and briarellins. The central step in these syntheses is acid-promoted condensation of (Z)-alpha,beta-unsaturated aldehydes 17 with cyclohexadienyl diols 18 to form intermediates 16 incorporating the hexahydroisobenzofuran core and five stereocenters of these marine diterpenes (Scheme 1 ).
Collapse
Affiliation(s)
| | - Larry E. Overman
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025
| | | |
Collapse
|
42
|
Herold CI, Marcom PK. Primary Systemic Therapy in Breast Cancer: Past Lessons and New Approaches. Cancer Invest 2009; 26:1052-9. [DOI: 10.1080/07357900802123260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Glaser KB, Mayer AMS. A renaissance in marine pharmacology: from preclinical curiosity to clinical reality. Biochem Pharmacol 2009; 78:440-8. [PMID: 19393227 DOI: 10.1016/j.bcp.2009.04.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/07/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Marine pharmacology, the pharmacology of marine natural products, has been for some time more associated with marine natural products chemistry rather than mainstay pharmacology. However, in recent years a renaissance has occurred in this area of research, and has seen the US Food & Drug Administration (FDA) approval in 2004 of Prialt (ziconotide, omega-conotoxin MVIIA) the synthetic equivalent of a conopeptide found in marine snails, used for the management of severe chronic pain. Furthermore Yondelis) (trabectedin, ET-743) an antitumor agent scovered in a marine colonial tunicate, and now produced synthetically, receiving Orphan Drug designation from the European Commission (EC) and FDA for soft tissue sarcomas and ovarian cancer and its registration in 2007 in the EU for the treatment of soft tissue sarcoma. The approval/marketing of so few marine natural products has come after many years of research primarily by the academic community and the sporadic involvement of major pharmaceutical companies. This commentary, through the opinions provided by several leaders in the marine natural products field, will examine the potential reasons and perceptions from both the academic and pharmaceutical communities regarding the development of marine natural products as viable therapeutic entities.
Collapse
Affiliation(s)
- Keith B Glaser
- Cancer Research R47J-AP9, Abbott Laboratories, Abbott Park, IL 60064-6121, USA.
| | | |
Collapse
|
44
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT. Marine pharmacology in 2005-6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim Biophys Acta Gen Subj 2009; 1790:283-308. [PMID: 19303911 DOI: 10.1016/j.bbagen.2009.03.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/09/2009] [Accepted: 03/12/2009] [Indexed: 01/03/2023]
Abstract
BACKGROUND The review presents the 2005-2006 peer-reviewed marine pharmacology literature, and follows a similar format to the authors' 1998-2004 reviews. The preclinical pharmacology of chemically characterized marine compounds isolated from marine animals, algae, fungi and bacteria is systematically presented. RESULTS Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 marine compounds were reported to affect the cardiovascular, immune and nervous system as well as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. CONCLUSIONS Marine pharmacology research during 2005-2006 was truly global in nature, involving investigators from 32 countries, and the United States, and contributed 183 marine chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents. GENERAL SIGNIFICANCE Continued preclinical and clinical research with marine natural products demonstrating a broad spectrum of pharmacological activity will probably result in novel therapeutic agents for the treatment of multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | | | | | | |
Collapse
|
45
|
Palík M, Karlubíková O, Lásiková A, Kožíšek J, Gracza T. Total Synthesis of (+)-Varitriol. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Shaari K, Ling KC, Rashid ZM, Jean TP, Abas F, Raof SM, Zainal Z, Lajis NH, Mohamad H, Ali AM. Cytotoxic aaptamines from Malaysian Aaptos aaptos. Mar Drugs 2008; 7:1-8. [PMID: 19370166 PMCID: PMC2666884 DOI: 10.3390/md7010001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/12/2008] [Accepted: 12/12/2008] [Indexed: 11/16/2022] Open
Abstract
In a preliminary screen, Aaptos aaptos showed significant cytotoxic activity towards a panel of cell lines and was thus subjected to bioassay-guided isolation of the bioactive constituents. In addition to the known aaptamine, two new derivatives of the alkaloid were isolated from the bioactive chloroform fraction of the crude methanolic extract. Detailed analysis by NMR and mass spectroscopy enabled their identification to be 3-(phenethylamino)demethyl(oxy)aaptamine and 3-(isopentylamino)demethyl(oxy) aaptamine. The cytotoxic activities of the three alkaloids were further evaluated against CEM-SS cells.
Collapse
Affiliation(s)
- Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Park BG, Kwon SC, Park GM, Ham J, Shin WS, Lee S. Vasodilatation effect of farnesylacetones, active constituents of Sargassum siliquastrum, on the basilar and carotid arteries of rabbits. Bioorg Med Chem Lett 2008; 18:6324-6. [PMID: 19006667 DOI: 10.1016/j.bmcl.2008.10.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/17/2008] [Accepted: 10/24/2008] [Indexed: 11/18/2022]
Abstract
Two farnesylacetones, 311 and 312, major active constituents of Sargassum siliquastrum collected from the coast of the East Sea in Korea, showed a moderate vasodilatation effect on the basilar arteries of rabbits. Therefore, treatment with farnesylacetones 311 and 312 may selectively accelerate cerebral blood flow through dilatation of the basilar artery.
Collapse
Affiliation(s)
- Byong-Gon Park
- Department of Physiology, Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
48
|
Canals D, Mormeneo D, Fabriàs G, Llebaria A, Casas J, Delgado A. Synthesis and biological properties of Pachastrissamine (jaspine B) and diastereoisomeric jaspines. Bioorg Med Chem 2008; 17:235-41. [PMID: 19056278 DOI: 10.1016/j.bmc.2008.11.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/30/2008] [Accepted: 11/03/2008] [Indexed: 12/27/2022]
Abstract
The synthesis of isomeric jaspines (anhydro phytosphingosines), arising from intramolecular cyclization of the corresponding phytosphingosines with different configurations at C3 and C4 positions of the sphingoid backbone, is reported. Natural jaspine B is the most cytotoxic isomer on A549 cells and it induces cell death in a dose-dependent manner. The cytotoxicity of jaspine B has been correlated with a significant increase of intracellular dihydroceramides, which seem to play an active role in autophagy.
Collapse
Affiliation(s)
- Daniel Canals
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC-C.S.I.C), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Vikas Kumar
- Division of Medicinal and Process Chemistry, Central Drug Research Institute (CDRI), Lucknow 226 001, India
| | - Arun K. Shaw
- Division of Medicinal and Process Chemistry, Central Drug Research Institute (CDRI), Lucknow 226 001, India
| |
Collapse
|
50
|
Mayer AMS, Gustafson KR. Marine pharmacology in 2005-2006: antitumour and cytotoxic compounds. Eur J Cancer 2008; 44:2357-87. [PMID: 18701274 DOI: 10.1016/j.ejca.2008.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023]
Abstract
During 2005 and 2006, marine pharmacology research directed towards the discovery and development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine natural products, many of which are novel compounds that belong to diverse structural classes, including polyketides, terpenes, steroids and peptides. The organisms yielding these bioactive marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour pharmacological studies were conducted with 42 structurally defined marine natural products in a number of experimental and clinical models which further defined their mechanisms of action. Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines were reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy is the fact that marine anticancer research was sustained by a global collaborative effort, involving researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India, Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia, South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom (UK) and the United States of America (USA). Finally, this 2005-2006 overview of the marine pharmacology literature highlights the fact that the discovery of novel marine antitumour agents continued at the same active pace as during 1998-2004.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | | |
Collapse
|