1
|
Dempke WCM, Zielinski R, Winkler C, Silberman S, Reuther S, Priebe W. Anthracycline-induced cardiotoxicity – are we about to clear this hurdle? Eur J Cancer 2023; 185:94-104. [PMID: 36966697 DOI: 10.1016/j.ejca.2023.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Anthracyclines have contributed significantly to remarkable improvements in overall survival and are regarded as the most effective cytostatic drug for cancer treatment in various malignancies. However, anthracyclines are a significant cause of acute and chronic cardiotoxicity in cancer patients, and long-term cardiotoxicity can lead to death in about one-third of patients. Several molecular pathways have been implicated in the development of anthracycline-induced cardiotoxicity, although the underlying mechanisms of some molecular pathways are not fully elucidated. It is now generally believed that anthracycline-induced reactive oxygen species (resulting from intracellular metabolism of anthracyclines) and drug-induced inhibition of topoisomerase II beta are the key mechanisms responsible for the cardiotoxicity. To prevent cardiotoxicity, several strategies are being followed: (i) angiotensin-converting enzyme inhibitors, sartans, beta-blockers, aldosterone antagonists, and statins; (ii) iron chelators; and (iii) by development of new anthracycline derivatives with little or no cardiotoxicity. This review will discuss clinically evaluated doxorubicin analogues that were developed as potentially non-cardiotoxic anticancer agents and include recent development of a novel liposomal anthracycline (L-Annamycin) for the treatment of soft-tissue sarcoma metastatic to the lung and acute myelogenous leukaemia.
Collapse
Affiliation(s)
- Wolfram C M Dempke
- University Medical School, LMU Munich, Munich, Germany; Moleculin Inc, Houston, TX, USA
| | - Rafal Zielinski
- The University of Texas, MD Anderson Cancer Center Houston, TX, USA
| | - Christina Winkler
- Haemato-Oncology Saalfeld, Department of Cardio-Oncology, Saalfeld, Germany
| | | | | | - Waldemar Priebe
- The University of Texas, MD Anderson Cancer Center Houston, TX, USA.
| |
Collapse
|
2
|
Casazza A, Van Helleputte L, Van Renterghem B, Pokreisz P, De Geest N, De Petrini M, Janssens T, Pellens M, Diricx M, Riera-Domingo C, Wozniak A, Mazzone M, Schöffski P, Defert O, Reyns G, Kindt N. PhAc-ALGP-Dox, a Novel Anticancer Prodrug with Targeted Activation and Improved Therapeutic Index. Mol Cancer Ther 2022; 21:568-581. [PMID: 35149549 PMCID: PMC9377749 DOI: 10.1158/1535-7163.mct-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/13/2021] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
Abstract
Clinical use of doxorubicin (Dox) is limited by cumulative myelo- and cardiotoxicity. This research focuses on the detailed characterization of PhAc-ALGP-Dox, a targeted tetrapeptide prodrug with a unique dual-step activation mechanism, designed to circumvent Dox-related toxicities and is ready for upcoming clinical investigation. Coupling Dox to a phosphonoacetyl (PhAc)-capped tetrapeptide forms the cell-impermeable, inactive compound, PhAc-ALGP-Dox. After extracellular cleavage by tumor-enriched thimet oligopeptidase-1 (THOP1), a cell-permeable but still biologically inactive dipeptide-conjugate is formed (GP-Dox), which is further processed intracellularly to Dox by fibroblast activation protein-alpha (FAPα) and/or dipeptidyl peptidase-4 (DPP4). In vitro, PhAc-ALGP-Dox is effective in various 2D- and 3D-cancer models, while showing improved safety toward normal epithelium, hematopoietic progenitors, and cardiomyocytes. In vivo, these results translate into a 10-fold higher tolerability and 5-fold greater retention of Dox in the tumor microenvironment compared with the parental drug. PhAc-ALGP-Dox demonstrates 63% to 96% tumor growth inhibition in preclinical models, an 8-fold improvement in efficacy in patient-derived xenograft (PDX) models, and reduced metastatic burden in a murine model of experimental lung metastasis, improving survival by 30%. The current findings highlight the potential clinical benefit of PhAc-ALGP-Dox, a targeted drug-conjugate with broad applicability, favorable tissue biodistribution, significantly improved tolerability, and tumor growth inhibition at primary and metastatic sites in numerous solid tumor models.
Collapse
Affiliation(s)
- Andrea Casazza
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | | | - Britt Van Renterghem
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Pokreisz
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Natalie De Geest
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marzia De Petrini
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Tom Janssens
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marijke Pellens
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marjan Diricx
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Olivier Defert
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Geert Reyns
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Nele Kindt
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium.,Corresponding Author: Nele Kindt, CoBioRes NV, Campus Gasthuisberg, CDG, bus 913 Herestraat 49, Leuven, Flanders B-3000, Belgium. E-mail:
| |
Collapse
|
3
|
Jiang J, Shen N, Ci T, Tang Z, Gu Z, Li G, Chen X. Combretastatin A4 Nanodrug-Induced MMP9 Amplification Boosts Tumor-Selective Release of Doxorubicin Prodrug. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904278. [PMID: 31549774 DOI: 10.1002/adma.201904278] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Tumor-associated enzyme-activated prodrugs can potentially improve the selectivity of chemotherapeutics. However, the paucity of tumor-associated enzymes which are essential for prodrug activation usually limits the antitumor potency. A cooperative strategy that utilizes combretastatin A4 nanodrug (CA4-NPs) and matrix metalloproteinase 9 (MMP9)-activated doxorubicin prodrug (MMP9-DOX-NPs) is developed. CA4 is a typical vascular disrupting agent that can selectively disrupt immature tumor blood vessels and exacerbate the tumor hypoxia state. After treatment with CA4-NPs, MMP9 expression can be significantly enhanced by 5.6-fold in treated tumors, which further boosts tumor-selective active drug release of MMP9-DOX-NPs by 3.7-fold in an orthotopic 4T1 mammary adenocarcinoma mouse model. The sequential delivery of CA4-NPs and MMP9-DOX-NPs exhibits enhanced antitumor efficacy with reduced systemic toxicity compared with the noncooperative controls.
Collapse
Affiliation(s)
- Jian Jiang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Tianyuan Ci
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Schöffski P, Delord JP, Brain E, Robert J, Dumez H, Gasmi J, Trouet A. First-in-man phase I study assessing the safety and pharmacokinetics of a 1-hour intravenous infusion of the doxorubicin prodrug DTS-201 every 3 weeks in patients with advanced or metastatic solid tumours. Eur J Cancer 2017; 86:240-247. [PMID: 29055839 DOI: 10.1016/j.ejca.2017.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE DTS-201 is a doxorubicin (Dox) prodrug that shows encouraging data in experimental models in terms of both efficacy and safety compared with conventional Dox. The purpose of this phase I study was to assess the safety profile, to establish the recommended dose (RD) for clinical phase II studies and to assess potential anticancer activity of the compound. EXPERIMENTAL DESIGN DTS-201 was administered as a 1-hour infusion every 3 weeks in eligible patients with advanced solid tumours according to common clinical phase I criteria. Dose escalation was performed according to a modified Fibonacci schema. RESULTS Twenty-five patients with a median age of 58 years (range, 30-72) were enrolled in the study. The median number of treatment cycles was 2 (range, 1-8). DTS-201 was administered at four dose levels (DLs) ranging from 80 to 400 mg/m2, which is equivalent to 45-225 mg/m2 of conventional Dox. No dose-limiting toxicity (DLT) occurred at the first two DLs. Three DLTs were observed at DL3 and DL4 (diarrhoea for DL3, vomiting and neutropenia for DL4). DL4 (400 mg/m2) was considered the maximum tolerated dose. Myelosuppression was the main toxicity, and NCI-CTC grade III-IV neutropenia was common at RD. Non-haematological adverse reactions were mild to moderate and included nausea, anorexia, asthenia and alopecia. No treatment-related severe cardiac adverse events were observed. CONCLUSIONS DTS-201 is well tolerated and safe in heavily pretreated solid tumour patients. A high equivalent dose of Dox could be delivered without severe drug-related cardiac events. DTS-201 showed evidence of clinical activity with a confirmed partial response in a patient with soft-tissue sarcoma. The recommended phase II dose is 400 mg/m2.
Collapse
Affiliation(s)
- Patrick Schöffski
- University Hospitals Leuven, Department of General Medical Oncology, Leuven Cancer Institute, Leuven, Belgium.
| | | | - Etienne Brain
- Institut Curie (Hôpital René Huguenin), Saint Cloud, France
| | - Jacques Robert
- Institut Bergonié, and Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Herlinde Dumez
- University Hospitals Leuven, Department of General Medical Oncology, Leuven Cancer Institute, Leuven, Belgium
| | - Jamal Gasmi
- Diatos S.A., 166 Boulevard Du Montparnasse, 75014 Paris, France
| | - André Trouet
- Diatos S.A., 166 Boulevard Du Montparnasse, 75014 Paris, France
| |
Collapse
|
5
|
Cornillie J, Wozniak A, Pokreisz P, Casazza A, Vreys L, Wellens J, Vanleeuw U, Gebreyohannes YK, Debiec-Rychter M, Sciot R, Hompes D, Schöffski P. In Vivo Antitumoral Efficacy of PhAc-ALGP-Doxorubicin, an Enzyme-Activated Doxorubicin Prodrug, in Patient-Derived Soft Tissue Sarcoma Xenograft Models. Mol Cancer Ther 2017; 16:1566-1575. [DOI: 10.1158/1535-7163.mct-16-0832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
|
6
|
Qi L, Li SH, Si LB, Lu M, Tian H. Expression of THOP1 and its relationship to prognosis in non-small cell lung cancer. PLoS One 2014; 9:e106665. [PMID: 25180910 PMCID: PMC4152321 DOI: 10.1371/journal.pone.0106665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The study was designed to detect the expression level of thimet oligopeptidase (THOP1) protein in non-small cell lung cancer (NSCLC) and investigate its correlation with clinicopathologic features and prognosis. METHODS Immunohistochemical staining was used to determine the expression of THOP1 protein in 120 NSCLC specimens and 53 distant normal lung tissues. Quantitative real-time PCR and western blotting were employed to measure the expression of THOP1 in 16 pairs of primary NSCLC and corresponding normal tissues. RESULTS Analysis of immunohistochemical staining suggested low THOP1 expression was found in 71 (59.2%) of the 120 NSCLC specimens and significantly correlated with positive lymph node metastasis (P = 0.048). However, low THOP1 expression was found in 22 (41.5%) of the 53 normal lung tissues. Chi-square test suggested that the expression of THOP1 was significantly higher in the normal lung tissues than that in the NSCLC specimens (P = 0.032). Real-Time PCR and western blotting showed that NSCLC specimens had decreased THOP1 mRNA and protein expression compared to corresponding normal tissues. Univariate analysis demonstrated that low THOP1 expression significantly predicted decreased 5-year disease-free survival (P = 0.038) and overall survival (P = 0.017). In addition, positive lymph node metastasis (P = 0.025) and advanced TNM stage (P = 0.009) significantly predicted decreased 5-year overall survival. However, multivariate Cox regression analysis showed that only low THOP1 expression retained its significance as an independent prognostic factor for unfavorable 5-year disease-free survival (P = 0.046) and overall survival (P = 0.021). CONCLUSIONS THOP1 may have clinical potentials to be employed as a promising biomarker to identify individuals with better prognosis and a novel antitumor agent for therapy of patients with NSCLC.
Collapse
Affiliation(s)
- Lei Qi
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Shu-hai Li
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Li-bo Si
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ming Lu
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Hui Tian
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
- * E-mail:
| |
Collapse
|
7
|
Choi KY, Swierczewska M, Lee S, Chen X. Protease-activated drug development. Am J Cancer Res 2012; 2:156-78. [PMID: 22400063 PMCID: PMC3296471 DOI: 10.7150/thno.4068] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/28/2012] [Indexed: 12/11/2022] Open
Abstract
In this extensive review, we elucidate the importance of proteases and their role in drug development in various diseases with an emphasis on cancer. First, key proteases are introduced along with their function in disease progression. Next, we link these proteases as targets for the development of prodrugs and provide clinical examples of protease-activatable prodrugs. Finally, we provide significant design considerations needed for the development of the next generation protease-targeted and protease-activatable prodrugs.
Collapse
|
8
|
Law B, Tung CH. Proteolysis: A Biological Process Adapted in Drug Delivery, Therapy, and Imaging. Bioconjug Chem 2009; 20:1683-95. [DOI: 10.1021/bc800500a] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Benedict Law
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, and The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, Texas 77030
| | - Ching-Hsuan Tung
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, and The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, Texas 77030
| |
Collapse
|
9
|
Ravel D, Dubois V, Quinonero J, Meyer-Losic F, Delord J, Rochaix P, Nicolazzi C, Ribes F, Mazerolles C, Assouly E, Vialatte K, Hor I, Kearsey J, Trouet A. Preclinical toxicity, toxicokinetics, and antitumoral efficacy studies of DTS-201, a tumor-selective peptidic prodrug of doxorubicin. Clin Cancer Res 2008; 14:1258-65. [PMID: 18281561 DOI: 10.1158/1078-0432.ccr-07-1165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There is a clear clinical need for cytotoxic drugs with a lower systemic toxicity. DTS-201 (CPI-0004Na) is a peptidic prodrug of doxorubicin that shows an improved therapeutic index in experimental models. The purpose of the current study was to complete its preclinical characterization before initiation of phase I clinical trials. EXPERIMENTAL DESIGN The preclinical development program consisted of a detailed assessment of the general and cardiac toxicity profiles of DTS-201 in mice, rats, and dogs, together with mass balance and antitumoral efficacy studies in rodents. Neprilysin and thimet oligopeptidase expression, two enzymatic activators of DTS-201, was also characterized in human breast and prostate tumor biopsies. RESULTS The target organs of DTS-201 toxicity in rodents and dogs are typically those of doxorubicin, albeit at much higher doses. Importantly, chronic treatment with DTS-201 proved to be significantly less cardiotoxic than with doxorubicin at doses up to 8-fold higher in rats. The mass balance study showed that [14C] DTS-201 does not accumulate in the body after intravenous administration. The improved therapeutic index of DTS-201 compared with free doxorubicin was confirmed in three tumor xenograft models of prostate, breast, and lung cancer. Neprilysin and/or thimet oligopeptidase are expressed in all experimental human tumor types thus far tested as well as in a large majority of human breast and prostate tumor biopsies. CONCLUSION DTS-201 gave promising results in terms of general toxicity, cardiovascular tolerance, and in vivo efficacy in xenograft mouse models compared with free doxorubicin. Taken together, these results and the confirmation of the presence of activating enzymes in human tumor biopsies provide a strong rationale for a phase I clinical study in cancer patients.
Collapse
|
10
|
Florent JC, Monneret C. Doxorubicin Conjugates for Selective Delivery to Tumors. Top Curr Chem (Cham) 2007; 283:99-140. [DOI: 10.1007/128_2007_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|