1
|
Attia YM, Tadros SA, Fahim SA, Badr DM. Role of noncoding RNA as a pacemaker in cancer stem cell regulation: a review article. J Egypt Natl Canc Inst 2025; 37:9. [PMID: 40122959 DOI: 10.1186/s43046-025-00266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Accumulated evidence supported the crucial role of a tiny population of cells within the tumor called cancer stem cells (CSCs) in cancer origination, and proliferation. Additionally, these cells are distinguished by their self-renewal, differentiation, and therapeutic resistance capabilities. Interestingly, many studies recorded dysregulation of different types of noncoding RNAs, such as microRNA (miRNA) and long non-coding RNA (LncRNA), in cancer cells as well as CSCs. Moreover, several studies also supported the regulation of the transcription factors and signaling pathways required for CSC progression by these noncoding RNAs. However, the exact biological functions of all these noncoding RNAs are not well understood yet. These findings are of great interest, implying usage of noncoding RNA as therapeutic tool to target these cells. In this review, we provide an insight into how noncoding RNAs regulate CSCs and how this correlation is manipulated to develop new therapies to eradicate cancer cells successfully.
Collapse
Affiliation(s)
- Yasmin M Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| | - Samer A Tadros
- Department of Biochemistry, Faculty of Pharmacy, 110123october University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Giza, 12577, Egypt.
| | - Doaa M Badr
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| |
Collapse
|
2
|
Toprak A. Predicting human miRNA disease association with minimize matrix nuclear norm. Sci Rep 2024; 14:30815. [PMID: 39730483 DOI: 10.1038/s41598-024-81213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
microRNAs (miRNAs) are non-coding RNA molecules that influence the development and progression of many diseases. Research have documented that miRNAs have a significant role in the prevention, diagnosis, and treatment of complex human diseases. Recently, scientists have devoted extensive resources to attempting to find the connections between miRNAs and diseases. Since the experimental methods used to discover that new miRNA-disease associations are time-consuming and expensive, many computational methods have been developed. In this research, a novel computational method based on matrix decomposition was proposed to predict new associations between miRNAs and diseases. Furthermore, the nuclear norm minimization method was employed to acquire breast cancer-associated miRNAs. We then evaluated the effectiveness of our method by utilizing two different cross-validation techniques and the results were compared to seven different methods. Moreover, a case study on breast cancer further validated our technique, confirming its predictive accuracy. These experimental results demonstrate that our method is a reliable computational model for uncovering potential miRNA-disease relationships.
Collapse
Affiliation(s)
- Ahmet Toprak
- Department of Electricity and Energy, Selcuk University, Konya, Turkey.
| |
Collapse
|
3
|
Hassani A, Ghorbian S. Validation of gene polymorphisms (rs2682818 and rs2043556) in has-miR-618 and has-miR-605 with the breast cancer susceptibility. HUMAN GENE 2024; 42:201343. [DOI: 10.1016/j.humgen.2024.201343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
4
|
Li Z, Wan L, Wang L, Wang W, Nie R. HHOMR: a hybrid high-order moment residual model for miRNA-disease association prediction. Brief Bioinform 2024; 25:bbae412. [PMID: 39175132 PMCID: PMC11341279 DOI: 10.1093/bib/bbae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRNAs) are critically important for the prediction, diagnosis, and characterization of diseases. However, identifying miRNA-disease associations through traditional biological experiments is both costly and time-consuming. To further explore these associations, we proposed a model based on hybrid high-order moments combined with element-level attention mechanisms (HHOMR). This model innovatively fused hybrid higher-order statistical information along with structural and community information. Specifically, we first constructed a heterogeneous graph based on existing associations between miRNAs and diseases. HHOMR employs a structural fusion layer to capture structure-level embeddings and leverages a hybrid high-order moments encoder layer to enhance features. Element-level attention mechanisms are then used to adaptively integrate the features of these hybrid moments. Finally, a multi-layer perceptron is utilized to calculate the association scores between miRNAs and diseases. Through five-fold cross-validation on HMDD v2.0, we achieved a mean AUC of 93.28%. Compared with four state-of-the-art models, HHOMR exhibited superior performance. Additionally, case studies on three diseases-esophageal neoplasms, lymphoma, and prostate neoplasms-were conducted. Among the top 50 miRNAs with high disease association scores, 46, 47, and 45 associated with these diseases were confirmed by the dbDEMC and miR2Disease databases, respectively. Our results demonstrate that HHOMR not only outperforms existing models but also shows significant potential in predicting miRNA-disease associations.
Collapse
Affiliation(s)
- Zhengwei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Guangxi Academy of Science, Nanning, 530007, China
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Lipeng Wan
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Lei Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Guangxi Academy of Science, Nanning, 530007, China
| | - Wenjing Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Ru Nie
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Mine Digitization Engineering Research Center of the Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
5
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
6
|
Hua J, Liu J, Ma M, Xie L, Tian J. MicroRNA in the diagnosis of lung cancer: An overview of ten systematic reviews. Ann Clin Biochem 2023; 60:6-13. [PMID: 36085569 DOI: 10.1177/00045632221128684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To provide theoretical support for clinical diagnosis of lung cancer through an overview of systematic reviews (SRs) of the diagnostic value of miRNA. METHODS We searched PubMed, Embase, and the Cochrane Library to collect SRs of the diagnostic value of microRNA for lung cancer until April 2021. A comprehensive database search was carried out, screened, and extracted information independently by two researchers, to compare and analyze the sensitivity and specificity of relevant literatures. The ROBIS tool was applied to assess the risk of bias of included SRs and meta-analysis. RESULTS A total of 10 SRs were included the results of risk of bias assessment by ROBIS tool showed: 10 SRs completely matched the four questions of phase one. In phase two, nine SRs were low risk of bias in the including criteria field; one study was uncertain; nine SRs were low risk of bias, one study was uncertain in the literature search and screening field; nine SRs were low risk of bias in the data abstraction and quality assessment field, one SR was high; and 10 SRs were low risk of bias in the data synthesis field. In the phase three of comprehensive risk of bias results, 8 studies were low risk, one was high risk, and one study was uncertain. MiRNA had a pooled sensitivity of 0.77 (95% CI: 0.73-0.81) and specificity of 0.81 (95% CI: 0.79-0.84). The summarized area under the SROC curve was 0.86 (95% CI: 0.83-0.89), and combined diagnostic odds ratio was 14.68 (10.87-19.81). The sensitivity and specificity of multiple MicroRNA was 0.80 (0.73-0.85) and 0.80 (0.76-0.83); the sensitivity and specificity of single MicroRNA was 0.74 (0.69-0.79) and 0.83 (0.80-0.88). CONCLUSION MiRNA is a promising biomarker for the diagnosis of lung cancer in Chinese population, with advanced sensitivity and specificity. It provides a faster and less invasive assessment of lung cancer than other markers that require histopathological analysis. We should improve the reliability of the conclusion. The construction of diagnosis for lung cancer provides reliable evidence support.
Collapse
Affiliation(s)
- Jinyong Hua
- Public People's Hospital of Xinzheng, China.,535176Zhengzhou Central Hospital, China
| | - Jing Liu
- Public People's Hospital of Xinzheng, China
| | - Mingxia Ma
- Public People's Hospital of Xinzheng, China
| | | | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, 12426Lanzhou University, China
| |
Collapse
|
7
|
Talaat A, Helmy MA, Saadawy SF. Evaluation of miRNA-21 and CA-125 as a promising diagnostic biomarker in patients with ovarian cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00342-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Introduction/objective
Ovarian cancer is the 6th leading cause of mortality in women, killing more women than any other reproductive system cancer. We studied the expression of serum micro-ribonucleic acid-21 (miRNA-21) in ovarian cancer patients and explored associations with diagnosis, clinicopathological parameters, and prognosis.
Methods
Real-time fluorescence-quantitative polymerase chain reaction was used to examine the relative expression of miRNA-21 in serum. Cancer antigen 125 (CA-125) levels were measured using an enzyme immunoassay test kit (ELISA).
Results
Serum miR-21 expression was significantly elevated in ovarian cancer patients compared to controls (p < 0.001). The same was true for CA-125 serum levels, which were also significantly in cancer patients (p < 0.001). The sensitivity and specificity of miR-21 detection in the diagnosis of ovarian cancer were 96%, 88% versus 74%, and 80% for CA-125.
Conclusions
miR-21 is highly expressed in the serum of ovarian cancer patients and may be important in the development and progression of ovarian cancer, with more sensitivity and specificity than CA-125. Our results suggest that circulating serum miRNA-21 is a promising tumor marker for use in the diagnosis and prognosis of ovarian cancer.
Collapse
|
8
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
9
|
Shaw P, Lokhotiya K, Kumarasamy C, Sunil K, Suresh D, Shetty S, Muthukaliannan GK, Baxi S, Mani RR, Sivanandy P, Chandramoorthy HC, Gupta MM, Samiappan S, Jayaraj R. Mapping Research on miRNAs in Cancer: A Global DataAnalysis and Bibliometric Profiling Analysis. PATHOPHYSIOLOGY 2022; 29:66-80. [PMID: 35366290 PMCID: PMC8950962 DOI: 10.3390/pathophysiology29010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs biomarkers are emerging as an essential part of clinical oncology. Their oncogenic and tumour suppressor properties playing a role in malignancy has generated interest in their potential for use in disease prognosis. While several studies on miRNA have been carried out across the globe, evaluating the clinical implications of miRNAs in cancer diagnosis and prognosis research has currently not been attempted. A study delineating the area of miRNA research, including the topics presently being focused on, the seminal papers in this field, and the direction of research interest, does not exist. This study aims to conduct a large-scale, global data analysis and bibliometric profiling analysis of studies to evaluate the research output of clinical implications of miRNAs in cancer diagnosis and prognosis listed in the SCOPUS database. A systematic search strategy was followed to identify and extract all relevant studies, subsequently analysed to generate a bibliometric map. SPSS software (version 27) was used to calculate bibliometric indicators or parameters for analysis, such as year and country of affiliation with leading authors, journals, and institutions. It is also used to analyse annual research outputs, including total citations and the number of times it has been cited with productive nations and H-index. The number of global research articles retrieved for miRNA-Cancer research over the study period 2003 to 2019 was 18,636. Between 2012 and 2019, the growth rate of global publications is six times (n = 15,959; 90.71 percent articles) that of 2003 to 2011. (2704; 9.29 per cent articles). China published the most publications in the field of miRNA in cancer (n = 7782; 41%), while the United States had the most citations (n = 327,538; 48%) during the time span. Of these journals, Oncotarget has the highest percentage of article publications. The journal Cancer Research had the most citations (n = 41,876), with 6.20 per cent (n = 41,876). This study revealed a wide variety of journals in which miRNA-Cancer research are published; these bibliometric parameters exhibit crucial clinical information on performance assessment of research productivity and quality of research output. Therefore, this study provides a helpful reference for clinical oncologists, cancer scientists, policy decision-makers and clinical data researchers.
Collapse
Affiliation(s)
- Peter Shaw
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
- Menzies School of Health Research, Darwin 0810, Australia
| | - Kartik Lokhotiya
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (K.L.); (G.K.M.)
| | - Chellan Kumarasamy
- School of Health and Medical Sciences, Curtin University, Perth 6102, Australia;
| | - Krishnan Sunil
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Deepa Suresh
- Division of Endocrinology, Department of Internal Medicine, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, A Constituent of MAHE, Manipal 576104, India;
| | | | - Siddhartha Baxi
- Genesis Care Gold Coast Radiation Oncologist, John Flynn Hospital, Tugun 4224, Australia;
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Harish C. Chandramoorthy
- Stem Cells and Regenerative Medicine Unit, Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 56000, Saudi Arabia;
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago;
| | - Suja Samiappan
- Department of Biochemistry, Bharathiar University, Coimbatore 641046, India;
| | - Rama Jayaraj
- Northern Territory Institute of Research and Training, Tiwi 0810, Australia
- Correspondence:
| |
Collapse
|
10
|
Takegawa-Araki T, Kumagai S, Yasukawa K, Kuroda M, Sasaki T, Obika S. Structure-Activity Relationships of Anti-microRNA Oligonucleotides Containing Cationic Guanidine-Modified Nucleic Acids. J Med Chem 2022; 65:2139-2148. [PMID: 35084859 DOI: 10.1021/acs.jmedchem.1c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anti-microRNA oligonucleotides (AMOs) are valuable tools for the treatment of diseases caused by the dysregulation of microRNA expression. However, the correlation between chemical modifications in AMO sequences and the microRNA-inhibitory activity has not been fully elucidated. In this study, we synthesized a series of AMOs containing cationic guanidine-bridged nucleic acids (GuNA) and evaluated their activities using a dual luciferase assay. We also optimized the site of GuNA substitution and found an effective design for the inhibition of microRNA-21, which was partially different from that of conventional nucleic acid derivatives. This study showed that GuNA-substituted AMOs are effective in inhibiting the function of microRNA.
Collapse
Affiliation(s)
- Tomo Takegawa-Araki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinji Kumagai
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kai Yasukawa
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masataka Kuroda
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takashi Sasaki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
11
|
Tao F, Qi L, Liu G. Long intergenic non-protein coding RNA 662 accelerates the progression of gastric cancer through up-regulating centrosomal protein 55 by sponging microRNA-195-5p. Bioengineered 2022; 13:3007-3018. [PMID: 35037833 PMCID: PMC8974125 DOI: 10.1080/21655979.2021.2023978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are important players in regulating diverse human diseases, including cancers. Nonetheless, the function of long intergenic non-protein coding RNA 662 (LINC00662) in gastric cancer (GC) carcinogenesis and progression remains to be delineated. In the present study, LINC00662, microRNA-195-5p (miR-195-5p) and centrosomal protein 55 (CEP55) mRNA expression levels were quantified by qRT-PCR. GC cell proliferation, migration and invasion were analyzed by CCK-8, BrdU and Transwell assays. Besides, dual-luciferase reporter and RNA pull-down assays were conducted for verifying the targeting relationships of LINC00662, miR-195-5p and CEP55. The regulatory functions of LINC00662 and miR-195-5p on CEP55 were examined utilizing Western blot. In this study, it was revealed that LINC00662 expression level was elevated in GC tissues and cells. LINC00662 overexpression facilitated the malignant biological behaviors of GC cells whereas knockdown of LINC00662 worked oppositely. In terms of mechanism, LINC00662 targeted miR-195-5p to modulate CEP55 expression. In conclusion, LINC00662 facilitates the malignant biological behaviors of GC cells via miR-195-5p/CEP55 axis, and therefore, it may be a promising target for GC treatment.
Collapse
Affiliation(s)
- Fei Tao
- Department of Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Likun Qi
- Department of Gastrointestinal Surgery, Fifth People's Hospital of Qinghai Province, Xining, China
| | - Guoqing Liu
- Department of Oncology, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
12
|
Predicting miRNA-Disease Association Based on Neural Inductive Matrix Completion with Graph Autoencoders and Self-Attention Mechanism. Biomolecules 2022; 12:biom12010064. [PMID: 35053212 PMCID: PMC8774034 DOI: 10.3390/biom12010064] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Many studies have clarified that microRNAs (miRNAs) are associated with many human diseases. Therefore, it is essential to predict potential miRNA-disease associations for disease pathogenesis and treatment. Numerous machine learning and deep learning approaches have been adopted to this problem. In this paper, we propose a Neural Inductive Matrix completion-based method with Graph Autoencoders (GAE) and Self-Attention mechanism for miRNA-disease associations prediction (NIMGSA). Some of the previous works based on matrix completion ignore the importance of label propagation procedure for inferring miRNA-disease associations, while others cannot integrate matrix completion and label propagation effectively. Varying from previous studies, NIMGSA unifies inductive matrix completion and label propagation via neural network architecture, through the collaborative training of two graph autoencoders. This neural inductive matrix completion-based method is also an implementation of self-attention mechanism for miRNA-disease associations prediction. This end-to-end framework can strengthen the robustness and preciseness of both matrix completion and label propagation. Cross validations indicate that NIMGSA outperforms current miRNA-disease prediction methods. Case studies demonstrate that NIMGSA is competent in detecting potential miRNA-disease associations.
Collapse
|
13
|
Pottoo FH, Iqubal A, Iqubal MK, Salahuddin M, Rahman JU, AlHajri N, Shehadeh M. miRNAs in the Regulation of Cancer Immune Response: Effect of miRNAs on Cancer Immunotherapy. Cancers (Basel) 2021; 13:6145. [PMID: 34885253 PMCID: PMC8656569 DOI: 10.3390/cancers13236145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
In the last few decades, carcinogenesis has been extensively explored and substantial research has identified immunogenic involvement in various types of cancers. As a result, immune checkpoint blockers and other immune-based therapies were developed as novel immunotherapeutic strategies. However, despite being a promising therapeutic option, immunotherapy has significant constraints such as a high cost of treatment, unpredictable toxicity, and clinical outcomes. miRNAs are non-coding, small RNAs actively involved in modulating the immune system's multiple signalling pathways by binding to the 3'-UTR of target genes. miRNAs possess a unique advantage in modulating multiple targets of either the same or different signalling pathways. Therefore, miRNA follows a 'one drug multiple target' hypothesis. Attempts are made to explore the therapeutic promise of miRNAs in cancer so that it can be transported from bench to bedside for successful immunotherapeutic results. Therefore, in the current manuscript, we discussed, in detail, the mechanism and role of miRNAs in different types of cancers relating to the immune system, its diagnostic and therapeutic aspect, the effect on immune escape, immune-checkpoint molecules, and the tumour microenvironment. We have also discussed the existing limitations, clinical success and the prospective use of miRNAs in cancer.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Noora AlHajri
- Mayo Clinic, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi 127788, United Arab Emirates
| | - Mustafa Shehadeh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
14
|
Nath A, Rayabaram J, Ijee S, Bagchi A, Chaudhury AD, Roy D, Chambayil K, Singh J, Nakamura Y, Velayudhan SR. Comprehensive Analysis of microRNAs in Human Adult Erythropoiesis. Cells 2021; 10:3018. [PMID: 34831239 PMCID: PMC8616439 DOI: 10.3390/cells10113018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which play an important role in various cellular and developmental processes. The study of miRNAs in erythropoiesis is crucial to uncover the cellular pathways that are modulated during the different stages of erythroid differentiation. Using erythroid cells derived from human CD34+ hematopoietic stem and progenitor cells (HSPCs)and small RNA sequencing, our study unravels the various miRNAs involved in critical cellular pathways in erythroid maturation. We analyzed the occupancy of erythroid transcription factors and chromatin accessibility in the promoter and enhancer regions of the differentially expressed miRNAs to integrate miRNAs in the transcriptional circuitry of erythropoiesis. Analysis of the targets of the differentially expressed miRNAs revealed novel pathways in erythroid differentiation. Finally, we described the application of Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) based editing of miRNAs to study their function in human erythropoiesis.
Collapse
Affiliation(s)
- Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Janakiram Rayabaram
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Anurag Dutta Chaudhury
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Debanjan Roy
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
- Manipal Academy of Higher Education, Manipal 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Jyoti Singh
- National Centre for Cell Science, University of Pune Campus, Pune 411007, India;
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan;
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| |
Collapse
|
15
|
Ren LX, Zeng BW, Zhu M, Zhao AN, Shi B, Zhang H, Wang DD, Gu JF, Yang Z. A Novel ZNF304/miR-183-5p/FOXO4 Pathway Regulates Cell Proliferation in Clear Cell Renal Carcinoma. Front Oncol 2021; 11:710525. [PMID: 34692488 PMCID: PMC8529286 DOI: 10.3389/fonc.2021.710525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Zinc-finger protein 304 (ZNF304) plays a critical role in silencing genes through transcription, regulating cell survival, proliferation, apoptosis, and differentiation during development. However, the roles of transcription factor ZNF304 and its clinical significance in clear cell renal carcinoma (ccRCC) remain unclear. In this study, we found that the expression of ZNF304 was downregulated in ccRCC tissues. Lower levels of ZNF304 were correlated with poor survival. Downregulation of ZNF304 promoted ccRCC cell growth in vitro, whereas overexpression of ZNF304 inhibited growth. Our results indicated that miR-183-5p/FOXO4 mediated ZNF304 regulation of cell growth. Interestingly, we revealed that ZNF304 promoted FOXO4 expression in ccRCC cells. Mechanistically, ZNF304 binds to miR-183 promoter and inhibits miR-183-5p transcription. Furthermore, the expression of miR-183-5p wes increased in ccRCC tissues, and the upregulation of miR-183-5p was related to the poor prognosis of ccRCC patients. miR-183-5p upregulation repressed the expression of FOXO4 and promoted ccRCC progression. These results demonstrated that ZNF304/miR-183-5p/FOXO4 axis played essential role in promoting ccRCC progression, which suggests that disruption of this axis may be a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Li-Xin Ren
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo-Wen Zeng
- Department of Urology, Affiliated Hospital of Sergeant School of Army Medical University, Shijiazhuang, China
| | - Meng Zhu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - An-Ning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun-Fei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel) 2021; 13:4287. [PMID: 34503097 PMCID: PMC8428369 DOI: 10.3390/cancers13174287] [Citation(s) in RCA: 764] [Impact Index Per Article: 191.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide with more than 2 million new cases in 2020. Its incidence and death rates have increased over the last three decades due to the change in risk factor profiles, better cancer registration, and cancer detection. The number of risk factors of BC is significant and includes both the modifiable factors and non-modifiable factors. Currently, about 80% of patients with BC are individuals aged >50. Survival depends on both stage and molecular subtype. Invasive BCs comprise wide spectrum tumors that show a variation concerning their clinical presentation, behavior, and morphology. Based on mRNA gene expression levels, BC can be divided into molecular subtypes (Luminal A, Luminal B, HER2-enriched, and basal-like). The molecular subtypes provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. The eighth edition of TNM classification outlines a new staging system for BC that, in addition to anatomical features, acknowledges biological factors. Treatment of breast cancer is complex and involves a combination of different modalities including surgery, radiotherapy, chemotherapy, hormonal therapy, or biological therapies delivered in diverse sequences.
Collapse
Affiliation(s)
- Sergiusz Łukasiewicz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Robert Sitarz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Andrzej Stanisławek
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Oncology, Chair of Oncology and Environmental Health, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
17
|
Zhao P, Li T, Wang Y, Wang Y, Gu Q, Li Z. LncRNA MYCNOS promotes glioblastoma cell proliferation by regulating miR-216b/FOXM1 axis. Metab Brain Dis 2021; 36:1185-1189. [PMID: 33871770 DOI: 10.1007/s11011-021-00729-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
MYCNOS is an oncogenic lncRNA in liver cancer, but its role in glioblastoma (GBM) is unknown. We predicted that MYCNOS might interact with miR-216b, which targets FOXM1 to perform tumor suppressive roles. This study was performed to analyze the role of MYCNOS in GBM and explore its potential interactions with miR-216b and FOXM1. MYCNOS expression in paired GBM and non-tumor tissues from 62 GBM patients was analyzed by RT-qPCR. The interaction between MYCNOS and miR-216b was predicted by IntaRNA 2.0 and confirmed by dual luciferase activity assay. Overexpression of MYCNOS, miR-216b, and FOXM1 was achieved in GBM cells, followed by performing RT-qPCR and Western blot to explore the relationship among them. CCK-8 assay was performed to explore the role of MYCNOS, miR-216b, and FOXM1 in regulating GBM cell proliferation. MYCNOS was upregulated in GBM tissues compared to the paired non-tumor tissues. MYCNOS is predicted to interact with miR-216b, but overexpression of MYCNOS and miR-216b failed to affect each other's expression significantly. Dual luciferase activity assay showed that MYCNOS and miR-216b could directly interact with each other. MYCNOS overexpression increased the expression of FOXM1, which is a direct target of miR-216b. Cell proliferation assay showed that MYCNOS and FOXM1 overexpression resulted in an increased proliferation rate of GBM cells, while miR-216b overexpression suppressed cell proliferation. Moreover, MYCNOS overexpression suppressed the role of miR-216b. MYCNOS may regulate FOXM1 expression of by serving as an endogenous sponge of miR-216b axis to promote the proliferation of GBM cells.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Pediatric Surgery, Gansu Provincial Maternity and Child-Care Hospital, No.143 Qilihe North Street, Lanzhou City, Gansu Province, 730050, People's Republic of China
| | - Ting Li
- Department of Pediatric Surgery, Gansu Provincial Maternity and Child-Care Hospital, No.143 Qilihe North Street, Lanzhou City, Gansu Province, 730050, People's Republic of China
| | - Youliang Wang
- Department of Pediatric Surgery, Gansu Provincial Maternity and Child-Care Hospital, No.143 Qilihe North Street, Lanzhou City, Gansu Province, 730050, People's Republic of China
| | - Yong Wang
- Department of Pediatric Surgery, Gansu Provincial Maternity and Child-Care Hospital, No.143 Qilihe North Street, Lanzhou City, Gansu Province, 730050, People's Republic of China
| | - Qi Gu
- Department of Pediatric Surgery, Gansu Provincial Maternity and Child-Care Hospital, No.143 Qilihe North Street, Lanzhou City, Gansu Province, 730050, People's Republic of China
| | - Zhi Li
- Department of Pediatric Surgery, Gansu Provincial Maternity and Child-Care Hospital, No.143 Qilihe North Street, Lanzhou City, Gansu Province, 730050, People's Republic of China.
| |
Collapse
|
18
|
Lei F, Lei T, Huang Y, Yang M, Liao M, Huang W. Radio-Susceptibility of Nasopharyngeal Carcinoma: Focus on Epstein- Barr Virus, MicroRNAs, Long Non-Coding RNAs and Circular RNAs. Curr Mol Pharmacol 2021; 13:192-205. [PMID: 31880267 DOI: 10.2174/1874467213666191227104646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/22/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.
Collapse
Affiliation(s)
- Fanghong Lei
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Tongda Lei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Mingxiu Yang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Mingchu Liao
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| |
Collapse
|
19
|
Norouzi S, Farhadi A, Farzadfard E, Akbarzade-Jahromi M, Ahmadzadeh N, Nasiri M, Tamaddon G. MicroRNAs expression changes coincide with low or high grade of squamous intraepithelial lesion infected by HPV-16. GENE REPORTS 2021; 23:101186. [DOI: 10.1016/j.genrep.2021.101186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Assessment of Serum MicroRNA-21 Gene Expression for Diagnosis and Prognosis of Colorectal Cancer. J Gastrointest Cancer 2021; 51:818-823. [PMID: 31482406 DOI: 10.1007/s12029-019-00306-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in carcinogenesis through posttranscriptional gene regulatory activity. The current study aimed to evaluate serum miR-21 expression levels as potential biomarkers for diagnosis and prognosis of colorectal cancer (CRC) patients. METHODS Quantitative real-time RT-PCR was applied to determine the relative expression level of miR-21 in serum. At the same time, the sensitivity and specificity of this marker were evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS miR-21 expression levels of serum were 3.4 and 1.25 in patient and control, respectively (p < 0.05). The sensitivity and specificity of miR-21 were found to be 95.8% and 91.7%, respectively. The high expression level of serum miR-21 were associated with higher local recurrence, TNM staging, PT staging, venous invasion, liver metastasis, and recurrence (p < 0.05). CONCLUSION The results of this study indicated that miR-21 expression levels in serum can be considered as a novel non-invasive biomarker for early detection and prognosis of CRC patients.
Collapse
|
21
|
Dong M, Xu T, Cui X, Li H, Li X, Xia W. NCAPG upregulation mediated by four microRNAs combined with activation of the p53 signaling pathway is a predictor of poor prognosis in patients with breast cancer. Oncol Lett 2021; 21:323. [PMID: 33692855 PMCID: PMC7933778 DOI: 10.3892/ol.2021.12585] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
The role of non-SMC condensin I complex subunit G (NCAPG) in breast cancer remains unclear. The present study used online databases, reverse transcription-quantitative PCR, flow cytometry and western blotting to determine the expression levels, prognosis and potential molecular mechanisms underlying the role of NCAPG in breast cancer. The association between NCAPG expression and several different clinicopathological parameters in patients with breast cancer was determined, and the results revealed that NCAPG expression was negatively associated with estrogen receptor and progesterone receptor positive status, but was positively associated with HER2 positive status, Nottingham Prognostic Index score and Scarff-Bloom-Richardson grade status. Furthermore, upregulated expression levels of NCAPG resulted in a poor prognosis in patients with breast cancer. A total of 27 microRNAs (miRNAs/miRs) were predicted to target NCAPG, among which four miRNAs (miR-101-3p, miR-195-5p, miR-214-3p and miR-944) were predicted to most likely regulate NCAPG expression in breast cancer. A total of 261 co-expressed genes of NCAPG were identified, including cell division cyclin 25 homolog C (CDC25C), and pathway enrichment analysis indicated that these co-expressed genes were significantly enriched in the p53 signaling pathway. CDC25C expression was downregulated in breast cancer and was associated with a poor prognosis. These findings suggested that upregulated NCAPG expression may be a prognostic biomarker of breast cancer.
Collapse
Affiliation(s)
- Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoqing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wenfei Xia
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
22
|
Wang HY, Liu YN, Wu SG, Hsu CL, Chang TH, Tsai MF, Lin YT, Shih JY. MiR-200c-3p suppression is associated with development of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer via a mediating epithelial-to-mesenchymal transition (EMT) process. Cancer Biomark 2021; 28:351-363. [PMID: 32417760 DOI: 10.3233/cbm-191119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND EGFR-mutant lung cancer inevitably develops resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). OBJECTIVE To investigate the clinical relevance of microRNAs (miRNAs) in TKI therapy response and resistance. METHODS We performed a miRNA PCR array analysis and used The Cancer Genome Atlas (TCGA) database to identify potential miRNAs related to EGFR TKIs resistance. We then correlated miRNA expression in 70 surgical and 50 malignant pleural effusion specimens with patient outcomes in those with non-small cell lung carcinoma. Molecular manipulation was performed in EGFR mutant lung cancer cells to assess the effect of miR-200c-3p on cell migratory ability and EGFR-TKI sensitivity. RESULTS We identified miR-200c-3p and miR-203a-3p as potential EGFR TKI resistance regulators via their modulation of epithelial-to-mesenchymal transition (EMT). MiR-200c-3p and miR-203a-3p were down-regulated in EGFR TKI-resistant cell lines. Progression-free survival (PFS) with EGFR-TKI treatment of patients with high miR-200c-3p expression, but not miR-203a-3p, in the specimens was significantly longer than that of patients with low expression. MiR-200c-3p overexpression inhibited the EMT process in EGFR TKI resistance cell lines and promoted cell death. MiR-200c-3p silencing in EGFR TKI sensitive cell lines increased drug resistance. CONCLUSION MiR-200c-3p plays a role in sensitivity to EGFR TKIs via modulating EMT process.
Collapse
Affiliation(s)
- Hsin-Yi Wang
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Thoracic Medicine Center, Department of Medicine and Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Hua Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Feng Tsai
- Department of Biomedical Sciences, Da-Yeh University, Changhua, Taiwan
| | - Yen-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
Chen Z, Huang X, Lv Y, Fang Y, Pan L, Gan Z, Huang Z, Wei W. A Five-microRNA Signature as Risk Stratification System in Uterine Corpus Endometrial Carcinoma. Comb Chem High Throughput Screen 2021; 24:187-194. [PMID: 32748742 DOI: 10.2174/1386207323999200730211227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND MicroRNAs (miRs) have been shown to play important roles in various cancers and may be a reliable prognostic marker. However, its prognostic value in endometrial carcinoma (UCEC) needs to be further explored. OBJECTIVES The aim of this study was to create a miR-based signature to effectively predict the prognosis for patients with uterine corpus endometrial carcinoma (UCEC). METHODS Using UCEC data set in TCGA, we identified differentially expressed miRs between UCEC and healthy endometrial tissues. The LASSO method was used to construct a miR-based signature prognosis index for predicting prognosis in the training cohort. The miR-based signature prognosis index was validated in an independent test cohort. MiRNet tool was applied to perform functional enrichment analysis of this miR-based signature. RESULTS A total of 208 miRs were differentially expressed between UCEC and healthy endometrial tissues. Five miRs (miR-652, miR-3170, miR-195, miR-34a, and miR-934) were identified to generate a prognosis index (PI). The five-miR signature is a promising biomarker for predicting the 5-year-survival rate of UCEC with AUC = 0.730. The PI remained an independent prognostic factor adjusted by routine clinicopathologic factors. Using the PI, we could successfully identify the high-risk individuals, furthermore, it still worked in an independent test cohort. The five miRs involved in various pathways associated with cancer. CONCLUSION We proposed and validated a five-miR signature that could serve as an independent prognostic predictor of UCECs.
Collapse
Affiliation(s)
- Zhichao Chen
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Xiaoyuan Huang
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Yufeng Lv
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Yuan Fang
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Lili Pan
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Zuhuan Gan
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Zhong Huang
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Wenhao Wei
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
24
|
Hydrogen peroxide and Helicobacter pylori extract treatment combined with APE1 knockdown induce DNA damage, G2/M arrest and cell death in gastric cancer cell line. DNA Repair (Amst) 2020; 96:102976. [DOI: 10.1016/j.dnarep.2020.102976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
|
25
|
Toprak A, Eryilmaz E. Prediction of miRNA-disease associations based on Weighted [Formula: see text]-Nearest known neighbors and network consistency projection. J Bioinform Comput Biol 2020; 19:2050041. [PMID: 33148093 DOI: 10.1142/s0219720020500419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNA) are a type of non-coding RNA molecules that are effective on the formation and the progression of many different diseases. Various researches have reported that miRNAs play a major role in the prevention, diagnosis, and treatment of complex human diseases. In recent years, researchers have made a tremendous effort to find the potential relationships between miRNAs and diseases. Since the experimental techniques used to find that new miRNA-disease relationships are time-consuming and expensive, many computational techniques have been developed. In this study, Weighted [Formula: see text]-Nearest Known Neighbors and Network Consistency Projection techniques were suggested to predict new miRNA-disease relationships using various types of knowledge such as known miRNA-disease relationships, functional similarity of miRNA, and disease semantic similarity. An average AUC of 0.9037 and 0.9168 were calculated in our method by 5-fold and leave-one-out cross validation, respectively. Case studies of breast, lung, and colon neoplasms were applied to prove the performance of our proposed technique, and the results confirmed the predictive reliability of this method. Therefore, reported experimental results have shown that our proposed method can be used as a reliable computational model to reveal potential relationships between miRNAs and diseases.
Collapse
Affiliation(s)
- Ahmet Toprak
- Department of Electricity and Energy, Bozkır Vocational School, Selcuk University, Konya, Turkey
| | - Esma Eryilmaz
- Department of Biomedical Engineering, Faculty of Technology, Selcuk University, Konya, Turkey
| |
Collapse
|
26
|
Che L, Wu ZL, Huang LY, Wu JS, Du ZB, Lin JX, Su YH, Chen XX, Lin ZN, Lin YC. MicroRNA-101 inhibits cadmium-induced angiogenesis by targeting cyclooxygenase-2 in primary human umbilical vein endothelial cells. Biochem Pharmacol 2020; 189:114192. [PMID: 32783891 DOI: 10.1016/j.bcp.2020.114192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Exposure to toxic metal contaminants, such as cadmium compounds (Cd2+), has been shown to induce adverse effects on various organs and tissues. In particular, blood vessels are severely impacted by Cd2+ exposure, which may lead to cardiovascular diseases (CVDs). According to previous studies, CVDs are associated with increased cyclooxygenase 2 (COX-2) levels. However, the mechanisms by which CdCl2-induced COX-2 overexpression leads to cardiovascular dysfunction remain unclear. Herein, we show that the relative gene expressions of VEGF and PTGS2 (COX-2 encoding gene) are positively correlated in CVDs patients. Moreover, we demonstrate that the in vitro administration of CdCl2 induces cytotoxicity and endoplasmic reticulum (ER) stress in primary human umbilical vein endothelial cells (HUVECs). The induction of ER stress and the overexpression of COX-2 in CdCl2-treated cells alters the protein level of vascular endothelial growth factor (VEGF), resulting in abnormal angiogenesis and increased cytotoxicity. At the pre-transcription level, the inhibition of ER stress by siGRP78 (a key mediator of ER stress) can restore normal angiogenesis in the CdCl2-exposed cells. Meanwhile, at the transcription level, the adverse effects of CdCl2 exposure may be reversed via genetic modification with siRNA (siPTGS2) or by using phytochemical inhibitors (parthenolide, PN) of COX-2. Finally, at the post-transcription level, COX-2 expression may be restricted by the binding of microRNA-101 (miR-101) to the 3'-UTR of PTGS2 mRNA. The use of mimic miR-101 (mi101) to induce the expression of miR-101 eventually leads to reduced COX-2 protein levels, relieved ER stress, and less abnormal angiogenesis and cytotoxicity of CdCl2-exposed primary HUVECs. Overall, our results suggest that CdCl2-induced abnormal angiogenesis is mediated by miR-101/COX-2/VEGF-axis-dependent ER stress, and that cardiovascular dysfunction may be controlled by manipulating COX-2 at the pre-transcription, transcription, and post-transcription levels.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zi-Li Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lian-Yun Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jin-Xian Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yan-Hua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiao-Xuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
27
|
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60:101068. [PMID: 32283224 DOI: 10.1016/j.arr.2020.101068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
The progressive loss of neuronal structure and functions resulting in the death of neurons is considered as neurodegeneration. Environmental toxicants induced degeneration of neurons is accelerated with aging. In adult brains, most of the neurons are post-mitotic, and their loss results in the development of diseases like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Neurodegenerative diseases have several similarities at the sub-cellular and molecular levels, such as synaptic degeneration, oxidative stress, inflammation, and cognitive decline, which are also known in brain aging. Identification of these similarities at the molecular level offers hope for the development of new therapeutics to ameliorate all neurodegenerative diseases simultaneously. Aging is known as the most strongly associated additive factor in the pathogenesis of neurodegenerative diseases. Studies carried out so far identified several genes, which are responsible for selective degeneration of neurons in different neurodegenerative diseases. Countless efforts have been made in identifying therapeutics for neurodegenerative diseases; however, the discovery of effective therapy remains elusive. Findings made in the last two decades identified microRNAs (miRNAs) as the most potent post-transcription regulatory RNA molecule, which can condition protein levels in the cell and tissue-specific manner. Identification of miRNAs, which regulate both neurotoxicant and aging-associated degeneration of brain cells, raises the possibility that roads leading to aging and neurotoxicant induced neurodegeneration cross at some point. Identification of miRNAs, which are common to aging and neurotoxicant induced neurodegeneration, will help in understanding the complex mechanism of neurodegenerative disease development. In the future, the use of natural miRNAs in vivo in therapy will be able to tackle several issues of aging and neurodegeneration. In the present review, we have provided a summary of findings made on the role of miRNAs in neurodegeneration and explored the common link made by miRNAs between aging and neurotoxicants induced neurodegeneration.
Collapse
Affiliation(s)
- Tanisha Singh
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania-15213, USA.
| | - Sanjay Yadav
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, Munsiganj, Raebareli 229405, UP, India.
| |
Collapse
|
28
|
Hojati Z, Ganjalikhani-Hakemi M, Ameri M, Alimohammadi-Jelodar SF, Dehbashi M, Mohammad Ganji M, Homayouni V, Khanahmad H. Evaluation of Silencing Effect of miR-133a-5p Mimic on TIM-3 Expression in AML (HL-60) Cell Line. Indian J Clin Biochem 2020; 35:359-366. [PMID: 32647415 PMCID: PMC7326904 DOI: 10.1007/s12291-019-00834-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/13/2019] [Indexed: 02/05/2023]
Abstract
Acute myelogenous leukemia (AML) is a complex blood malignancy leading to immature leukemic stem cells (LSCs) proliferation. T cell immunoglobulin mucin-3 (TIM-3) is known as a biomarker of AML LSCs. Several microRNAs (miRNAs) can affect gene expression in AML. In this study, the silencing effect of miR-133a-5p on TIM-3 expression in AML cell lineage (HL-60) was investigated. It's been hypothesized that miR-133a-5p may suppress the TIM-3 expression in AML cell line. Initially, miRNA-TIM-3 prediction, enrichment, and network analysis were done. Then, miR-133a-5p mimic was transfected into HL-60 cells. The TIM-3 protein and gene expression were measured by flow cytometry analysis and real-time PCR, respectively. MTT assay was also carried out. Based on the Bioinformatics predictions, miR-133a-5p was able to silence TIM-3 expression. Also, significant pathways pertained to miR-133a-5p were obtained using enrichment analysis. According to this, miR-133a-5p was mainly engaged in the MAPK signaling pathway and Nicotine addiction pathway using the KEGG database. The TIM-3 protein expression of the transfected cells was measured as 17.15 ± 8.87% (p = 0.001). A 52.48% significant gene silencing in mRNA level was obtained in comparison to the negative control. Despite of down regulation of TIM-3, HL-60 cell viability has not been significantly changed. It has been finally confirmed that miR-133a-5p could strongly suppress TIM-3 expression in AML cell line. Presumably, down regulation of TIM-3 could affect MAPK and Nicotine addiction signaling pathways.
Collapse
Affiliation(s)
- Zohreh Hojati
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441 Iran
| | | | - Mahnaz Ameri
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441 Iran
| | | | - Moein Dehbashi
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441 Iran
| | - Maryam Mohammad Ganji
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Homayouni
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Minervini A, Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. HMGA Proteins in Hematological Malignancies. Cancers (Basel) 2020; 12:E1456. [PMID: 32503270 PMCID: PMC7353061 DOI: 10.3390/cancers12061456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mobility group AT-Hook (HMGA) proteins are a family of nonhistone chromatin remodeling proteins known as "architectural transcriptional factors". By binding the minor groove of AT-rich DNA sequences, they interact with the transcription apparatus, altering the chromatin modeling and regulating gene expression by either enhancing or suppressing the binding of the more usual transcriptional activators and repressors, although they do not themselves have any transcriptional activity. Their involvement in both benign and malignant neoplasias is well-known and supported by a large volume of studies. In this review, we focus on the role of the HMGA proteins in hematological malignancies, exploring the mechanisms through which they enhance neoplastic transformation and how this knowledge could be exploited to devise tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (A.M.); (N.C.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
30
|
Ji BY, You ZH, Cheng L, Zhou JR, Alghazzawi D, Li LP. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model. Sci Rep 2020; 10:6658. [PMID: 32313121 PMCID: PMC7170854 DOI: 10.1038/s41598-020-63735-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
In recent years, accumulating evidences have shown that microRNA (miRNA) plays an important role in the exploration and treatment of diseases, so detection of the associations between miRNA and disease has been drawn more and more attentions. However, traditional experimental methods have the limitations of high cost and time- consuming, a computational method can help us more systematically and effectively predict the potential miRNA-disease associations. In this work, we proposed a novel network embedding-based heterogeneous information integration method to predict miRNA-disease associations. More specifically, a heterogeneous information network is constructed by combining the known associations among lncRNA, drug, protein, disease, and miRNA. After that, the network embedding method Learning Graph Representations with Global Structural Information (GraRep) is employed to learn embeddings of nodes in heterogeneous information network. In this way, the embedding representations of miRNA and disease are integrated with the attribute information of miRNA and disease (e.g. miRNA sequence information and disease semantic similarity) to represent miRNA-disease association pairs. Finally, the Random Forest (RF) classifier is used for predicting potential miRNA-disease associations. Under the 5-fold cross validation, our method obtained 85.11% prediction accuracy with 80.41% sensitivity at the AUC of 91.25%. In addition, in case studies of three major Human diseases, 45 (Colon Neoplasms), 42 (Breast Neoplasms) and 44 (Esophageal Neoplasms) of top-50 predicted miRNAs are respectively verified by other miRNA-disease association databases. In conclusion, the experimental results suggest that our method can be a powerful and useful tool for predicting potential miRNA-disease associations.
Collapse
Affiliation(s)
- Bo-Ya Ji
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhu-Hong You
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li Cheng
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Ji-Ren Zhou
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Daniyal Alghazzawi
- Department of Information Systems, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Li-Ping Li
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
31
|
Amirnasr A, Verdijk RM, van Kuijk PF, Kartal P, Vriends ALM, French PJ, van Royen ME, Taal W, Sleijfer S, Wiemer EAC. Deregulated microRNAs in neurofibromatosis type 1 derived malignant peripheral nerve sheath tumors. Sci Rep 2020; 10:2927. [PMID: 32076030 PMCID: PMC7031337 DOI: 10.1038/s41598-020-59789-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/29/2020] [Indexed: 01/07/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive cancers that occur spontaneously (sporadic MPNST) or from benign plexiform neurofibromas in neurofibromatosis type 1 (NF1) patients. MPNSTs metastasize easily, are therapy resistant and are frequently fatal. The molecular changes underlying the malignant transformation in the NF1 setting are incompletely understood. Here we investigate the involvement of microRNAs in this process. MicroRNA expression profiles were determined from a series of archival, paired samples of plexiform neurofibroma and MPNST. Ninety differentially expressed microRNAs were identified between the paired samples. Three downregulated microRNAs (let-7b-5p, miR-143-3p, miR-145-5p) and two upregulated microRNAs (miR135b-5p and miR-889-3p) in MPNST were selected for functional characterization. In general, their differential expression was validated in a relevant cell line panel but only partly in a series of unpaired, fresh frozen tumor samples. As part of the validation process we also analyzed microRNA expression profiles of sporadic MPNSTs observing that microRNA expression discriminates NF1-associated and sporadic MPNSTs. The role of microRNAs in cancer progression was examined in NF1-derived MPNST cell lines by transiently modulating microRNA levels. Our findings indicate that some microRNAs affect migratory and invasive capabilities and Wnt signaling activity but the effects are distinct in different cell lines. We conclude that miRNAs play essential regulatory roles in MPNST facilitating tumor progression.
Collapse
Affiliation(s)
- Azadeh Amirnasr
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Patricia F van Kuijk
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Pinar Kartal
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Anne L M Vriends
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Pim J French
- Department of Neurology, Cancer Treatment Screening Facility (CTSF), University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Cancer Treatment Screening Facility (CTSF), Erasmus Optical Imaging Centre (OIC), University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Walter Taal
- Department of Neuro-Oncology/Neurology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Prediction of potential miRNA-disease associations using matrix decomposition and label propagation. Knowl Based Syst 2019. [DOI: 10.1016/j.knosys.2019.104963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Babaei K, Shams S, Keymoradzadeh A, Vahidi S, Hamami P, Khaksar R, Norollahi SE, Samadani AA. An insight of microRNAs performance in carcinogenesis and tumorigenesis; an overview of cancer therapy. Life Sci 2019; 240:117077. [PMID: 31751586 DOI: 10.1016/j.lfs.2019.117077] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Importance of dysregulation and expression of microRNAs (miRNAs) has been confiemed in many disorders comprising cancer. In this way, different approaches to induce reprogramming from one cell type to another in oerder to control the cell normal mechanisem, comprising microRNAs, combinatorial small molecules, exosome-mediated reprogramming, embryonic microenvironment and also lineage-specific transcription agents, are involved in cell situation. Meaningly, besides the above factors, microRNAs are so special and have an impressive role in cell reprogramming. One of the main applications of cancer cell reprogramming is it's ability in therapeutic approach. Many insights in reprogramming mechanism have been recommended, and determining improvment has been aknolwged to develop reprogramming efficiency and possibility, permiting it to appear as practical therapy against all cancers. Conspiciously, the recent studies on the fluctuations and performance of microRNAs,small endogenous non-coding RNAs, as notable factors in carcinogenesis and tumorigenesis, therapy resistance and metastasis and as new non-invasive cancer biomarkers has a remarkable attention. This is due to their unique dysregulated signatures throughout tumor progression. Recognising miRNAs signatures capable of anticipating therapy response and metastatic onset in cancers might enhance diagnosis and therapy. According to the growing reports on miRNAs as novel non-invasive biomarkers in various cancers as a main regulators of cancers drug resistance or metastasis, the quest on whether some miRNAs have the ability to regulate both simultaneously is inevitable, yet understudied. The combination of genetic diagnosis using next generation sequencing and targeted therapy may contribute to the effective precision medicine for cancer therapy. Here, we want to review the practical application of microRNAs performance in carcinogenesis and tumorigenesis in cancer therapy.
Collapse
Affiliation(s)
- Kosar Babaei
- Department of Biology, Islamic Azad University of Tonekabon Branch, Tonekabon, Iran
| | - Shima Shams
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Hamami
- Clinical Development Research Unit of Ghaem Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Roya Khaksar
- Department of Biology, Islamic Azad University of Tehran Shargh Branch, Tehran, Iran.
| | - Seyedeh Elham Norollahi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ali Akbar Samadani
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
34
|
Wang H, Zhao Y, Chen T, Liu G, He N, Hu H. MiR-371 promotes proliferation and metastasis in hepatocellular carcinoma by targeting PTEN. BMB Rep 2019. [PMID: 30940319 PMCID: PMC6549920 DOI: 10.5483/bmbrep.2019.52.5.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide. MiR-371 has recently emerged as an important regulator in tumorigenesis, and may serve as a biomarker for malignant tumors. We transfected miR-371 or its inhibitor in two human HCC cell lines, then used 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, soft agar colony formation, and transwell migration assays to evaluate the effects on cell proliferation, migration, and invasion. We found that miR-371 was positively correlated with HCC metastasis and poor prognosis in the inflicted patients, and the high expression of miR-371 was promoted, whereas a low level of miR-371 depressed cell proliferation and invasion. We found PTEN to be a direct target of miR-371. The overexpression or knockdown of PTEN exhibited the opposite effects from those of miR-371 on cell proliferation and migration. Our study demonstrates that miR-371 promotes proliferation and metastasis in HCC by targeting PTEN.
Collapse
Affiliation(s)
- Hao Wang
- Eastern Hepatobiliary Surgery Hospital (EHBH), Second Military Medical University, Shanghai City 200438, China
| | - Yi Zhao
- Eastern Hepatobiliary Surgery Hospital (EHBH), Second Military Medical University, Shanghai City 200438, China
| | - Tingsong Chen
- The Seventh People's Hospital of Shanghai, Shanghai City 200137, China
| | - Guofang Liu
- Eastern Hepatobiliary Surgery Hospital (EHBH), Second Military Medical University, Shanghai City 200438, China
| | - Nan He
- Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan 519000, China
| | - Heping Hu
- Eastern Hepatobiliary Surgery Hospital (EHBH), Second Military Medical University, Shanghai City 200438, China
| |
Collapse
|
35
|
Chen X, Wang L, Qu J, Guan NN, Li JQ. Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics 2019; 34:4256-4265. [PMID: 29939227 DOI: 10.1093/bioinformatics/bty503] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
Motivation It has been shown that microRNAs (miRNAs) play key roles in variety of biological processes associated with human diseases. In Consideration of the cost and complexity of biological experiments, computational methods for predicting potential associations between miRNAs and diseases would be an effective complement. Results This paper presents a novel model of Inductive Matrix Completion for MiRNA-Disease Association prediction (IMCMDA). The integrated miRNA similarity and disease similarity are calculated based on miRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity. The main idea is to complete the missing miRNA-disease association based on the known associations and the integrated miRNA similarity and disease similarity. IMCMDA achieves AUC of 0.8034 based on leave-one-out-cross-validation and improved previous models. In addition, IMCMDA was applied to five common human diseases in three types of case studies. In the first type, respectively, 42, 44, 45 out of top 50 predicted miRNAs of Colon Neoplasms, Kidney Neoplasms, Lymphoma were confirmed by experimental reports. In the second type of case study for new diseases without any known miRNAs, we chose Breast Neoplasms as the test example by hiding the association information between the miRNAs and Breast Neoplasms. As a result, 50 out of top 50 predicted Breast Neoplasms-related miRNAs are verified. In the third type of case study, IMCMDA was tested on HMDD V1.0 to assess the robustness of IMCMDA, 49 out of top 50 predicted Esophageal Neoplasms-related miRNAs are verified. Availability and implementation The code and dataset of IMCMDA are freely available at https://github.com/IMCMDAsourcecode/IMCMDA. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Lei Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Na-Na Guan
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
36
|
Wang X, Zhu W, Xu C, Wang F, Zhu X, Sun Y, Guo Y, Fu X, Zhang Y, Zang Y. MicroRNA-370 functions as a tumor suppressor in hepatocellular carcinoma via inhibition of the MAPK/JNK signaling pathway by targeting BEX2. J Hum Genet 2019; 64:1203-1217. [PMID: 31530937 DOI: 10.1038/s10038-019-0653-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Accumulating studies have revealed that microRNAs (miRNAs) play a critical role in the development and progression of HCC. Through microarray-based gene expression profiling of HCC, miR-370, and BEX2 were identified in HCC. Hence, this study aimed to evaluate their abilities on the cellular processes in HCC. It was determined that BEX2 was highly expressed and miR-370 was poorly expressed in HCC cell lines and tissues. Then, the cell line presenting with the highest BEX2 expression and the lowest miR-370 expression was selected for subsequent gain- and loss-of-function experimentation. The antitumor effect of miR-370 on HCC cell proliferation, invasion, migration, and apoptosis, as well as the MAPK/JNK signaling pathway was examined. Meanwhile, the interaction among miR-370, BEX2, and MAPK/JNK signaling pathway was identified. BEX2 is verified to be a target of miR-370. Moreover, miR-370 exerted antitumor effect on HCC development through suppression of the MAPK/JNK signaling pathway by targeting BEX2. Later, it was further verified by in vivo experiment that overexpression of miR-370 inhibited tumor growth. Above results provide evidence that miR-370 could downregulate BEX2 gene and inhibit activation of MAPK/JNK signaling pathway, thus inhibiting the development of HCC. It provides a worth-trying novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xin Wang
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Wenyan Zhu
- Operating Room, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Chuanshen Xu
- Transplantation Care Unit, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Feng Wang
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Xiaodan Zhu
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Yandong Sun
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Yuan Guo
- Department of Liver Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Xiaoyue Fu
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Yong Zhang
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Yunjin Zang
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China.
| |
Collapse
|
37
|
Tian Q, Zou J, Fang Y, Yu Z, Tang J, Song Y, Fan S. A Hybrid Ensemble Approach for Identifying Robust Differentially Methylated Loci in Pan-Cancers. Front Genet 2019; 10:774. [PMID: 31543899 PMCID: PMC6739624 DOI: 10.3389/fgene.2019.00774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a widely investigated epigenetic mark that plays a vital role in tumorigenesis. Advancements in high-throughput assays, such as the Infinium 450K platform, provide genome-scale DNA methylation landscapes in single-CpG locus resolution, and the identification of differentially methylated loci has become an insightful approach to deepen our understanding of cancers. However, the situation with extremely unbalanced numbers of samples and loci (approximately 1:1,000) makes it rather difficult to explore differential methylation between the sick and the normal. In this article, a hybrid approach based on ensemble feature selection for identifying differentially methylated loci (HyDML) was proposed by incorporating instance perturbation and multiple function models. Experiments on data from The Cancer Genome Atlas showed that HyDML not only achieved effective DML identification, but also outperformed the single-feature selection approach in terms of classification performance and the robustness of feature selection. The intensive analysis of the DML indicated that different types of cancers have mutual patterns, and the stable DML sharing in pan-cancers is of the great potential to be biomarkers, which may strengthen the confidence of domain experts to implement biological validations.
Collapse
Affiliation(s)
- Qi Tian
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Jianxiao Zou
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Yuan Fang
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Zhongli Yu
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Jianxiong Tang
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Ying Song
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Shicai Fan
- School of Automation Engineering, University of Electronic Science and Technology of China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
38
|
Bai X, Lu D, Lin Y, Lv Y, He L. A seven-miRNA expression-based prognostic signature and its corresponding potential competing endogenous RNA network in early pancreatic cancer. Exp Ther Med 2019; 18:1601-1608. [PMID: 31410115 PMCID: PMC6676175 DOI: 10.3892/etm.2019.7728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to establish a microRNA (miRNA/miR) signature to predict the prognosis of patients with pancreatic cancer (PC) at the early stage and to investigate the involvement of competing endogenous RNAs (ceRNAs) in PC. Using mature miRNA expression profiles from The Cancer Genome Atlas, differentially expressed miRNAs in tissues derived from patients exhibiting early PC and tissues from healthy individuals were compared. The least absolute shrinkage and selection operator regression method was used to construct a miRNA-based signature for predicting prognosis. The miRNet tool, gene set enrichment analysis (GSEA) and the LncRNADisease database were utilized to explore the mechanistic involvement of ceRNAs. A total of seven downregulated miRNAs in PC (miR-424-5p, miR-139-5p, miR-5586-5p, miR-126-3p, miR-3613-5p, miR-454-3p and miR-1271-5p) were selected to generate a signature. Based on this seven-miRNA signature, it was possible to stratify patients with PC into low- and high-risk groups. The overall survival of the low-risk group was significantly longer than that of the high-risk group (P<0.001). The seven-miRNA signature was able to predict the 2-year-survival rate of patients with early PC with an area under the curve of 0.750. Furthermore, as opposed to routine clinicopathological features, this seven-miRNA signature was an independent prognostic factor according to multivariate Cox regression analysis. GSEA indicated that the extracellular matrix receptor interaction pathway and the transforming growth factor-β signaling pathway were enriched in the high-risk group. A ceRNA network of the seven-miR signature was constructed. In conclusion, the present study provided a seven-miRNA signature, according to which patients with early PC may be divided into high- and low-risk groups. The ceRNA network of the prognostic signature was preliminarily explored.
Collapse
Affiliation(s)
- Xue Bai
- Department of Medical Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Donglan Lu
- Department of Medical Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yufeng Lv
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, Guangxi 530029, P.R. China
| | - Liusheng He
- Department of Surgery 1, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
39
|
Wei D, Yu G, Zhao Y. MicroRNA-30a-3p inhibits the progression of lung cancer via the PI3K/AKT by targeting DNA methyltransferase 3a. Onco Targets Ther 2019; 12:7015-7024. [PMID: 31695416 PMCID: PMC6717841 DOI: 10.2147/ott.s213583] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs, involved in pathological and physiological processes via regulating target genes expression. Abnormally expressed miR-30a-3p has been verified in several tumors, such as liver cancer, esophageal cancer and lung cancer. It was reported that DNA methylation plays a critical role in the tumorigenesis of lung cancer through regulated tumor suppressor genes silencing. Nevertheless, the potential mechanism of miR-30a-3p in restoring abnormal DNA methylation patterns is still unclear in lung cancer. Therefore, because the miR-30a-3p is complementary to the 3ʹ-untranslated regions (3ʹ-UTR) of DNA methyltransferase 3A (DNMT3A), we investigated whether miRNA-30a-3p could target DNMT3a to regulate the progression of lung cancer cell. Methods qRT-PCR was used to evaluate miR-30a-3p and DNMT3a mRNA expression levels in A549 lung cancer cells and normal cell line BEAS-2B. MiR-30a-3p expression plasmid was transferred into A549 cells. The target of miR-30a-3p was detected by luciferase reporter assay. Western blot was used to measure related protein expression levels. MTT assay was used to measure the proliferation of cells in each group. The cycle and apoptosis of cells were detected by flow cytometry. Results We found down-regulation of miR-30a-3p mRNA expression and up-regulation of DNMT3a mRNA expression in A549 cells. Overexpression of miR-30a-3p downregulates DNMT3a or blocked DNMT3a by interference vector, significantly inhibited the proliferation and G1/S transition in A549 cells via regulating p38 MAPK pathway, and induced the apoptosis in A549 cells via regulating Bcl-2/Bax protein levels. Furthermore, we observed the opposite phenomenon in A549 cells transfected with both miR-30a-3p and DNMT3a vector. Conclusion Our data show that miR-30a-3p suppressed the progression of lung cancer via regulating p38 MAPK pathway by targeting DNMT3A in A549 cells, indicating that miR-30a-3p might be a novel potential therapeutic strategy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Desheng Wei
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Yeping Zhao
- Department of B-Ultrasonic Room, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, People's Republic of China
| |
Collapse
|
40
|
Gan Z, Zou Q, Lin Y, Huang X, Huang Z, Chen Z, Xu Z, Lv Y. Construction and validation of a seven-microRNA signature as a prognostic tool for lung squamous cell carcinoma. Cancer Manag Res 2019; 11:5701-5709. [PMID: 31417313 PMCID: PMC6593749 DOI: 10.2147/cmar.s191637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/23/2019] [Indexed: 11/23/2022] Open
Abstract
Objective: The aim of this study was to construct and validate a microRNA (miR)-based signature as a prognostic tool for lung squamous cell carcinoma (LUSC). Materials and methods: With the use of mature miR expression profiles downloaded from The Cancer Genome Atlas database, we identified differentially expressed miRs between LUSC and matched healthy lung tissue. Thereafter, we carried out an evaluation of the association of differentially expressed miRs with overall survival (OS) with the use of univariate and multivariate Cox regression analysis. This analysis was eventually employed for the construction of a miR-based signature, which effectively predicted the prognosis. The functional enrichment analysis of the miRs included in the signature was used to explore their potential molecular mechanism in LUSC. Results: A total of 316 miRs were differentially expressed between LUSC and matched healthy lung tissues in the training set. Following the univariate and multivariate Cox regression analysis, we found that seven miRs were independent prognostic factors. Each patient received a signature index ranging from 0 to 7. Patients with LUSC were divided into high-risk, intermediate-risk, and low-risk groups in accordance with their signature index and the OS in the three groups was significantly different. This finding remains consistent in the validation set. Besides that, this seven-miR signature remained an independent prognostic factor in comparison with routine clinicopathologic features. The seven-miR signature is a promising biomarker for predicting the 5-year survival rate of LUSC with an area under the receiver operating characteristic curveof 0.712 in the training set and 0.688 in the validation set, respectively. The target genes of seven miRs may be involved in various pathways associated with lung cancer, for instance the mitogen-activated protein kinase signaling pathway and the Wnt signaling pathway. Conclusion: Using this signature, patients with LUSC can be divided into high-risk, intermediate-risk, and low-risk groups for more personalized management.
Collapse
Affiliation(s)
- Zuhuan Gan
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Qiyun Zou
- Department 1 of Internal Medicine, Affiliated Langdong Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiaoyuan Huang
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Zhong Huang
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Zhichao Chen
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Zihai Xu
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Yufeng Lv
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| |
Collapse
|
41
|
Uhr K, Prager-van der Smissen WJC, Heine AAJ, Ozturk B, van Jaarsveld MTM, Boersma AWM, Jager A, Wiemer EAC, Smid M, Foekens JA, Martens JWM. MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines. PLoS One 2019; 14:e0216400. [PMID: 31063487 PMCID: PMC6504094 DOI: 10.1371/journal.pone.0216400] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/20/2019] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. In this way they might influence whether a cell is sensitive or resistant to a certain drug. So far, only a limited number of relatively small scale studies comprising few cell lines and/or drugs have been performed. To obtain a broader view on miRNAs and their association with drug response, we investigated the expression levels of 411 miRNAs in relation to drug sensitivity in 36 breast cancer cell lines. For this purpose IC50 values of a drug screen involving 34 drugs were associated with miRNA expression data of the same breast cancer cell lines. Since molecular subtype of the breast cancer cell lines is considered a confounding factor in drug association studies, multivariate analysis taking subtype into account was performed on significant miRNA-drug associations which retained 13 associations. These associations consisted of 11 different miRNAs and eight different drugs (among which Paclitaxel, Docetaxel and Veliparib). The taxanes, Paclitaxel and Docetaxel, were the only drugs having miRNAs in common: hsa-miR-187-5p and hsa-miR-106a-3p indicative of drug resistance while Paclitaxel sensitivity alone associated with hsa-miR-556-5p. Tivantinib was associated with hsa-let-7d-5p and hsa-miR-18a-5p for sensitivity and hsa-miR-637 for resistance. Drug sensitivity was associated with hsa-let-7a-5p for Bortezomib, hsa-miR-135a-3p for JNJ-707 and hsa-miR-185-3p for Panobinostat. Drug resistance was associated with hsa-miR-182-5p for Veliparib and hsa-miR-629-5p for Tipifarnib. Pathway analysis for significant miRNAs was performed to reveal biological roles, aiding to find a potential mechanistic link for the observed associations with drug response. By doing so hsa-miR-187-5p was linked to the cell cycle G2-M checkpoint in line with this checkpoint being the target of taxanes. In conclusion, our study shows that miRNAs could potentially serve as biomarkers for intrinsic drug resistance and that pathway analyses can provide additional information in this context.
Collapse
Affiliation(s)
- Katharina Uhr
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wendy J. C. Prager-van der Smissen
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anouk A. J. Heine
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bahar Ozturk
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marijn T. M. van Jaarsveld
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius W. M. Boersma
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik A. C. Wiemer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A. Foekens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Nie ZY, Liu XJ, Zhan Y, Liu MH, Zhang XY, Li ZY, Lu YQ, Luo JM, Yang L. miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by targeting SIX1. Biosci Rep 2019; 39:BSR20190150. [PMID: 30962263 PMCID: PMC6488949 DOI: 10.1042/bsr20190150] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/25/2022] Open
Abstract
microRNAs (miRNA), as tumor suppressors or oncogenes, are involved in modulating cancer cell behavior, including cell proliferation and apoptosis. The miR-140-5p acts as a tumor suppressor in several tumors, but the role of miR-140-5p in chronic myeloid leukemia (CML) remains unclear. Here, we investigated the suppression of miR-140-5p in CML patients and CML cell lines using quantitative PCR (qPCR) and fluorescence in situ hybridization (FISH). Overexpression miR-140-5p in CML cells significantly inhibited cell proliferation as revealed by the CCK-8 assay and promoted cell apoptosis as revealed by flow cytometry. Moreover, the sine oculis homeobox 1 (SIX1) gene had been confirmed as a direct target of miR-140-5p using bioinformatics analysis and luciferase reporter assays. Overexpression of miR-140-5p decreased the SIX1 protein level in CML cells. SIX1 mRNA and protein levels were significantly up-regulated in CML patients and CML cell lines. Knockdown of SIX1 expression significantly inhibited CML cell proliferation and promoted cell apoptosis. Furthermore, SIX1 as a transcriptional factor positively regulated pyruvate kinase isozyme type M2 (PKM2) expression and played an important role in the Warburg effect. In addition, these findings indicated that miR-140-5p functions as a tumor suppressor and plays a critical role in CML cell apoptosis and metabolism by targeting SIX1. Moreover, the miR-140-5p/SIX1 axis may be a potential therapeutic target in CML.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis/genetics
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/genetics
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukocytes, Mononuclear/pathology
- Leukocytes, Mononuclear/physiology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Thyroid Hormones/genetics
- Thyroid Hormones/metabolism
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Xiao-Jun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Ying Zhan
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Meng-Han Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Xiao-Yan Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Zi-Ye Li
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Ya-Qiong Lu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| |
Collapse
|
43
|
Ahern GJ, Hennessy A, Ryan CA, Ross RP, Stanton C. Advances in Infant Formula Science. Annu Rev Food Sci Technol 2019; 10:75-102. [DOI: 10.1146/annurev-food-081318-104308] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human milk contains a plethora of nutrients and bioactive components to help nourish the developing neonate and is considered the “gold standard” for early life nutrition—as befits the only food “designed” by evolution to feed human infants. Over the past decade, there is considerable evidence that highlights the “intelligence” contained in milk components that contribute to infant health beyond basic nutrition—in areas such as programming the developing microbiome and immune system and protecting against infection. Such discoveries have led to new opportunities for infant milk formula (IMF) manufacturers to refine nutritional content in order to simulate the functionality of breast milk. These include the addition of specialized protein fractions as well as fatty acid and complex carbohydrate components—all of which have mechanistic supporting evidence in terms of improving the health and nutrition of the infant. Moreover, IMF is the single most important dietary intervention whereby the human microbiome can be influenced at a crucial early stage of development. In this respect, it is expected that the complexity of IMF will continue to increase as we get a greater understanding of how it can modulate microbiota development (including the development of probiotics, prebiotics, and synbiotics) and influence long-term health. This review provides a scientific evaluation of key features of importance to infant nutrition, including differences in milk composition and emerging “humanized” ingredients.
Collapse
Affiliation(s)
- Grace J. Ahern
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - A.A. Hennessy
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - C. Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork T12 K8AF, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| |
Collapse
|
44
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed Pharmacother 2019; 111:873-881. [PMID: 30841466 DOI: 10.1016/j.biopha.2018.12.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Today, cancer is one of the most common causes of death. Osteosarcoma (OS) is a tumor in long bones and its prevalence is high in teenagers and young people. Among the methods that used to treat cancer, one can name chemotherapy, surgery, and radiotherapy. Since these methods have some disadvantages and they are not absolutely successful, the use of microRNAs (miRNAs) is very useful in diagnosis and treatment of OS. MiRNAs are small non-coding RNA molecules, containing 18-25 nucleotides, which are involved in the regulation of gene expression via binding to messenger RNA (mRNA). These RNAs are divided into two classes of suppressors and oncogenes. During OS, there is aberrant expression of several miRNAs. Among these miRNAs are downregulation of miR-193 that has been associated with cancer occurrence. The aim of the current manuscript is to have overview on the treatment approaches of OS with special focus on miR-193.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
45
|
Lévesque N, Leclerc D, Rozen R. Folate and Epigenetics: Colorectal Cancer Risk and Detection. HANDBOOK OF NUTRITION, DIET, AND EPIGENETICS 2019:61-78. [DOI: 10.1007/978-3-319-55530-0_93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Arai T, Kojima S, Yamada Y, Sugawara S, Kato M, Yamazaki K, Naya Y, Ichikawa T, Seki N. Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p. Mol Oncol 2018; 13:322-337. [PMID: 30444038 PMCID: PMC6360383 DOI: 10.1002/1878-0261.12405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 10/27/2018] [Indexed: 12/11/2022] Open
Abstract
Androgen deprivation therapy is frequently used to treat prostate cancer (PCa), but resistance can occur, a condition known as castration‐resistant prostate cancer (CRPC). Thus, novel approaches for identification of CRPC are important for designing effective PCa treatments. Analysis of microRNA (miRNA) expression signatures by RNA sequencing showed that both passenger and guide strands of the miR‐455‐duplex (miR‐455‐5p and miR‐455‐3p, respectively) acted as antitumor miRNAs in PCa cells. The involvement of miRNA passenger strands in cancer pathogenesis is a novel concept for miRNA functionality. Based on a large patient cohort in The Cancer Genome Atlas, expression of eight miR‐455‐5p/‐3p target genes (PIR: P = 0.0137, LRP8: P = 0.0495, IGFBP3: P = 0.0172, DMBX1: P = 0.0175, CCDC64: P = 0.0446, TUBB1: P = 0.0149, KIF21B: P = 0.0336, and NFAM1: P = 0.0013) was significantly associated with poor prognosis of PCa patients. Here, we focused on PIR (pirin), a highly conserved member of the cupin superfamily. PIR expression was directly regulated by miR‐455‐5p, and PIR overexpression was detected in hormone‐sensitive prostate cancer (HSPC) surgical specimens and CRPC autopsy specimens. Loss‐of‐function assays using siRNA or an inhibitor (bisamide) showed that downregulation of PIR expression blocked cancer cell migration and invasion. Moreover, the miR‐455‐5p/PIR axis contributed to cancer cell aggressiveness. These results suggest that PIR might be a promising diagnostic marker for HSPC and CRPC. Furthermore, CRPC treatment strategies targeting PIR may be possible in the future. Identification of antitumor miRNAs, including miRNA passenger strands, may contribute to the development of new diagnostic markers and therapeutic strategies for CRPC.
Collapse
Affiliation(s)
- Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Sho Sugawara
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Kazuto Yamazaki
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
47
|
Chen X, Zhang DH, You ZH. A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J Transl Med 2018; 16:348. [PMID: 30537965 PMCID: PMC6290528 DOI: 10.1186/s12967-018-1722-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. Electronic supplementary material The online version of this article (10.1186/s12967-018-1722-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
| | - De-Hong Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Ürümqi, 830011, China.
| |
Collapse
|
48
|
Gao Y, Deng K, Liu X, Dai M, Chen X, Chen J, Chen J, Huang Y, Dai S, Chen J. Molecular mechanism and role of microRNA-93 in human cancers: A study based on bioinformatics analysis, meta-analysis, and quantitative polymerase chain reaction validation. J Cell Biochem 2018; 120:6370-6383. [PMID: 30390344 DOI: 10.1002/jcb.27924] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Currently, studies have shown that microRNA-93 (miR-93) can be an oncogene or a tumor suppressor in different kinds of cancers. The role of miR-93 in human cancers is inconsistent and the underlying mechanism on the aberrant expression of miR-93 is complicated. METHODS We first conducted gene enrichment analysis to give insight into the prospective mechanism of miR-93. Second, we performed a meta-analysis to evaluate the clinical value of miR-93. Finally, a validation test based on quantitative polymerase chain reaction (qPCR) was performed to further investigate the role of miR-93 in pan-cancer. RESULTS Gene Ontology (GO) enrichment analysis results showed that the target genes of miR-93 were closely related to transcription, and MAPK1, RBBP7 and Smad7 became the hub genes. In the diagnostic meta-analysis, the overall sensitivity, specificity, and area under the curve were 0.76 (0.64-0.85), 0.82 (0.64-0.92), and 0.85 (0.82-0.88), respectively, which suggested that miR-93 had excellent performance on the diagnosis for human cancers. In the prognostic meta-analysis, dysregulated miR-93 was found to be associated with poor OS in cancer patients. In the qPCR validation test, the serum levels of miR-93 were upregulated in breast cancer, breast hyperplasia, lung cancer, chronic obstructive pulmonary disease, nasopharyngeal cancer, hepatocellular cancer, gastric ulcer, endometrial cancer, esophageal cancer, laryngeal cancer, and prostate cancer compared with healthy controls. CONCLUSIONS miR-93 could act as an effective diagnostic and prognostic factor for cancer patients. Its clinical value for cancer early diagnosis and survival prediction is promising.
Collapse
Affiliation(s)
- Yun Gao
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Kaifeng Deng
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xuexiang Liu
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meiyu Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xiaoli Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jifei Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jianming Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yujie Huang
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shengming Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jingfan Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
49
|
Hajalirezay Yazdi S, Paryan M, Mohammadi-Yeganeh S. An integrated approach of bioinformatic prediction and in vitro analysis identified that miR-34a targets MET and AXL in triple-negative breast cancer. Cell Mol Biol Lett 2018; 23:51. [PMID: 30386383 PMCID: PMC6201502 DOI: 10.1186/s11658-018-0116-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer among women, and AXL and MET are the key genes in the PI3K/AKT/mTOR pathway as critical elements in proliferation and invasion of cancer cells. MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of genes. METHODS Bioinformatic approaches were used to find a miRNA that simultaneously targets both AXL and MET 3'-UTRs. The expression of target miRNA was evaluated in triple-negative (MDA-MB-231) and HER2-overexpressing (SK-BR-3) breast cancer cell lines as well as normal breast cells, MCF-10A, using quantitative real-time PCR. Then, the miRNA was overexpressed in normal and cancer cell lines using a lentiviral vector system. Afterwards, effects of overexpressed miRNA on the expression of AXL and MET genes were evaluated using quantitative real-time PCR. RESULTS By applying bioinformatic software and programs, miRNAs that target the 3'-UTR of both AXL and MET mRNAs were determined, and according to the scores, miR-34a was selected for further analyses. The expression level of miR-34a in MDA-MB-231 and SK-BR-3 was lower than that of MCF-10A. Furthermore, AXL and MET expression in SK-BR-3 and MDA-MB-231 was lower and higher, respectively, than that of MCF-10A. After miR-34a overexpression, MET and AXL were downregulated in MDA-MB-231. In addition, MET was downregulated in SK-BR-3, while AXL was upregulated in this cell line. CONCLUSIONS These findings may indicate that miR-34a is an oncogenic miRNA, downregulated in the distinct breast cancer subtypes. It also targets MET and AXL 3'-UTRs in triple-negative breast cancer. Therefore, it can be considered as a therapeutic target in this type of breast cancer.
Collapse
Affiliation(s)
- Shadan Hajalirezay Yazdi
- 0000 0001 0706 2472grid.411463.5Department of Cellular and Molecular Biology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Paryan
- 0000 0000 9562 2611grid.420169.8Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- grid.411600.2Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Determination of Changes in the Expression of MIR-212 and EGFR Genes in Clinical Samples from Areas Infected with Trichophyton rubrum Compared with Non-Infected Areas. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.62885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|