1
|
Shagufta, Ahmad I. Transition metal complexes as proteasome inhibitors for cancer treatment. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Zhang G, Zhang W. Protein-protein interaction network analysis of insecticide resistance molecular mechanism in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21523. [PMID: 30478906 DOI: 10.1002/arch.21523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/15/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
The problem of resistance has not been solved fundamentally at present, because the development speed of new insecticides can not keep pace with the development speed of resistance, and the lack of understanding of molecular mechanism of resistance. Here we collected seed genes and their interacting proteins involved in insecticide resistance molecular mechanism in Drosophila melanogaster by literature mining and the String database. We identified a total of 528 proteins and 13514 protein-protein interactions. The protein interaction network was constructed by String and Pajek, and we analyzed the topological properties, such as degree centrality and eigenvector centrality. Proteasome complexes and drug metabolism-cytochrome P450 were an enrichment by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. This is the first time to explore the insecticide resistance molecular mechanism of D. melanogaster by the methods and tools of network biology, it can provide the bioinformatic foundation for further understanding the mechanisms of insecticide resistance.
Collapse
Affiliation(s)
- GuiLu Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - WenJun Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Lu JF, Pokharel D, Padula MP, Bebawy M. A novel method to detect translation of membrane proteins following microvesicle intercellular transfer of nucleic acids. J Biochem 2016; 160:281-289. [PMID: 27154960 DOI: 10.1093/jb/mvw033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/17/2016] [Indexed: 12/24/2022] Open
Abstract
Microvesicles (MVs) serve as vectors of nucleic-acid dissemination and are important mediators of intercellular communication. However, the functionality of packaged nucleic acids on recipient cells following transfer of MV cargo has not been clearly elucidated. This limitation is attributed to a lack of methodology available in assessing protein translation following homotypic intercellular transfer of nucleic acids. Using surface peptide shaving we have demonstrated that MVs derived from human leukaemic cells transfer functional P-glycoprotein transcripts, conferring drug-efflux capacity to recipient cells. We demonstrate expression of newly synthesized protein using Western blot. Furthermore, we show functionality of translated P-gp protein in recipient cells using Calcein-AM dye exclusion assays on flow cytometry. Newly synthesized 170 kDa P-gp was detected in recipient cells after coculture with shaven MVs and these proteins were functional, conferring drug efflux. This is the first demonstration of functionality of transferred nucleic acids between human homotypic cells as well as the translation of the cancer multidrug-resistance protein in recipient cells following intercellular transfer of its transcript. This study supports the significant role of MV's in the transfer of deleterious traits in cancer populations and describes a new paradigm in mechanisms governing the acquisition of traits in cancer cell populations.
Collapse
Affiliation(s)
- Jamie F Lu
- Discipline of Pharmacy, the Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| | - Deep Pokharel
- Discipline of Pharmacy, the Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, New South Wales 2007, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, the Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
4
|
Identification of proteasome subunit beta type 2 associated with deltamethrin detoxification in Drosophila Kc cells by cDNA microarray analysis and bioassay analyses. Gene 2016; 582:85-93. [DOI: 10.1016/j.gene.2016.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 11/17/2022]
|
5
|
Hu J, Xu Q, Chi Q, Liu W, Li F, Cheng L. IDENTIFICATION OF PROTEASOME ALPHA6 SUBUNIT ASSOCIATED WITH DELTAMETHRIN RESISTANCE IN Drosophila melanogaster Kc CELLS. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:124-134. [PMID: 26764169 DOI: 10.1002/arch.21313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Differential expression of the proteasome alpha6 (prosalpha6) was previously reported between Plutella xylostella strains that are resistant or susceptible to the pesticide deltamethrin (DM). This finding indicated that the prosalpha6 may be involved in DM resistance. In this article, qPCR analysis revealed that the prosalpha6 was also significantly upregulated in Drosophila Kc cells treated with DM. To better understand the contribution of prosalpha6 in DM resistance, RNA interference, heterologous expression, and a proteasome inhibitor (MG-132) were used. MG-132 was used to suppress proteasomal activity, and the dsRNA was designed to block the function of prosalpha6. The results indicated that both MG-132 and prosalpha6 knockdown decreased the cellular viability following DM treatment. Prosalpha6 was cloned and transfected into Drosophila Kc cells. The result showed that overexpression of prosalpha6 in Drosophila Kc cells conferred some protection against DM. Taken together, our results indicate that prosalpha6 is involved in Drosophila cells DM resistance.
Collapse
Affiliation(s)
- Junli Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qin Xu
- College of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, China
| | - Qingping Chi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fengliang Li
- Institute of Plant Protection, Guizhou Academy of Agriculture Science, Guiyang, China
| | - Luogen Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
Sun L, Ye Y, Sun H, Yu J, Zhang L, Sun Y, Zhang D, Ma L, Shen B, Zhu C. Identification of proteasome subunit beta type 6 (PSMB6) associated with deltamethrin resistance in mosquitoes by proteomic and bioassay analyses. PLoS One 2013; 8:e65859. [PMID: 23762443 PMCID: PMC3677870 DOI: 10.1371/journal.pone.0065859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 05/01/2013] [Indexed: 11/25/2022] Open
Abstract
Deltamethrin (DM) insecticides are currently being promoted worldwide for mosquito control, because of the high efficacy, low mammalian toxicity and less environmental impact. Widespread and improper use of insecticides induced resistance, which has become a major obstacle for the insect-borne disease management. Resistance development is a complex and dynamic process involving many genes. To better understand the possible molecular mechanisms involved in DM resistance, a proteomic approach was employed for screening of differentially expressed proteins in DM-susceptible and -resistant mosquito cells. Twenty-seven differentially expressed proteins were identified by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). Four members of the ubiquitin-proteasome system were significantly elevated in DM-resistant cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM resistance. Proteasome subunit beta type 6 (PSMB6) is a member of 20S proteasomal subunit family, which forms the proteolytic core of 26S proteasome. We used pharmaceutical inhibitor and molecular approaches to study the contributions of PSMB6 in DM resistance: the proteasome inhibitor MG-132 and bortezomib were used to suppress the proteasomal activity and siRNA was designed to block the function of PSMB6. The results revealed that both MG-132 and bortezomib increased the susceptibility in DM-resistant cells and resistance larvae. Moreover, PSMB6 knockdown decreased cellular viability under DM treatment. Taken together, our study indicated that PSMB6 is associated with DM resistance in mosquitoes and that proteasome inhibitors such as MG-132 or bortezomib are suitable for use as a DM synergist for vector control.
Collapse
Affiliation(s)
- Linchun Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Pediatric Research Center, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Yuting Ye
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Haibo Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jing Yu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Li Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, Jiangsu, P. R. China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
7
|
Schmitt SM, Frezza M, Dou QP. New applications of old metal-binding drugs in the treatment of human cancer. Front Biosci (Schol Ed) 2012; 4:375-91. [PMID: 22202066 DOI: 10.2741/274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significant advances in the use of metal complexes, precipitated by platinum, have fostered a renewed interest in harnessing their rich potential in the treatment of cancer. In addition to platinum-based complexes, the anticancer properties of other metals such as ruthenium have been realized, and ruthenium-based compounds are currently being investigated in clinical trials. Since the process of drug development can be expensive and cumbersome, finding new applications of existing drugs may provide effective means to expedite the regulatory process in bringing new drugs to the clinical setting. Encouraging findings from laboratory studies reveal significant anticancer activity from different classes of metal-chelating compounds, such as disulfiram, clioquinol, and dithiocarbamate derivatives that are currently approved for the treatment of various pathological disorders. Their use as coordination complexes with metals such as copper, zinc, and gold that target the ubiquitin-proteasome pathway have shown significant promise as potential anticancer agents. This review discusses the unique role of several selected metals in relation to their anti-cancer properties as well as the new therapeutic potential of several previously approved metal-chelating drugs. In vitro and in vivo experimental evidence along with mechanisms of action (e.g., via targeting the tumor proteasome) will also be discussed with anticipation of strengthening this exciting new concept.
Collapse
Affiliation(s)
- Sara M Schmitt
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
8
|
Scaife L, Hodgkinson VC, Drew PJ, Lind MJ, Cawkwell L. Differential proteomics in the search for biomarkers of radiotherapy resistance. Expert Rev Proteomics 2011; 8:535-52. [PMID: 21819306 DOI: 10.1586/epr.11.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The individualization of radiotherapy treatment would be beneficial for cancer patients; however, there are no predictive biomarkers of radiotherapy resistance in routine clinical use. This article describes the body of work in this field where comparative proteomics methods have been used for the discovery of putative biomarkers associated with radiotherapy resistance. A large number of differentially expressed proteins have been reported, mostly from the study of novel radiotherapy-resistant cell lines. Here, we have assessed these putative biomarkers through the discovery, confirmation and validation phases of the biomarker pipeline, and inform the reader on the current status of proteomics-based findings. Suggested avenues for future work are discussed.
Collapse
Affiliation(s)
- Lucy Scaife
- Cancer Biology Proteomics Group, Postgraduate Medical Institute of the University of Hull, UK
| | | | | | | | | |
Collapse
|
9
|
Elfadl D, Hodgkinson VC, Long ED, Scaife L, Drew PJ, Lind MJ, Cawkwell L. A pilot study to investigate the role of the 26S proteasome in radiotherapy resistance and loco-regional recurrence following breast conserving therapy for early breast cancer. Breast 2011; 20:334-7. [PMID: 21411324 DOI: 10.1016/j.breast.2011.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/11/2011] [Accepted: 02/21/2011] [Indexed: 11/29/2022] Open
Abstract
Breast conserving therapy is a currently accepted method for managing patients with early stage breast cancer. However, approximately 7% of patients may develop loco-regional tumour recurrence within 5 years. We previously reported that expression of the 26S proteasome may be associated with radio-resistance. Here we aimed to analyse the 26S proteasome in a pilot series of early breast cancers and correlate the findings with loco-regional recurrence. Fourteen patients with early breast cancer who developed loco-regional recurrence within 4 years of completing breast conserving therapy were selected according to strict criteria and compared with those from 14 patients who were disease-free at 10 years. Decreased expression of the 26S proteasome was significantly associated with radio-resistance, manifested as the development of a loco-regional recurrence within 4 years of breast conserving therapy (p = 0.018). This small pilot study provides further suggestion that the 26S proteasome may be associated with response to radiotherapy.
Collapse
Affiliation(s)
- Dalia Elfadl
- Cancer Biology Proteomics Group, Postgraduate Medical Institute of the University of Hull, Hull, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Ma Q, Geng Y, Xu W, Wu Y, He F, Shu W, Huang M, Du H, Li M. The role of translationally controlled tumor protein in tumor growth and metastasis of colon adenocarcinoma cells. J Proteome Res 2010; 9:40-9. [PMID: 19621893 DOI: 10.1021/pr9001367] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Translationally controlled tumor protein (TCTP) plays a major role in a broad array of biological processes. However, the TCTP-related biological process and interactive proteins still remain poorly characterized. In the present study, we found that knockdown of TCTP inhibited proliferation, migration, and invasion activities of LoVo cells in vitro and in vivo. The whole-cell proteomes were compared by 2D gel electrophoresis before and after knockdown of TCTP. Alterations in 27 proteins were detected and their identities were revealed by mass spectrometry analysis. Components of Ubiquitin-Proteasome System, proteins involved in the cytoskeleton biosynthesis and tumor metastasis were found to be changed upon TCTP removal. These results imply that TCTP might play at least a partial role in colon adenocarcinoma progression.
Collapse
Affiliation(s)
- Qiang Ma
- The Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Proteomic identification of putative biomarkers of radiotherapy resistance: a possible role for the 26S proteasome? Neoplasia 2010; 11:1194-207. [PMID: 19881955 DOI: 10.1593/neo.09902] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/16/2009] [Accepted: 07/21/2009] [Indexed: 11/18/2022] Open
Abstract
PURPOSE We aimed to identify putative predictive protein biomarkers of radioresistance. EXPERIMENTAL DESIGN Three breast cancer cell lines (MCF7, MDA-MB-231, and T47D) were used as in vitro models to study radioresistance. Inherent radiosensitivities were examined using a clonogenic survival assay. It was revealed that each cell line differed in their response to radiotherapy. These parental breast cancer cell lines were used to establish novel derivatives (MCF7RR, MDA-MB-231RR, and T47DRR) displaying significant resistance to ionizing radiation. Derivative cells were compared with parental cells to identify putative biomarkers associated with the radioresistant phenotype. To identify these biomarkers, complementary proteomic screening approaches were exploited encompassing two-dimensional gel electrophoresis in combination with mass spectrometry, liquid chromatography coupled with tandem mass spectrometry and quantitative proteomics using iTRAQ technology. RESULTS A large number of potential biomarkers were identified, and several of these were confirmed using Western blot analysis. In particular, a decrease in the expression of the 26S proteasome was found in all radioresistant derivatives when compared with the respective parent cells. Decreased expression of this target was also found to be associated with radioresistant laryngeal tumors (P = .05) in a small pilot immunohistochemical study. CONCLUSIONS These findings suggest that the 26S proteasome may provide a general predictive biomarker for radiotherapy outcome.
Collapse
|
12
|
Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun 2009; 390:743-9. [PMID: 19835841 DOI: 10.1016/j.bbrc.2009.10.042] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 12/13/2022]
Abstract
Salinomycin is a polyether antibiotic isolated from Streptomyces albus that acts in different biological membranes as a ionophore with a preference for potassium. It is widely used as an anticoccidial drug in poultry and is fed to ruminants to improve nutrient absorption and feed efficiency. Salinomycin has recently been shown to selectively deplete human breast cancer stem cells from tumorspheres and to inhibit breast cancer growth and metastasis in mice. We show here that salinomycin induces massive apoptosis in human cancer cells of different origin, but not in normal cells such as human T lymphocytes. Moreover, salinomycin is able to induce apoptosis in cancer cells that exhibit resistance to apoptosis and anticancer agents by overexpression of Bcl-2, P-glycoprotein or 26S proteasomes with enhanced proteolytic activity. Salinomycin activates a distinct apoptotic pathway that is not accompanied by cell cycle arrest and that is independent of tumor suppressor protein p53, caspase activation, the CD95/CD95L system and the proteasome. Thus, salinomycin should be considered as a novel and effective anticancer agent that overcomes multiple mechanisms of apoptosis resistance in human cancer cells.
Collapse
|
13
|
Hiss DC, Gabriels GA. Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part II: targeting cell cycle events, caspases, NF-κB and the proteasome. Expert Opin Drug Discov 2009; 4:907-21. [PMID: 23480539 DOI: 10.1517/17460440903055032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS), the unfolded protein response (UPR) and apoptosis signal transduction pathways are fundamental to normal cellular homeostasis and survival, but are exploited by cancer cells to promote the cancer phenotype. OBJECTIVE Collateral activation of ERS and UPR role players impact on cell growth, cell cycle arrest or apoptosis, genomic stability, tumour initiation and progression, tumour aggressiveness and drug resistance. An understanding of these processes affords promising prospects for specific cancer drug targeting of the ERS, UPR and apoptotic pathways. METHOD This review (Part II of II) brings forward the latest developments relevant to the molecular connections among cell cycle regulators, caspases, NF-κB, and the proteasome with ERS and UPR signalling cascades, their functions in apoptosis induction, apoptosis resistance and oncogenesis, and how these relationships can be exploited for targeted cancer therapy. CONCLUSION Overall, ERS, the UPR and apoptosis signalling cascades (the molecular therapeutic targets) and the development of drugs that attack these targets signify a success story in cancer drug discovery, but a more reductionist approach is necessary to determine the precise molecular switches that turn on antiapoptotic and pro-apoptotic programmes.
Collapse
Affiliation(s)
- Donavon C Hiss
- Head, Molecular Oncology Research Programme, University of the Western Cape, Department of Medical BioSciences, Bellville, 7535, South Africa +27 21 959 2334 ; +27 959 1563 ;
| | | |
Collapse
|