1
|
The Telomerase Inhibitor MST-312 Interferes with Multiple Steps in the Herpes Simplex Virus Life Cycle. J Virol 2015; 89:9804-16. [PMID: 26178994 DOI: 10.1128/jvi.01006-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The life cycle of herpes simplex virus (HSV) has the potential to be further manipulated to yield novel, more effective therapeutic treatments. Recent research has demonstrated that HSV-1 can increase telomerase activity and that expression of the catalytic component of telomerase, telomerase reverse transcriptase (TERT), alters sensitivity to HSV-dependent apoptosis. Telomerase is a cellular enzyme that synthesizes nucleotide repeats at the ends of chromosomes (telomeres), which prevents shortening of the 3' ends of DNA with each cell division. Once telomeres reach a critical length, cells undergo senescence and apoptosis. Here, we used a cell-permeable, reversible inhibitor of the telomerase enzyme, MST-312, to investigate telomerase activity during HSV infection. Human mammary epithelial cells immortalized through TERT expression and human carcinoma HEp-2 cells were infected with the KOS1.1 strain of HSV-1 in the presence of MST-312. MST-312 treatment reduced the number of cells displaying a cytopathic effect and the accumulation of immediate early and late viral proteins. Moreover, the presence of 20 μM to 100 μM MST-312 during infection led to a 2.5- to 5.5-log10 decrease in viral titers. MST-312 also inhibited the replication of HSV-2 and a recent clinical isolate of HSV-1. Additionally, we determined that MST-312 has the largest impact on viral events that take place prior to 5 h postinfection (hpi). Furthermore, MST-312 treatment inhibited virus replication, as measured by adsorption assays and quantification of genome replication. Together, these findings demonstrate that MST-312 interferes with the HSV life cycle. Further investigation into the mechanism for MST-312 is warranted and may provide novel targets for HSV therapies. IMPORTANCE Herpes simplex virus (HSV) infections can lead to cold sores, blindness, and brain damage. Identification of host factors that are important for the virus life cycle may provide novel targets for HSV antivirals. One such factor, telomerase, is the cellular enzyme that synthesizes DNA repeats at the ends of chromosomes during replication to prevent DNA shortening. In this study, we investigate role of telomerase in HSV infection. The data demonstrate that the telomerase inhibitor MST-312 suppressed HSV replication at multiple steps of viral infection.
Collapse
|
2
|
Wang N, Xu D, Sofiadis A, Höög A, Vukojević V, Bäckdahl M, Zedenius J, Larsson C. Telomerase-dependent and independent telomere maintenance and its clinical implications in medullary thyroid carcinoma. J Clin Endocrinol Metab 2014; 99:E1571-9. [PMID: 24758186 PMCID: PMC4207931 DOI: 10.1210/jc.2014-1158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CONTEXT Telomere maintenance via telomerase activation and the alternative lengthening of telomeres (ALT) mechanism was assessed in medullary thyroid carcinoma. SETTING AND DESIGN In total, 42 medullary thyroid carcinomas (MTC) were studied including 24 rearranged during transfection (RET)- mutated cases. Relative telomerase reverse transcriptase (TERT) expression, splice forms, and telomere length were determined by PCR-based methods, and telomerase activity by ELISA. The ALT mechanism was detected by Southern blot analysis and immunofluorescence. RESULTS TERT expression and telomerase activity were detected in 21/42 tumors (50%), and was independent of the common somatic M918T RET mutation. Mean telomere length was shorter in MTCs compared with thyroids. Telomerase activation was associated with large tumor size (P = .027), advanced clinical stage (P = .0001), and short survival (P = .0001). Full-length TERT and the α(-) and β(-)-deletion forms were revealed, and the full-length form was associated with short survival (P = .04). A subset of cases without telomerase activation showed involvement of the ALT mechanism, which was associated with a low MIB-1 proliferation index (P = .024). CONCLUSIONS Stabilization of telomeres by telomerase activation occurs in half of the MTCs and by the ALT mechanism in a subset of cases. Telomerase activation may be used as an additional prognostic marker in medullary thyroid carcinoma.
Collapse
Affiliation(s)
- Na Wang
- Department of Oncology-Pathology (N.W., A.S., A.H., C.L.), Department of Medicine, Division of Hematology (D.X.), Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Department of Molecular Medicine and Surgery (M.B., J.Z.), Karolinska Institutet, SE-171 76 Stockholm, Sweden; Cancer Center Karolinska (N.W., A.S., A.H., C.L.), Department of Pathology-Cytology (A.H.), Department of Breast and Endocrine Surgery (M.B., J.Z.), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Padberg I, Janßen S, Meyer TF. Chlamydia trachomatis inhibits telomeric DNA damage signaling via transient hTERT upregulation. Int J Med Microbiol 2013; 303:463-74. [PMID: 23830072 DOI: 10.1016/j.ijmm.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 05/27/2013] [Accepted: 06/02/2013] [Indexed: 01/30/2023] Open
Abstract
Epidemiological data exist to support a positive association between Chlamydia trachomatis (Ctr) infection and gynecological cancers; however, putative cellular mechanisms for this association are lacking. Here, we identified Ctr-induced perturbations to host cell phenotypes in vitro that persisted after clearance of infection and could directly contribute to host cell transformation. In particular, human telomerase catalytic subunit (hTERT) mRNA expression and catalytic subunit activity were increased in acute infected late passage IMR90E1A cells. hTERT upregulation was accompanied by recruitment of ceramide, a known regulator of hTERT, to the chlamydial inclusion and was abrogated following doxycycline-mediated infection clearance. In cells cleared of Ctr infection, average telomere length was slightly increased and immunofluorescence staining of the DNA damage marker γH2A.X was reduced after clearance of infection compared with cells that had not been infected. Reduced p53 binding to the promoter of the cell cycle checkpoint regulator p21 was also detected in cells cleared of infection and p21 levels were reduced; moreover, this cell population exhibited increased resistance to etoposide-induced DNA damage. Thus, Ctr infection altered cell aging and survival pathways, which persisted after infection clearance. Cells that survive infection are likely to exhibit altered physiology, as evidenced by an increased resistance to DNA damage-induced apoptosis, which may support cellular transformation.
Collapse
Affiliation(s)
- Inken Padberg
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | | | | |
Collapse
|
4
|
Flicker K, Ulz P, Höger H, Zeitlhofer P, Haas OA, Behmel A, Buchinger W, Scheuba C, Niederle B, Pfragner R, Speicher MR. High-resolution analysis of alterations in medullary thyroid carcinoma genomes. Int J Cancer 2011; 131:E66-73. [PMID: 22038905 DOI: 10.1002/ijc.26494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/05/2011] [Accepted: 09/22/2011] [Indexed: 01/20/2023]
Abstract
Hereditary and sporadic medullary thyroid carcinoma (MTC) are closely associated with RET proto-oncogene mutations. However, the role of additional changes in the tumor genomes remains unclear. Our objective was the identification of chromosomal regions involved in MTC tumorigenesis and to assess their significance by using MTC-derived cell lines. We used array-CGH (comparative genomic hybridization) to map chromosomal imbalances in 52 primary tumors and ten metastases. Eleven tumors (11/52, 21%) were hereditary and 41 (41/52, 79%) were sporadic. Among the latter, 15 tumors (15/41, 37%) harbored RET mutations. Furthermore, we characterized five MTC cell lines in detail and evaluated the tumorigenicity by severe combined immunodeficiency (SCID)-mouse experiments. Most MTCs had only few copy number changes, and losses of chromosomes 1p, 4q, 19p and 22q were observed most frequently. The number of chromosomal aberrations increased in metastases. Twenty-three percent (12/52) of the primary tumors did not even show any chromosomal gains and losses. We injected three cell lines (two of these were without chromosomal changes and pathogenic RET mutations) into immune deficient SCID mice, and in each case, we observed rapid tumor growth at the injection sites. Our data suggest that MTCs--in contrast to most other tumor entities--do not acquire a multitude of genomic imbalances. SCID mouse experiments performed with chromosomally normal cell lines and without RET mutations suggest that presently unknown submicroscopic genomic changes are sufficient in MTC tumorigenesis.
Collapse
Affiliation(s)
- Karin Flicker
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Schwach G, Thamyongkit P, Reith LM, Svejda B, Knör G, Pfragner R, Schoefberger W. A water soluble tri-cationic porphyrin-EDTA conjugate induces apoptosis in human neuroendocrine tumor cell lines. Bioorg Chem 2011; 40:108-113. [PMID: 22024042 PMCID: PMC3268353 DOI: 10.1016/j.bioorg.2011.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 11/05/2022]
Abstract
In this study, a completely water soluble tri-cationic porphyrin–EDTA conjugate was synthesized. We present data demonstrating the tumoristatic effects of the novel fully water soluble cationic porphyrin TMPy3PhenEDTA-P-Cl4 in the dark, in the medullary thyroid carcinoma cell lines MTC-SK and SHER-I and weaker effects in the small intestinal neuroendocrine tumor cell line KRJ-I. In addition, cytotoxic effects were also studied in normal human fibroblasts that represent normal tissue and the results are compared to the tumor cell lines.
Collapse
Affiliation(s)
- Gert Schwach
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Austria
| | - Patchanita Thamyongkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Lorenz Michael Reith
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Bernhard Svejda
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Austria
| | - Günther Knör
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Roswitha Pfragner
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Austria.
| | - Wolfgang Schoefberger
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria.
| |
Collapse
|
6
|
Wang Y, Meeker AK, Kowalski J, Tsai HL, Somervell H, Heaphy C, Sangenario LE, Prasad N, Westra WH, Zeiger MA, Umbricht CB. Telomere length is related to alternative splice patterns of telomerase in thyroid tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1415-24. [PMID: 21763260 DOI: 10.1016/j.ajpath.2011.05.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/19/2011] [Accepted: 05/11/2011] [Indexed: 01/02/2023]
Abstract
Telomere dysfunction and aberrant telomerase expression play important roles in tumorigenesis. In thyroid tumors, three possibly inhibitory splice variants of the active full-length isoform of human telomerase reverse transcriptase (hTERT) may be expressed. These variants might regulate telomerase activity and telomere length because it is the fraction of the full-length isoform, rather than the total transcript level, that correlates with enzymatic activity. Telomerase reactivation may be critical in the early stages of tumorigenesis, when progressive telomere shortening may be limiting cell viability. The aim of this study was to investigate the relationship between telomere length and hTERT splice variant expression patterns in benign and well-differentiated malignant thyroid tumors. Telomere lengths of 61 thyroid tumors were examined by fluorescence in situ hybridization, comparing tumors with adjacent normal thyroid tissue on the same slide. Expression patterns of hTERT splice variants were evaluated by quantitative and nested RT-PCR. Telomere length was inversely correlated with percentage of full-length hTERT expression rather than with total hTERT expression levels. Short telomeres and high fractions of full-length hTERT transcripts were associated with follicular and papillary thyroid carcinomas, whereas long telomeres and low levels of full-length hTERT were associated with benign thyroid nodules. Intermediate levels of full-length hTERT and telomere length were found in follicular variant of papillary thyroid carcinomas and follicular adenomas.
Collapse
Affiliation(s)
- Yongchun Wang
- Department of Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wolbank S, van Griensven M, Grillari-Voglauer R, Peterbauer-Scherb A. Alternative sources of adult stem cells: human amniotic membrane. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 123:1-27. [PMID: 20237903 DOI: 10.1007/10_2010_71] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.
Collapse
Affiliation(s)
- Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1200 Vienna, Austria
| | | | | | | |
Collapse
|
8
|
Current World Literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:401-5. [PMID: 19687666 DOI: 10.1097/med.0b013e32833118e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Wolbank S, Stadler G, Peterbauer A, Gillich A, Karbiener M, Streubel B, Wieser M, Katinger H, van Griensven M, Redl H, Gabriel C, Grillari J, Grillari-Voglauer R. Telomerase immortalized human amnion- and adipose-derived mesenchymal stem cells: maintenance of differentiation and immunomodulatory characteristics. Tissue Eng Part A 2009; 15:1843-54. [PMID: 19125642 PMCID: PMC3092731 DOI: 10.1089/ten.tea.2008.0205] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell banking of mesenchymal stem cells (SCs) from various human tissues has significantly increased the feasibility of SC-based therapies. Sources such as adipose tissue and amnion offer outstanding possibilities for allogeneic transplantation due to their high differentiation potential and their ability to modulate immune reaction. Limitations, however, concern the reduced replicative potential as a result of progressive telomere erosion, which hampers scaleable production and long-term analysis of these cells. Here we report the establishment and characterization of two human amnion-derived and two human adipose-derived SC lines immortalized by ectopic expression of the catalytic subunit of human telomerase (hTERT). hTERT overexpression resulted in continuously growing SC lines that were largely unaltered concerning surface marker profile, morphology, karyotype, and immunosuppressive capacity with similar or enhanced differentiation potential for up to 87 population doublings. While all generated lines showed equal immunomodulation compared to the parental cells, one of the amnion-derived immortalized lines resulted in significantly increased immunogenicity. Although telomerase proves as important tool for immortalizing cells, our data emphasize the need for careful and standardized characterization of each individual cell population for cell banks.
Collapse
Affiliation(s)
- Susanne Wolbank
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
- Austrian Cluster for Tissue Regeneration, Vienna/Linz, Austria
| | - Guido Stadler
- Austrian Cluster for Tissue Regeneration, Vienna/Linz, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna/Linz, Austria
- Bio-Products & Bio-Engineering AG, Vienna, Austria
| | - Anja Peterbauer
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
- Austrian Cluster for Tissue Regeneration, Vienna/Linz, Austria
| | - Astrid Gillich
- Department of Biotechnology, Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Michael Karbiener
- Department of Biotechnology, Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Berthold Streubel
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wieser
- Department of Biotechnology, Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Hermann Katinger
- Department of Biotechnology, Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Martijn van Griensven
- Austrian Cluster for Tissue Regeneration, Vienna/Linz, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna/Linz, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, Vienna/Linz, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna/Linz, Austria
| | - Christian Gabriel
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
- Austrian Cluster for Tissue Regeneration, Vienna/Linz, Austria
| | - Johannes Grillari
- Department of Biotechnology, Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Regina Grillari-Voglauer
- Department of Biotechnology, Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
Jursik C, Prchal M, Grillari-Voglauer R, Drbal K, Fuertbauer E, Jungfer H, Albert WH, Steinhuber E, Hemetsberger T, Grillari J, Stockinger H, Katinger H. Large-scale production and characterization of novel CD4+ cytotoxic T cells with broad tumor specificity for immunotherapy. Mol Cancer Res 2009; 7:339-53. [PMID: 19240181 DOI: 10.1158/1541-7786.mcr-07-2208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune-cell-based approaches using cytotoxic and dendritic cells are under constant scrutiny to design novel therapies for the treatment of tumors. These strategies are hampered by the lack of efficient and economical large-scale production methods for effector cells. Here we describe the propagation of large amounts of a unique population of CD4(+) cytotoxic T cells, which we termed tumor killer T cells (TKTC), because of their potent and broad antitumor cell activity. With this cultivation strategy, TKTCs from peripheral blood mononuclear cells are generated within a short period of time using a pulse with a stimulating cell line followed by continuous growth in serum-free medium supplemented with a mixture of interleukin-2 and cyclosporin A. Expression and functional profiling did not allow a classification of TKTCs to any thus far defined subtype of T cells. Cytotoxic assays showed that TKTCs kill a panel of tumor targets of diverse tissue origin while leaving normal cells unaffected. Blocking experiments revealed that TKTC killing was, to a significant extent, mediated by tumor necrosis factor-related apoptosis-inducing ligand and was independent of MHC restriction. These results suggest that TKTCs have a high potential as a novel tool in the adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Claudia Jursik
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|