1
|
Kim JE, Kim JH, Lee Y, Yang H, Heo YS, Bode AM, Lee KW, Dong Z. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase. Oncotarget 2018; 7:14616-27. [PMID: 26910280 PMCID: PMC4924739 DOI: 10.18632/oncotarget.7524] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
Bakuchiol is a meroterpene present in the medicinal plant Psoralea corylifolia, which has been traditionally used in China, India, Japan and Korea for the treatment of premature ejaculation, knee pain, alopecia spermatorrhea, enuresis, backache, pollakiuria, vitiligo, callus, and psoriasis. Here, we report the chemopreventive properties of bakuchiol, which acts by inhibiting epidermal growth factor (EGF)-induced neoplastic cell transformation. Bakuchiol also decreased viability and inhibited anchorage-independent growth of A431 human epithelial carcinoma cells. Bakuchiol reduced A431 xenograft tumor growth in an in vivo mouse model. Using kinase profiling, we identified Hck, Blk and p38 mitogen activated protein kinase (MAPK) as targets of bakuchiol, which directly bound to each kinase in an ATP-competitive manner. Bakuchiol also inhibited EGF-induced signaling pathways downstream of Hck, Blk and p38 MAPK, including the MEK/ERKs, p38 MAPK/MSK1 and AKT/p70S6K pathways. This report is the first mechanistic study identifying molecular targets for the anticancer activity of bakuchiol and our findings indicate that bakuchiol exhibits potent anticancer activity by targeting Hck, Blk and p38 MAPK.
Collapse
Affiliation(s)
- Jong-Eun Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea.,The Hormel Institute, University of Minnesota, MN 55912, USA.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Younghyun Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hee Yang
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong-Seok Heo
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, MN 55912, USA
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, MN 55912, USA
| |
Collapse
|
2
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
3
|
El Mourdi I, Canivet A, Joncker NT, Bellard E, Allart S. High accuracy 4D cell tracking into explanted skin using two-photon excitation microscopy. Microsc Res Tech 2015; 78:294-301. [PMID: 25663489 DOI: 10.1002/jemt.22474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/29/2014] [Indexed: 11/08/2022]
Abstract
Two-photon excitation microscopy (2PEM) analysis of large explanted organs is still laborious, principally because of tissue movements inducing lateral and axial drifts during extended imaging sessions. Here, we describe a two-step approach to track motile T cells in murine dorsal explanted skin with the best accuracy. First, we compared various explanted skin mounting methods for 2PEM analysis to define the setup allowing for minimal sample drift over time. Second, we developed two algorithms with the ImageJ software (National Institute of Health, Bethesda, MD) to correct the residual drift using lateral and axial registration of the collagen network. Finally, we applied the macro we developed to track fluorescent T cells in explanted skin. We found that our newly developed macro is more efficient than freely or commercially available software for shift correction, leading to more accurate velocity calculations. Our work provides a practical guide for investigators interested to employ skin-imaging approaches and offers a free alternative to commercial software for correcting lateral and axial drifts.
Collapse
Affiliation(s)
- I El Mourdi
- Inserm, UMR1043, Toulouse, France; CNRS, UMR5282, Toulouse, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Imaging Core Facility, Inserm, UMR1043, Toulouse, France
| | | | | | | | | |
Collapse
|
4
|
Ku M, Wall M, MacKinnon RN, Walkley CR, Purton LE, Tam C, Izon D, Campbell L, Cheng HC, Nandurkar H. Src family kinases and their role in hematological malignancies. Leuk Lymphoma 2015; 56:577-86. [PMID: 24898666 DOI: 10.3109/10428194.2014.907897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Src family protein tyrosine kinases (SFKs) are non-receptor intracellular kinases that have important roles in both hematopoiesis and leukemogenesis. The derangement of their expression or activation has been demonstrated to contribute to hematological malignancies. This review first examines the mechanisms of SFK overexpression and hyperactivation, emphasizing the dysregulation of the upstream modulators. Subsequently, the role of SFK up-regulation in the initiation, progression and therapy resistance of many hematological malignancies is also analyzed. The presented evidence endeavors to highlight the influence of SFK up-regulation on an extensive number of hematological malignancies and the need to consider them as candidates in targeted anticancer therapy.
Collapse
Affiliation(s)
- Matthew Ku
- Haematology Department and Victorian Cancer Cytogenetics Service, St Vincent's Hospital , Fitzroy , Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Macrophages are motile leukocytes, targeted by HIV-1, thought to play a critical role in host dissemination of the virus. However, whether infection impacts their migration capacity remains unknown. We show that 2-dimensional migration and the 3-dimensional (3D) amoeboid migration mode of HIV-1-infected human monocyte-derived macrophages were inhibited, whereas the 3D mesenchymal migration was enhanced. The viral protein Nef was necessary and sufficient for all HIV-1-mediated effects on migration. In Nef transgenic mice, tissue infiltration of macrophages was increased in a tumor model and in several tissues at steady state, suggesting a dominant role for mesenchymal migration in vivo. The mesenchymal motility involves matrix proteolysis and podosomes, cell structures constitutive of monocyte-derived cells. Focusing on the mechanisms used by HIV-1 Nef to control the mesenchymal migration, we show that the stability, size, and proteolytic function of podosomes are increased via the phagocyte-specific kinase Hck and Wiskott-Aldrich syndrome protein (WASP), 2 major regulators of podosomes. In conclusion, HIV-1 reprograms macrophage migration, which likely explains macrophage accumulation in several patient tissues, which is a key step for virus spreading and pathogenesis. Moreover, Nef points out podosomes and the Hck/WASP signaling pathway as good candidates to control tissue infiltration of macrophages, a detrimental phenomenon in several diseases.
Collapse
|
6
|
Reimand J, Bader GD. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol 2013; 9:637. [PMID: 23340843 PMCID: PMC3564258 DOI: 10.1038/msb.2012.68] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022] Open
Abstract
Large-scale cancer genome sequencing has uncovered thousands of gene mutations, but distinguishing tumor driver genes from functionally neutral passenger mutations is a major challenge. We analyzed 800 cancer genomes of eight types to find single-nucleotide variants (SNVs) that precisely target phosphorylation machinery, important in cancer development and drug targeting. Assuming that cancer-related biological systems involve unexpectedly frequent mutations, we used novel algorithms to identify genes with significant phosphorylation-associated SNVs (pSNVs), phospho-mutated pathways, kinase networks, drug targets, and clinically correlated signaling modules. We highlight increased survival of patients with TP53 pSNVs, hierarchically organized cancer kinase modules, a novel pSNV in EGFR, and an immune-related network of pSNVs that correlates with prolonged survival in ovarian cancer. Our findings include multiple actionable cancer gene candidates (FLNB, GRM1, POU2F1), protein complexes (HCF1, ASF1), and kinases (PRKCZ). This study demonstrates new ways of interpreting cancer genomes and presents new leads for cancer research.
Collapse
Affiliation(s)
- Jüri Reimand
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Dincer S, Cetin KT, Onay-Besikci A, Ölgen S. Synthesis, biological evaluation and docking studies of new pyrrolo[2,3-d] pyrimidine derivatives as Src family-selective tyrosine kinase inhibitors. J Enzyme Inhib Med Chem 2012; 28:1080-7. [DOI: 10.3109/14756366.2012.715288] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sebla Dincer
- Department of Chemistry, Faculty of Science, Ankara University,
Tandoğan, Ankara, Turkey
| | - Kadir Taylan Cetin
- Department of Chemistry, Faculty of Science, Ankara University,
Tandoğan, Ankara, Turkey
| | - Arzu Onay-Besikci
- Department of Pharmacology, Faculty of Pharmacy, Ankara University,
Tandoğan, Ankara, Turkey
| | - Süreyya Ölgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University,
Tandoğan, Ankara, Turkey
| |
Collapse
|
8
|
Expressing murine p56Hck(ca) promotes HeLa cells' motility and invasion via triggering redistribution of F-actin and microtubules. Mol Biol Rep 2012; 39:6521-7. [PMID: 22350262 DOI: 10.1007/s11033-012-1480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 01/24/2012] [Indexed: 10/28/2022]
Abstract
Hck is the unique example among the Src PTKs to be expressed as two isoforms, which are generated by alternative translation. The two isoforms differs from each other by a 21 N-terminal amino acids sequence which supports myristoylation. Though it has been shown that these different acylation states govern the different subcellular localization of the isoforms and each Hck isoform could play a specific role, little study focus on the function of p56Hck. To investigated the role of p56Hck isoform in cell migration, GFP targeted p56Hck plasmid and its constitutively active form were constructed and transiently transfected into HeLa cells, F-actin staining and Indirect immunofluorescence for microtubules were then performed. Phagokinetic track motility assay and In vitro invasion assays were also investigated after transiently transfection respectively. In this study, we found ectopically expressing a constitutively active form of 56Hck will lead to membrane protrusion and F-actin reorganization in HeLa cells. Both 56Hck and its constitutive active form will lead to redistribution of microtubules and enhancement of cell motility and cell invasion. Hck inhibitor PP2 supplementation eliminated cell motility and cell invasion of p56Hck while PP3, a negative control of PP2 didn't eliminate cell motility and cell invasion of p56Hck. It is indicated that enhanced cell motility and cell invasion in p56Hck ectopically expressed HeLa cells are the results of reorganization of F-actin and microtubules.
Collapse
|
9
|
Sanjmyatav J, Junker K, Matthes S, Muehr M, Sava D, Sternal M, Wessendorf S, Kreuz M, Gajda M, Wunderlich H, Schwaenen C. Identification of genomic alterations associated with metastasis and cancer specific survival in clear cell renal cell carcinoma. J Urol 2011; 186:2078-83. [PMID: 21944119 DOI: 10.1016/j.juro.2011.06.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Indexed: 01/17/2023]
Abstract
PURPOSE We identified regions of DNA copy number changes that are significantly associated with metastasis and clinical outcome in patients with clear cell renal cell carcinoma. MATERIALS AND METHODS We analyzed 53 primary clear cell renal cell carcinomas, including 31 metastasized and 22 nonmetastasized tumors, by array comparative genomic hybridization with a median resolution of 1 to 1.5 Mbp. To validate copy number aberrations with potential prognostic value we performed fluorescence in situ hybridization analysis using commercially available fluorescent probes. RESULTS We identified 5 recurrent chromosomal aberrations that were significantly associated with metastasis, including gains of 1q21.3, 12q13.12, 12q13.3q14.1 and 20q11.21q13.2, and loss of 9p21.3p24.1. The most prominent of them with the highest OR for metastatic risk were loss of 9p21.3p24.1, and gains of 1q21.3 and 20q11.21q13.32. Eight alterations involving chromosomes 7, 9, 12, 16 and 20 significantly correlated with shortened cancer specific survival. The lowest p values on Kaplan-Meier analysis showed losses of 9p21.3p24.1 and 9q32q33.1, and gains of 7q36.3 and 20q11.21q13.32. Fluorescence in situ hybridization done in the same cohort for the 4 select regions 1q21.3, 7q36.3, 9p21.3p24.1 and 20q11.21q13.32 clearly confirmed the results of array comparative genomic hybridization. CONCLUSIONS Data suggest that specific chromosomal alterations in clear cell renal cell carcinoma can be used to predict metastasis and cancer specific survival in patients with clear cell renal cell carcinoma. It seems possible to design a combined fluorescence in situ hybridization assay based on these genetic targets for outcome prediction, which can be used for routine diagnostics.
Collapse
Affiliation(s)
- Jimsgene Sanjmyatav
- Department of Urology and Pathology, Jena University Hospital, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Van Goethem E, Guiet R, Balor S, Charrière GM, Poincloux R, Labrousse A, Maridonneau-Parini I, Le Cabec V. Macrophage podosomes go 3D. Eur J Cell Biol 2011; 90:224-36. [PMID: 20801545 DOI: 10.1016/j.ejcb.2010.07.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/01/2010] [Accepted: 07/15/2010] [Indexed: 01/05/2023] Open
Abstract
Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work sets the scene for future studies of molecular and cellular processes regulating macrophage trans-migration.
Collapse
Affiliation(s)
- Emeline Van Goethem
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis. Blood 2009; 115:1444-52. [PMID: 19897576 DOI: 10.1182/blood-2009-04-218735] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue infiltration of phagocytes exacerbates several human pathologies including chronic inflammations or cancers. However, the mechanisms involved in macrophage migration through interstitial tissues are poorly understood. We investigated the role of Hck, a Src-family kinase involved in the organization of matrix adhesion and degradation structures called podosomes. In Hck(-/-) mice submitted to peritonitis, we found that macrophages accumulated in interstitial tissues and barely reached the peritoneal cavity. In vitro, 3-dimensional (3D) migration and matrix degradation abilities, 2 protease-dependent properties of bone marrow-derived macrophages (BMDMs), were affected in Hck(-/-) BMDMs. These macrophages formed few and undersized podosome rosettes and, consequently, had reduced matrix proteolysis operating underneath despite normal expression and activity of matrix metalloproteases. Finally, in fibroblasts unable to infiltrate matrix, ectopic expression of Hck provided the gain-of-3D migration function, which correlated positively with formation of podosome rosettes. In conclusion, spatial organization of podosomes as large rosettes, proteolytic degradation of extracellular matrix, and 3D migration appeared to be functionally linked and regulated by Hck in macrophages. Hck, as the first protein combining a phagocyte-limited expression with a role in 3D migration, could be a target for new anti-inflammatory and antitumor molecules.
Collapse
|