1
|
Das UN. Lipoxin A4 (LXA4) as a Potential Drug for Diabetic Retinopathy. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:177. [PMID: 40005295 PMCID: PMC11857424 DOI: 10.3390/medicina61020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 02/27/2025]
Abstract
The purpose of this review is to propose that lipoxin A4 (LXA4), derived from arachidonic acid (AA), a potent anti-inflammatory, cytoprotective, and wound healing agent, may be useful to prevent and manage diabetic retinopathy (DR). LXA4 suppresses inappropriate angiogenesis and the production of pro-inflammatory prostaglandin E2 (PGE2), leukotrienes (LTs), 12-HETE (12-hydroxyeicosatetraenoic acid), derived from AA by the action of 12-lioxygenase (12-LOX)) interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), as well as the expression of NF-κB, inducible NO (nitric oxide) synthase (iNOS), cyclooxygenase-2 (COX-2), intracellular adhesion molecule-1 (ICAM-1), and vascular endothelial growth factor (VEGF)-factors that play a role in DR. Thus, the intravitreal injection of LXA4 may form a new approach to the treatment of DR and other similar conditions such as AMD (age-associated macular degeneration) and SARS-CoV-2-associated hyperinflammatory immune response in the retina. The data for this review are derived from our previous work conducted in individuals with DR and from various publications on LXA4, inflammation, and DR.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA
| |
Collapse
|
2
|
Tuerhong N, Yang Y, Wang C, Huang P, Li Q. Interactions between platelets and the cancer immune microenvironment. Crit Rev Oncol Hematol 2024; 199:104380. [PMID: 38718939 DOI: 10.1016/j.critrevonc.2024.104380] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Cancer is a leading cause of death in both China and developed countries due to its high incidence and low cure rate. Immune function is closely linked to the development and progression of tumors. Platelets, which are primarily known for their role in hemostasis, also play a crucial part in the spread and progression of tumors through their interaction with the immune microenvironment. The impact of platelets on tumor growth and metastasis depends on the type of cancer and treatment method used. This article provides an overview of the relationship between platelets and the immune microenvironment, highlighting how platelets can either protect or harm the immune response and cancer immune escape. We also explore the potential of available platelet-targeting strategies for tumor immunotherapy, as well as the promise of new platelet-targeted tumor therapy methods through further research.
Collapse
Affiliation(s)
- Nuerye Tuerhong
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou university, No. 222 South Tianshui Road, Gansu, China
| | - Peng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Liu X, Gao Y, Fu L, Li X, Ma J. Cutaneous Melanoma and 486 Human Blood Metabolites: A Mendelian Randomization Study. Aesthetic Plast Surg 2024; 48:2545-2552. [PMID: 38438761 DOI: 10.1007/s00266-024-03873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) has long been recognized as a lethal form of cancer. Despite persistent research endeavors, the precise underlying pathological mechanisms remain largely unclear, and the optimal treatment for this patient population remains undetermined. OBJECTIVES This study aims to examine the causal associations between CM and 486 metabolites. METHODS A two-sample Mendelian randomization (MR) analysis was conducted to ascertain the causal relationship between blood metabolites and CM. The causality analysis involved the inverse variance weighted (IVW) method, followed by the MR-Egger and weighted median (WM) methods. To increase the robustness of our findings, several sensitivity analyses, including the MR-Egger intercept, Cochran's Q test, and MR-pleiotropy residual sum and outlier (MR-PRESSO), were performed. The robustness of our results was further validated in independent outcome samples followed by a meta-analysis. Additionally, a metabolic pathway analysis was carried out. RESULTS The two-sample MR analysis yielded a total of 27 metabolites as potential causal metabolites. After incorporating the outcomes of the sensitivity analyses, seven causal metabolites remained. Palmitoylcarnitine (OR 0.9903 95% CI 0.9848-0.9958, p = 0.0005) emerged as the sole metabolite with a significant causality after Bonferroni correction. Furthermore, the reverse MR analysis provided no evidence of reverse causality from CM to the identified metabolites. CONCLUSIONS This study suggested a causal relationship between seven human blood metabolites and the development of CM, thereby offering novel insights into the underlying mechanisms involved. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xuanchen Liu
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Gao
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Fu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Li
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiguang Ma
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Helal SA, Gerges SH, El-Kadi AOS. Enantioselectivity in some physiological and pathophysiological roles of hydroxyeicosatetraenoic acids. Drug Metab Rev 2024; 56:31-45. [PMID: 38358327 DOI: 10.1080/03602532.2023.2284110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 02/16/2024]
Abstract
The phenomenon of chirality has been shown to greatly impact drug activities and effects. Different enantiomers may exhibit different effects in a certain biological condition or disease state. Cytochrome P450 (CYP) enzymes metabolize arachidonic acid (AA) into a large variety of metabolites with a wide range of activities. Hydroxylation of AA by CYP hydroxylases produces hydroxyeicosatetraenoic acids (HETEs), which are classified into mid-chain (5, 8, 9, 11, 12, and 15-HETE), subterminal (16-, 17-, 18- and 19-HETE) and terminal (20-HETE) HETEs. Except for 20-HETE, these metabolites exist as a racemic mixture of R and S enantiomers in the physiological system. The two enantiomers could have different degrees of activity or sometimes opposing effects. In this review article, we aimed to discuss the role of mid-chain and subterminal HETEs in different organs, importantly the heart and the kidneys. Moreover, we summarized their effects in some conditions such as neutrophil migration, inflammation, angiogenesis, and tumorigenesis, with a focus on the reported enantiospecific effects. We also reported some studies using genetically modified models to investigate the roles of HETEs in different conditions.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Hébert MPA, Selka A, Lebel AA, Doiron JA, Isabel Chiasson A, Gauvin VL, Matthew AJ, Hébert MJG, Doucet MS, Joy AP, Barnett DA, Touaibia M, Surette ME, Boudreau LH. Caffeic acid phenethyl ester analogues as selective inhibitors of 12-lipoxygenase product biosynthesis in human platelets. Int Immunopharmacol 2023; 121:110419. [PMID: 37295028 DOI: 10.1016/j.intimp.2023.110419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
The inflammatory response is an essential process for the host defence against pathogens. Lipid mediators are important in coordinating the pro-inflammatory and pro-resolution phases of the inflammatory process. However, unregulated production of these mediators has been associated with chronic inflammatory diseases such as arthritis, asthma, cardiovascular diseases, and several types of cancer. Therefore, it is not surprising that enzymes implicated in the production of these lipid mediators have been targeted for potential therapeutic approaches. Amongst these inflammatory molecules, the 12-hydroxyeicosatetraenoic acid (12(S)-HETE) is abundantly produced in several diseases and is primarily biosynthesized via the platelet's 12-lipoxygenase (12-LO) pathway. To this day, very few compounds selectively inhibit the 12-LO pathway, and most importantly, none are currently used in the clinical settings. In this study, we investigated a series of polyphenol analogues of natural polyphenols that inhibit the 12-LO pathway in human platelets without affecting other normal functions of the cell. Using an ex vivo approach, we found one compound that selectively inhibited the 12-LO pathway, with IC50 values as low as 0.11 µM, with minimal inhibition of other lipoxygenase or cyclooxygenase pathways. More importantly, our data show that none of the compounds tested induced significant off-target effects on either the platelet's activation or its viability. In the continuous search for specific and better inhibitors targeting the regulation of inflammation, we characterized two novel inhibitors of the 12-LO pathway that could be promising for subsequent in vivo studies.
Collapse
Affiliation(s)
- Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Ayyoub Selka
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andréa A Lebel
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Jérémie A Doiron
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Audrey Isabel Chiasson
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Vanessa L Gauvin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Alexis J Matthew
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Martin J G Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Marco S Doucet
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andrew P Joy
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - David A Barnett
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada.
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada.
| |
Collapse
|
6
|
Patil S, Reedy JL, Scroggins BT, White AO, Kwon S, Shankavaram U, López-Coral A, Chung EJ, Citrin DE. Senescence-associated tumor growth is promoted by 12-Lipoxygenase. Aging (Albany NY) 2022; 14:1068-1086. [PMID: 35158337 PMCID: PMC8876904 DOI: 10.18632/aging.203890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Radiation therapy is a commonly used treatment modality for cancer. Although effective in providing local tumor control, radiation causes oxidative stress, inflammation, immunomodulatory and mitogenic cytokine production, extracellular matrix production, and premature senescence in lung parenchyma. The senescence associated secretory phenotype (SASP) can promote inflammation and stimulate alterations in the surrounding tissue. Therefore, we hypothesized that radiation-induced senescent parenchymal cells in irradiated lung would enhance tumor growth. Using a murine syngeneic tumor model of melanoma and non-small cell lung cancer lung metastasis, we demonstrate that radiation causes a significant increase in markers of premature senescence in lung parenchyma within 4 to 8 weeks. Further, injection of B16F0 (melanoma) or Lewis Lung carcinoma (epidermoid lung cancer) cells at these time points after radiation results in an increase in the number and size of pulmonary tumor nodules relative to unirradiated mice. Treatment of irradiated mice with a senolytic agent (ABT-737) or agents that prevent senescence (rapamycin, INK-128) was sufficient to reduce radiation-induced lung parenchymal senescence and to mitigate radiation-enhanced tumor growth. These agents abrogated radiation-induced expression of 12-Lipoxygenase (12-LOX), a molecule implicated in several deleterious effects of senescence. Deficiency of 12-LOX prevented radiation-enhanced tumor growth. Together, these data demonstrate the pro-tumorigenic role of radiation-induced senescence, introduces the dual TORC inhibitor INK-128 as an effective agent for prevention of radiation-induced normal tissue senescence, and identifies senescence-associated 12-LOX activity as an important component of the pro-tumorigenic irradiated tissue microenvironment. These studies suggest that combining senotherapeutic agents with radiotherapy may decrease post-therapy tumor growth.
Collapse
Affiliation(s)
- Shilpa Patil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Reedy
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alfonso López-Coral
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Kuhnert R, Kuhnert L, Sárosi M, George S, Draca D, Paskas S, Hofmann B, Steinhilber D, Honscha W, Mijatović S, Maksimović‐Ivanić D, Hey‐Hawkins E. Borcalein: a Carborane-Based Analogue of Baicalein with 12-Lipoxygenase-Independent Toxicity. ChemMedChem 2022; 17:e202100588. [PMID: 34694057 PMCID: PMC9298951 DOI: 10.1002/cmdc.202100588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Indexed: 11/11/2022]
Abstract
12-Lipoxygenase is crucial for tumour angiogenesis. 5,6,7-Trihydroxy-2-phenyl-4H-1-benzopyran-4-one (baicalein) is a suitable inhibitor for this enzyme but is rapidly metabolised in vivo. Thus, an improvement of the metabolic stability is necessary to enhance the therapeutic efficiency. An emerging approach to enhance metabolic stability of carbon-based pharmaceuticals is the use of metabolically stable, non-toxic boron clusters, such as dicarba-closo-dodecaborane(12)s (carboranes) as phenyl mimetics. Therefore, the unsubstituted phenyl ring of baicalein was replaced by meta-carborane, resulting in borcalein, the carborane analogue of baicalein. This substitution resulted in a decreased inhibitory activity toward 12-lipoxygenase, but led to increased toxicity in melanoma (A375, B16, B16F10) and colon cancer cell lines (SW480, HCT116, CT26CL25) with decreased tumour selectivity in comparison to baicalein. Surprisingly, borcalein displays a different mechanism of cytotoxicity with increased intracellular production of reactive oxygen species (ROS), reactive nitrogen species (RNS) and nitric oxide (NO).
Collapse
Affiliation(s)
- Robert Kuhnert
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Lydia Kuhnert
- Institute of Pharmacology, Pharmacy and ToxicologyFaculty of Veterinary MedicineLeipzig UniversityAn den Tierkliniken 1504103LeipzigGermany
| | - Menyhárt‐B. Sárosi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Sven George
- Institute of Pharmaceutical ChemistryUniversity of FrankfurtMax-von-Laue-Straße 960438FrankfurtGermany
| | - Dijana Draca
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Svetlana Paskas
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Bettina Hofmann
- Institute of Pharmaceutical ChemistryUniversity of FrankfurtMax-von-Laue-Straße 960438FrankfurtGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryUniversity of FrankfurtMax-von-Laue-Straße 960438FrankfurtGermany
| | - Walther Honscha
- Institute of Pharmacology, Pharmacy and ToxicologyFaculty of Veterinary MedicineLeipzig UniversityAn den Tierkliniken 1504103LeipzigGermany
| | - Sanja Mijatović
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Danijela Maksimović‐Ivanić
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
8
|
Phytogalactolipid dLGG Inhibits Mouse Melanoma Brain Metastasis through Regulating Oxylipin Activity and Re-Programming Macrophage Polarity in the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13164120. [PMID: 34439274 PMCID: PMC8391228 DOI: 10.3390/cancers13164120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Metastatic brain melanoma is a common metastatic cancer with a high mortality rate. Current clinical regimens use the anti-angiogenesis drug bevacizumab (Avastin) and/or Lipo-DOX, a drug capable penetrating the blood–brain barrier; however, both commonly result in adverse side effects and limited treatment results. This study provides evidence to support the function of a phyto-glyceroglycolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) in inhibiting melanoma brain metastasis (MBM) in mice through reprogramming the tumor microenvironment and interacting with melanoma cells and macrophages. The novel function of oxylipin 9,10-EpOMEs + 12,13-EpOMEs in preventing melanoma cell invasion and microglia/macrophage distribution and polarization in the tumor microenvironment is presented. The novel anti-melanoma function and underlying molecular mechanism of dLGG proposed herein can be considered as a novel therapeutic strategy to combat MBM. Abstract Current conventional cancer therapies for melanoma brain metastasis (MBM) remain ineffective. In this study, we demonstrated the bioefficacy of a phyto-glyceroglycolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) alone, or in combination with liposomal doxorubicin (Lip-DOX) or Avastin against MBM in a syngeneic B16BM4COX−2/Luc brain-seeking melanoma mouse model. Treatment with dLGG–10, dLGG–25, dLGG–10 + Avastin–5, Lipo-DOX–2, dLGG–10 + Lipo-DOX–2 or Lipo-DOX–2 + Avastin–5 suppressed, respectively, 17.9%, 59.1%, 55.7%, 16.2%, 44.5% and 72.4% of MBM in mice relative to the untreated tumor control. Metastatic PD-L1+ melanoma cells, infiltration of M2-like macrophages and CD31+ endothelial cells, and high expression levels of 15-LOX/CYP450 4A enzymes in the brain tumor microenvironment of the tumor control mice were significantly attenuated in dLGG-treated mice; conversely, M1-like resident microglia and cytotoxic T cells were increased. A lipidomics study showed that dLGG promoted B16BM4 cells to secrete oxylipins 9,10-/12,13-EpOMEs into the culture medium. Furthermore, the conditioned medium of B16BM4 cells pretreated with dLGG or 9,10-EpOMEs + 12,13-EpOMEs drove M2-like macrophages to polarize into M1-like macrophages in vitro. An ex vivo 3D-culture assay further demonstrated that dLGG, 9,10-EpOME or 9,10-EpOME + 12,13-EpOME pretreatment attenuated B16BM4 cells invading brain tissue, and prevented microglia/macrophages infiltrating into the interface of melanoma plug and brain organ/tissue. In summary, this report provides a novel therapeutic strategy and mechanistic insights into phytogalactolipid dLGG for combating MBM.
Collapse
|
9
|
Mori Y, Kawakami Y, Kanzaki K, Otsuki A, Kimura Y, Kanji H, Tanaka R, Tsukayama I, Hojo N, Suzuki-Yamamoto T, Kawakami T, Takahashi Y. Arachidonate 12S-lipoxygenase of platelet-type in hepatic stellate cells of methionine and choline-deficient diet-fed mice. J Biochem 2021; 168:455-463. [PMID: 32492133 DOI: 10.1093/jb/mvaa062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
A role of 12-lipoxygenase in the progression of non-alcoholic steatohepatitis (NASH) is suggested, although the underlying mechanism is not entirely understood. The catalytic activity of 12S-lipoxygenase that was hardly observed in liver cytosol of normal chow-fed mice was clearly detectable in that of NASH model mice prepared by feeding a methionine and choline-deficient (MCD) diet. The product profile, substrate specificity and immunogenicity indicated that the enzyme was the platelet-type isoform. The expression levels of mRNA and protein of platelet-type 12S-lipoxygenase in the liver of MCD diet-fed mice were significantly increased compared with those of normal chow-fed mice. Immunohistochemical analysis showed that platelet-type 12S-lipoxygenase colocalized with α-smooth muscle actin as well as vitamin A in the cells distributing along liver sinusoids. These results indicate that the expression level of platelet-type 12S-lipoxygenase in hepatic stellate cells was increased during the cell activation in MCD diet-fed mice, suggesting a possible role of the enzyme in pathophysiology of liver fibrosis.
Collapse
Affiliation(s)
- Yoshiko Mori
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Keita Kanzaki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan.,Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan
| | - Akemi Otsuki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yuka Kimura
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Hibiki Kanji
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Ryoma Tanaka
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Izumi Tsukayama
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Nana Hojo
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Takayo Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| |
Collapse
|
10
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
11
|
Abstract
The tumor immune landscape gained considerable interest based on the knowledge that genetic aberrations in cancer cells alone are insufficient for tumor development. Macrophages are basically supporting all hallmarks of cancer and owing to their tremendous plasticity they may exert a whole spectrum of anti-tumor and pro-tumor activities. As part of the innate immune response, macrophages are armed to attack tumor cells, alone or in concert with distinct T cell subsets. However, in the tumor microenvironment, they sense nutrient and oxygen gradients, receive multiple signals, and respond to this incoming information with a phenotype shift. Often, their functional output repertoire is shifted to become tumor-supportive. Incoming and outgoing signals are chemically heterogeneous but also comprise lipid mediators. Here, we review the current understanding whereby arachidonate metabolites derived from the cyclooxygenase and lipoxygenase pathways shape the macrophage phenotype in a tumor setting. We discuss these findings in the context of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) expression and concomitant prostaglandin E2 (PGE2) formation. We elaborate the multiple actions of this lipid in affecting macrophage biology, which are sensors for and generators of this lipid. Moreover, we summarize properties of 5-lipoxygenases (ALOX5) and 15-lipoxygenases (ALOX15, ALOX15B) in macrophages and clarify how these enzymes add to the role of macrophages in a dynamically changing tumor environment. This review will illustrate the potential routes how COX-2/mPGES-1 and ALOX5/-15 in macrophages contribute to the development and progression of a tumor.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ryan G Snodgrass
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
| |
Collapse
|
12
|
Doucet MS, Jougleux JL, Poirier SJ, Cormier M, Léger JL, Surette ME, Pichaud N, Touaibia M, Boudreau LH. Identification of Peracetylated Quercetin as a Selective 12-Lipoxygenase Pathway Inhibitor in Human Platelets. Mol Pharmacol 2019; 95:139-150. [PMID: 30404890 DOI: 10.1124/mol.118.113480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/31/2018] [Indexed: 02/14/2025] Open
Abstract
The inflammatory response is necessary for the host's defense against pathogens; however, uncontrolled or unregulated production of eicosanoids has been associated with several types of chronic inflammatory diseases. Thus, it is not surprising that enzymes implicated in the production of eicosanoids have been strategically targeted for potential therapeutic approaches. The 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] lipid mediator is among inflammatory molecules that are abundantly produced in various diseases and is primarily biosynthesized via the 12(S)-lipoxygenase pathway. The effects of the abundance of 12(S)-HETE and its contribution to several chronic inflammatory diseases have been well studied over the last few years. While most developed compounds primarily target the 5-lipoxygenase (5-LO) or the cyclooxygenase (COX) pathways, very few compounds selectively inhibiting the 12-lipoxygenase (12-LO) pathway are known. In this study, we examined whether the distribution of hydroxyl groups among flavones could influence their potency as 12-LO inhibitors. Using human platelets, the human embryonic kidney 293 (HEK293) cell line expressing 5-LO, and human polymorphonuclear leukocytes (PMNLs) we investigated the effects of these compounds on several inflammatory pathways, namely, 12-LO, 5-LO, and COX. Using high-resolution respirometry and flow cytometry, we also evaluated some normal cell functions that could be modulated by our compounds. We identified a peracetylated quercetin (compound 6) that exerts potent inhibitory activity toward the platelet 12-LO pathway (IC50 = 1.53 μM) while having a lesser affinity toward the COX pathway. This study characterizes the peracetylated quercetin (compound 6) as a more selective platelet-type 12-LO inhibitor than baicalein, with no measurable nontargeted effects on the platelet's activation or overall cell's oxygen consumption.
Collapse
Affiliation(s)
- Marco S Doucet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Jean-Luc Jougleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Samuel J Poirier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Marc Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Jacob L Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| |
Collapse
|
13
|
Zhong C, Zhuang M, Wang X, Li J, Chen Z, Huang Y, Chen F. 12-Lipoxygenase promotes invasion and metastasis of human gastric cancer cells via epithelial-mesenchymal transition. Oncol Lett 2018; 16:1455-1462. [PMID: 30008824 PMCID: PMC6036329 DOI: 10.3892/ol.2018.8808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
The role of 12-lipoxygenase (12-LOX) in tumorigenesis has been well established in several types of human cancer, including gastric cancer. It was reported that epithelial-mesenchymal transition (EMT) contributes to tumor invasion and metastasis. However, whether 12-LOX promotes the invasion and metastasis of human gastric cancer cells via EMT remains to be elucidated. In the present study, the expression of 12-LOX and EMT markers, N-cadherin and E-cadherin, was evaluated in gastric cancer and adjacent normal mucosa samples by immunohistochemical analysis. 12-LOX-overexpressing gastric cancer cells were established via lentiviral transfection of SCG-7901 cells. Wound-healing and Transwell assays were performed to examine the regulation of cell metastasis and invasion by 12-LOX. Furthermore, the regulation of N-cadherin expression by 12-LOX was evaluated using reverse transcription-quantitative polymerase chain reaction and western blotting. The results revealed that the expression of 12-LOX and N-cadherin was significantly higher in gastric cancer compared with that in adjacent normal mucosa tissues (P<0.05). By contrast, the expression of E-cadherin was significantly decreased in gastric cancer compared with that in adjacent normal mucosa tissues (P<0.05). Furthermore, the expression of 12-LOX was positively associated with N-cadherin expression in gastric cancer tissues. 12-LOX-overexpressing gastric cancer cells exhibited significantly increased invasion and migration abilities compared with the empty vector and control groups. The expression of N-cadherin in 12-LOX-overexpressing gastric cancer cells was increased compared with that in the empty vector and control groups. The present study suggests that EMT may be involved in the promotion of the invasion and metastasis of human gastric cancer cells by 12-LOX.
Collapse
Affiliation(s)
- Canmei Zhong
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Mingkai Zhuang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiazhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jianying Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhixin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yuehong Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Fenglin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
14
|
Bergamo A, Dyson PJ, Sava G. The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Nosaka T, Baba T, Tanabe Y, Sasaki S, Nishimura T, Imamura Y, Yurino H, Hashimoto S, Arita M, Nakamoto Y, Mukaida N. Alveolar Macrophages Drive Hepatocellular Carcinoma Lung Metastasis by Generating Leukotriene B 4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1839-1852. [PMID: 29378914 DOI: 10.4049/jimmunol.1700544] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022]
Abstract
Macrophages in lungs can be classified into two subpopulations, alveolar macrophages (AMs) and interstitial macrophages (IMs), which reside in the alveolar and interstitial spaces, respectively. Accumulating evidence indicates the involvement of IMs in lung metastasis, but the roles of AMs in lung metastasis still remain elusive. An i.v. injection of a mouse hepatocellular carcinoma (HCC) cell line, BNL, caused lung metastasis foci with infiltration of AMs and IMs. Comprehensive determination of arachidonic acid metabolite levels revealed increases in leukotrienes and PGs in lungs in this metastasis model. A 5-lipoxygenase (LOX) inhibitor but not a cyclooxygenase inhibitor reduced the numbers of metastatic foci, particularly those of a larger size. A major 5-LOX metabolite, LTB4, augmented in vitro cell proliferation of human HCC cell lines as well as BNL cells. Moreover, in this lung metastasis course, AMs exhibited higher expression levels of the 5-LOX and LTB4 than IMs. Consistently, 5-LOX-expressing AMs increased in the lungs of human HCC patients with lung metastasis, compared with those without lung metastasis. Furthermore, intratracheal clodronate liposome injection selectively depleted AMs but not IMs, together with reduced LTB4 content and metastatic foci numbers in this lung metastasis process. Finally, IMs in mouse metastatic foci produced CCL2, thereby recruiting blood-borne, CCR2-expressing AMs into lungs. Thus, AMs can be recruited under the guidance of IM-derived CCL2 into metastatic lungs and can eventually contribute to the progression of lung metastasis by providing a potent arachidonic acid-derived tumor growth promoting mediator, LTB4.
Collapse
Affiliation(s)
- Takuto Nosaka
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan;
| | - Yamato Tanabe
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Soichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yoshiaki Imamura
- Division of Surgical Pathology, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Hideaki Yurino
- Division of Nephrology, Department of Laboratory Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinichi Hashimoto
- Division of Nephrology, Department of Laboratory Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo 102-8666, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan; and
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 108-8345, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
16
|
Semeraro ML, Glenn LM, Morris MA. The Four-Way Stop Sign: Viruses, 12-Lipoxygenase, Islets, and Natural Killer Cells in Type 1 Diabetes Progression. Front Endocrinol (Lausanne) 2017; 8:246. [PMID: 28993759 PMCID: PMC5622285 DOI: 10.3389/fendo.2017.00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells represent an important effector arm against viral infection, and mounting evidence suggests that viral infection plays a role in the development of type 1 diabetes (T1D) in at least a portion of patients. NK cells recognize their target cells through a delicate balance of inhibitory and stimulatory receptors on their surface. If unbalanced, NK cells have great potential to wreak havoc in the pancreas due to the beta cell expression of the as-yet-defined NKp46 ligand through interactions with the activating NKp46 receptor found on the surface of most NK cells. Blocking interactions between NKp46 and its ligand protects mice from STZ-induced diabetes, but differential expression non-diabetic and diabetic donor samples have not been tested. Additional studies have shown that peripheral blood NK cells from human T1D patients have altered phenotypes that reduce the lytic and functional ability of the NK cells. Investigations of humanT1D pancreas tissues have indicated that the presence of NK cells may be beneficial despite their infrequent detection. In non-obese diabetic (NOD) mice, we have noted that NK cells express high levels of the proinflammatory mediator 12/15-lipoxygenase (12/15-LO), and decreased levels of stimulatory receptors. Conversely, NK cells of 12/15-LO deficient NOD mice, which are protected from diabetes development, express significantly higher levels of stimulatory receptors. Furthermore, the human NK92 cell line expresses the ALOX12 protein [human 12-lipoxygenase (12-LO), related to mouse 12/15-LO] via Western blotting. Human 12-LO is upregulated in the pancreas of both T1D and T2D human donors with insulin-containing islets, showing a link between 12-LO expression and diabetes progression. Therefore, our hypothesis is that NK cells in those susceptible to developing T1D are unable to function properly during viral infections of pancreatic beta cells due to increased 12-LO expression and activation, which contributes to increased interferon-gamma production and an imbalance in activating and inhibitory NK cell receptors, and may contribute to downstream autoimmune T cell responses. The work presented here outlines evidence from our lab, as well as published literature, supporting our hypothesis, including novel data.
Collapse
Affiliation(s)
- Michele L. Semeraro
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lindsey M. Glenn
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Margaret A. Morris
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
17
|
Strzemski M, Wojnicki K, Sowa I, Wojas-Krawczyk K, Krawczyk P, Kocjan R, Such J, Latalski M, Wnorowski A, Wójciak-Kosior M. In Vitro Antiproliferative Activity of Extracts of Carlina acaulis subsp. caulescens and Carlina acanthifolia subsp. utzka. Front Pharmacol 2017; 8:371. [PMID: 28659804 PMCID: PMC5469354 DOI: 10.3389/fphar.2017.00371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023] Open
Abstract
Various species of the Carlina genus have been used in traditional medicine in many countries to treat numerous skin disorders, including cancer. The objective of this work was to assess the anticancer properties of root and leaf extracts from Carlina acaulis subsp. caulescens and C. acanthifolia subsp. utzka. Anti-tumor properties of the extracts were explored using a tetrazolium-based cell viability assay and flow cytometric apoptosis analysis, followed by immunodetection of phosphoactive ERK1/2 in UACC-903, C32, and UACC-647 human melanoma cell lines. Normal human fibroblasts were used as a control. Leaf extracts inhibited the viability of all tested melanoma cell lines in a dose-dependent fashion while the fibroblasts were less sensitive to such extract. The root extracts inhibited the proliferation of UACC-903 and UACC-647 cells only at the highest doses (300 μg/mL). However, the C32 and fibroblast cells exhibited an increase in the cellular proliferation rate and no caspase activity was observed in response to the root extracts (100 μg/mL). An increase in caspase activity was observed in melanoma cells treated with the leaf extracts of both Carlina species. Leaf extracts from C. acaulis subsp. caulescens (100 μg/mL) inhibited proliferatory ERK1/2 in UACC-903 and C32 cells, as demonstrated by the decrease in ERK1/2 phosphorylation. No reduction in phospho-ERK1/2 was observed in the tested cell lines treated with the root extracts, apart from UACC-647 after incubation with the C. acanthifolia subsp. utzka root extract (100 μg/mL). There was no change in ERK1/2 phosphorylation in the fibroblasts. The extracts from the leaves and roots were analyzed by HPLC and the analysis showed the presence of triterpenes and phenolic acids as the main extract components. The research demonstrated that the extracts from the leaves of the plants were cytotoxic against the human melanoma line and induced apoptosis of the cells. The triterpene fraction present in the tested extracts may be responsible for this activity.
Collapse
Affiliation(s)
- Maciej Strzemski
- Department of Analytical Chemistry, Medical University of LublinLublin, Poland
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology Polish Academy of SciencesWarszawa, Poland.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of LublinLublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of LublinLublin, Poland
| | - Kamila Wojas-Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University of LublinLublin, Poland
| | - Paweł Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University of LublinLublin, Poland
| | - Ryszard Kocjan
- Department of Analytical Chemistry, Medical University of LublinLublin, Poland
| | - Justyna Such
- Department of Biopharmacy, Medical University of LublinLublin, Poland
| | - Michał Latalski
- Children's Orthopedics Department, Medical University of LublinLublin, Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of LublinLublin, Poland
| | | |
Collapse
|
18
|
The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Arch Toxicol 2015; 90:119-36. [PMID: 26525395 DOI: 10.1007/s00204-015-1620-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
The incidence, prevalence, and hospitalization rates associated with cardiovascular diseases (CVDs) are projected to increase substantially in the world. Understanding of the biological and pathophysiological mechanisms of survival can help the researchers to develop new management modalities. Numerous experimental studies have demonstrated that mid-chain HETEs are strongly involved in the pathogenesis of the CVDs. Mid-chain HETEs are biologically active eicosanoids that result from the metabolism of arachidonic acid (AA) by both lipoxygenase and CYP1B1 (lipoxygenase-like reaction). Therefore, identifying the localizations and expressions of the lipoxygenase and CYP1B1 and their associated AA metabolites in the cardiovascular system is of major importance in understanding their pathological roles. Generally, the expression of these enzymes is shown to be induced during several CVDs, including hypertension and cardiac hypertrophy. The induction of these enzymes is associated with the generation of mid-chain HETEs and subsequently causation of cardiovascular events. Of interest, inhibiting the formation of mid-chain HETEs has been reported to confer a protection against different cardiac hypertrophy and hypertension models such as angiotensin II, Goldblatt, spontaneously hypertensive rat and deoxycorticosterone acetate (DOCA)-salt-induced models. Although the exact mechanisms of mid-chain HETEs-mediated cardiovascular dysfunction are not fully understood, the present review proposes several mechanisms which include activating G-protein-coupled receptor, protein kinase C, mitogen-activated protein kinases, and nuclear factor kappa B. This review provides a clear understanding of the role of mid-chain HETEs in the pathogenesis of cardiovascular diseases and their importance as novel targets in the treatment for hypertension and cardiac hypertrophy.
Collapse
|
19
|
Martinez EF, Demasi APD, Napimoga MH, Silva CAB, Navarini NF, Araújo NS, DE Araújo VC. Myoepithelial cells from pleomorphic adenoma are not influenced by tumor conditioned media from breast ductal adenocarcinoma and melanoma cells: An in vitro study. Oncol Lett 2014; 9:313-317. [PMID: 25435982 PMCID: PMC4246695 DOI: 10.3892/ol.2014.2624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/30/2014] [Indexed: 01/03/2023] Open
Abstract
Myoepithelial cells have been implicated in the regulation of the transition from in situ to invasive neoplasia in salivary gland tumors. Considering the importance of the microenvironment of the tumor, the present in vitro study therefore analyzed the morphological and phenotypic changes undergone by benign myoepithelial cells from pleomorphic adenoma (PA) stimulated by tumor-conditioned medium. The benign myoepithelial cells were obtained from PA and were cultured with fibronectin extracellular matrix protein, supplemented with tumor-conditioned medium, which was harvested from breast ductal adenocarcinoma AU-565 and melanoma Hs 852.T cells. The morphological alterations were assessed by immunofluorescence analysis using vimentin antibody. The α-smooth muscle actin (α-SMA) and fibroblast growth factor (FGF)-2 proteins were analyzed by indirect immunofluorescence and quantitative polymerase chain reaction (qPCR). No morphological changes were observed in the myoepithelial cells cultured in fibronectin protein under stimulation from either tumor-conditioned medium. The immunofluorescence results, which were supported by qPCR analysis, revealed that only α-SMA was upregulated in the fibronectin substratum, with or without tumor-conditioned medium obtained from breast ductal adenocarcinoma and melanoma cells. No significant difference in FGF-2 mRNA expression was detected when the cells were cultured either in the tumor-conditioned medium or in the fibronectin substratum. The tumor-conditioned medium harvested from breast ductal adenocarcinoma and melanoma did not affect myoepithelial cell differentiation and function, which was reflected by the fact that there was no observed increase in α-SMA and FGF-2 expression, respectively.
Collapse
Affiliation(s)
- Elizabeth Ferreira Martinez
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | - Ana Paula Dias Demasi
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | - Marcelo Henrique Napimoga
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | | | - Natalia Festugatto Navarini
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | - Ney Soares Araújo
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | - Vera Cavalcanti DE Araújo
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| |
Collapse
|
20
|
Zhong H, Wang R, Kelavkar U, Wang CY, Simons J. Enzyme 15-lipoxygenase 1 promotes hypoxia-inducible factor 1α turnover and reduces vascular endothelial growth factor expression: implications for angiogenesis. Cancer Med 2014; 3:514-25. [PMID: 24668884 PMCID: PMC4101742 DOI: 10.1002/cam4.227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/31/2013] [Accepted: 02/18/2014] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses, including cancers. In this study, we report that 15-lipoxygenase 1 (15-LO1), a key member of the lipoxygenase family, promotes HIF-1α ubiquitination and degradation. Altering the level of 15-LO1 yields inverse changes in HIF-1α and HIF-1 transcriptional activity, under both normoxia and hypoxia, and even in CoCl2-treated cells where HIF-1α has been artificially elevated. The antagonistic effect of 15-LO1 is mediated by the Pro564/hydroxylation/26S proteasome system, while both the enzymatic activity and the intracellular membrane-binding function of 15-LO1 appear to contribute to HIF-1α suppression. Our findings provide a novel mechanism for HIF-1α regulation, in which oxygen-dependent HIF-1 activity is modulated by an oxygen-insensitive lipid metabolic enzyme.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, 30322; Rutgers Cancer Institute of New Jersey and Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, 08901
| | | | | | | | | |
Collapse
|