1
|
McFarland J, Alečković M, Coricor G, Srinivasan S, Tso M, Lee J, Nguyen TH, Mejía Oneto JM. Click Chemistry Selectively Activates an Auristatin Protodrug with either Intratumoral or Systemic Tumor-Targeting Agents. ACS CENTRAL SCIENCE 2023; 9:1400-1408. [PMID: 37521794 PMCID: PMC10375897 DOI: 10.1021/acscentsci.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 08/01/2023]
Abstract
The Click Activated Protodrugs Against Cancer (CAPAC) platform enables the activation of powerful cancer drugs at tumors. CAPAC utilizes a click chemistry reaction between tetrazine and trans-cyclooctene. The reaction between activator, linked to a tumor-targeting agent, and protodrug leads to the targeted activation of the drug. Here, tumor targeting is achieved by intratumoral injection of a tetrazine-modified hyaluronate (SQL70) or by infusion of a tetrazine-modified HER2-targeting antigen-binding fragment (SQT01). Monomethyl auristatin E (a cytotoxin hindered in its clinical use by severe toxicity) was modified with a trans-cyclooctene to form the protodrug SQP22, which reduced its cytotoxicity in vitro and in vivo. Treatment of SQP22 paired with SQL70 demonstrated antitumor effects in Karpas 299 and RENCA murine tumor models, establishing the requirement of click chemistry for protodrug activation. SQP22 paired with SQT01 induced antitumor effects in the HER2-positive NCI-N87 xenograft model, showing that tumor-targeted activation could be accomplished via systemic dosing. Observed toxicities were limited, with transient myelosuppression and moderate body weight loss detected. This study highlights the capabilities of the CAPAC platform by demonstrating the activity of SQP22 with two differentiated targeting approaches and underscores the power of click chemistry to precisely control the activation of drugs at tumors.
Collapse
|
2
|
Srinivasan S, Yee NA, Zakharian M, Alečković M, Mahmoodi A, Nguyen TH, Mejía Oneto JM. SQ3370, the first clinical click chemistry-activated cancer therapeutic, shows safety in humans and translatability across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534654. [PMID: 37034617 PMCID: PMC10081183 DOI: 10.1101/2023.03.28.534654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
BACKGROUND SQ3370 is the first demonstration of the Click Activated Protodrugs Against Cancer (CAPAC™) platform that uses click chemistry to activate drugs directly at tumor sites, maximizing therapeutic exposure. SQ3370 consists of a tumor-localizing biopolymer (SQL70) and a chemically-attenuated doxorubicin (Dox) protodrug SQP33; the protodrug is activated upon clicking with the biopolymer at tumor sites. Here, we present data from preclinical studies and a Phase 1 dose-escalation clinical trial in adult patients with advanced solid tumors ( NCT04106492 ) demonstrating SQ3370's activation at tumor sites, safety, systemic pharmacokinetics (PK), and immunological activity. METHODS Treatment cycles consisting of an intratumoral or subcutaneous injection of SQL70 biopolymer followed by 5 daily intravenous doses of SQP33 protodrug were evaluated in tumor-bearing mice, healthy dogs, and adult patients with solid tumors. RESULTS SQL70 effectively activated SQP33 at tumor sites, resulting in high Dox concentrations that were well tolerated and unachievable by conventional treatment. SQ3370 was safely administered at 8.9x the veterinary Dox dose in dogs and 12x the conventional Dox dose in patients, with no dose-limiting toxicity reported to date. SQ3370's safety, toxicology, and PK profiles were highly translatable across species. SQ3370 increased cytotoxic CD3 + and CD8 + T-cells in patient tumors indicating T-cell-dependent immune activation in the tumor microenvironment. CONCLUSIONS SQ3370, the initial demonstration of click chemistry in humans, enhances the safety of Dox at unprecedented doses and has the potential to increase therapeutic index. Consistent safety, toxicology, PK, and immune activation results observed with SQ3370 across species highlight the translatability of the click chemistry approach in drug development. TRIAL REGISTRATION NCT04106492; 7 September 2019.
Collapse
|
3
|
Dempke WCM, Zielinski R, Winkler C, Silberman S, Reuther S, Priebe W. Anthracycline-induced cardiotoxicity – are we about to clear this hurdle? Eur J Cancer 2023; 185:94-104. [PMID: 36966697 DOI: 10.1016/j.ejca.2023.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Anthracyclines have contributed significantly to remarkable improvements in overall survival and are regarded as the most effective cytostatic drug for cancer treatment in various malignancies. However, anthracyclines are a significant cause of acute and chronic cardiotoxicity in cancer patients, and long-term cardiotoxicity can lead to death in about one-third of patients. Several molecular pathways have been implicated in the development of anthracycline-induced cardiotoxicity, although the underlying mechanisms of some molecular pathways are not fully elucidated. It is now generally believed that anthracycline-induced reactive oxygen species (resulting from intracellular metabolism of anthracyclines) and drug-induced inhibition of topoisomerase II beta are the key mechanisms responsible for the cardiotoxicity. To prevent cardiotoxicity, several strategies are being followed: (i) angiotensin-converting enzyme inhibitors, sartans, beta-blockers, aldosterone antagonists, and statins; (ii) iron chelators; and (iii) by development of new anthracycline derivatives with little or no cardiotoxicity. This review will discuss clinically evaluated doxorubicin analogues that were developed as potentially non-cardiotoxic anticancer agents and include recent development of a novel liposomal anthracycline (L-Annamycin) for the treatment of soft-tissue sarcoma metastatic to the lung and acute myelogenous leukaemia.
Collapse
Affiliation(s)
- Wolfram C M Dempke
- University Medical School, LMU Munich, Munich, Germany; Moleculin Inc, Houston, TX, USA
| | - Rafal Zielinski
- The University of Texas, MD Anderson Cancer Center Houston, TX, USA
| | - Christina Winkler
- Haemato-Oncology Saalfeld, Department of Cardio-Oncology, Saalfeld, Germany
| | | | | | - Waldemar Priebe
- The University of Texas, MD Anderson Cancer Center Houston, TX, USA.
| |
Collapse
|
4
|
Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules 2022; 27:7232. [PMID: 36364057 PMCID: PMC9658517 DOI: 10.3390/molecules27217232] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/07/2023] Open
Abstract
Cancer remains the leading cause of death worldwide despite advances in treatment options for patients. As such, safe and effective therapeutics are required. Short peptides provide advantages to be used in cancer management due to their unique properties, amazing versatility, and progress in biotechnology to overcome peptide limitations. Several appealing peptide-based therapeutic strategies have been developed. Here, we provide an overview of peptide conjugates, the better equivalents of antibody-drug conjugates, as the next generation of drugs for required precise targeting, enhanced cellular permeability, improved drug selectivity, and reduced toxicity for the efficient treatment of cancers. We discuss the basic components of drug conjugates and their release action, including the release of cytotoxins from the linker. We also present peptide-drug conjugates under different stages of clinical development as well as regulatory and other challenges.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Hetvi K. Solanki
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
5
|
Casazza A, Van Helleputte L, Van Renterghem B, Pokreisz P, De Geest N, De Petrini M, Janssens T, Pellens M, Diricx M, Riera-Domingo C, Wozniak A, Mazzone M, Schöffski P, Defert O, Reyns G, Kindt N. PhAc-ALGP-Dox, a Novel Anticancer Prodrug with Targeted Activation and Improved Therapeutic Index. Mol Cancer Ther 2022; 21:568-581. [PMID: 35149549 PMCID: PMC9377749 DOI: 10.1158/1535-7163.mct-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/13/2021] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
Abstract
Clinical use of doxorubicin (Dox) is limited by cumulative myelo- and cardiotoxicity. This research focuses on the detailed characterization of PhAc-ALGP-Dox, a targeted tetrapeptide prodrug with a unique dual-step activation mechanism, designed to circumvent Dox-related toxicities and is ready for upcoming clinical investigation. Coupling Dox to a phosphonoacetyl (PhAc)-capped tetrapeptide forms the cell-impermeable, inactive compound, PhAc-ALGP-Dox. After extracellular cleavage by tumor-enriched thimet oligopeptidase-1 (THOP1), a cell-permeable but still biologically inactive dipeptide-conjugate is formed (GP-Dox), which is further processed intracellularly to Dox by fibroblast activation protein-alpha (FAPα) and/or dipeptidyl peptidase-4 (DPP4). In vitro, PhAc-ALGP-Dox is effective in various 2D- and 3D-cancer models, while showing improved safety toward normal epithelium, hematopoietic progenitors, and cardiomyocytes. In vivo, these results translate into a 10-fold higher tolerability and 5-fold greater retention of Dox in the tumor microenvironment compared with the parental drug. PhAc-ALGP-Dox demonstrates 63% to 96% tumor growth inhibition in preclinical models, an 8-fold improvement in efficacy in patient-derived xenograft (PDX) models, and reduced metastatic burden in a murine model of experimental lung metastasis, improving survival by 30%. The current findings highlight the potential clinical benefit of PhAc-ALGP-Dox, a targeted drug-conjugate with broad applicability, favorable tissue biodistribution, significantly improved tolerability, and tumor growth inhibition at primary and metastatic sites in numerous solid tumor models.
Collapse
Affiliation(s)
- Andrea Casazza
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | | | - Britt Van Renterghem
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Pokreisz
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Natalie De Geest
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marzia De Petrini
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Tom Janssens
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marijke Pellens
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marjan Diricx
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Olivier Defert
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Geert Reyns
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Nele Kindt
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium.,Corresponding Author: Nele Kindt, CoBioRes NV, Campus Gasthuisberg, CDG, bus 913 Herestraat 49, Leuven, Flanders B-3000, Belgium. E-mail:
| |
Collapse
|
6
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
7
|
Srinivasan S, Yee NA, Wu K, Zakharian M, Mahmoodi A, Royzen M, Oneto JMM. SQ3370 Activates Cytotoxic Drug via Click Chemistry at Tumor and Elicits Sustained Responses in Injected & Non-injected Lesions. ADVANCED THERAPEUTICS 2021; 4. [PMID: 33869738 DOI: 10.1002/adtp.202000243] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While systemic immuno-oncology therapies have shown remarkable success, only a limited subset of patients benefit from them. Our Click Activated Protodrugs Against Cancer (CAPAC™) Platform is a click chemistry-based approach that activates cancer drugs at a specific tumor with minimal systemic toxicity. CAPAC Platform is agnostic to tumor characteristics that can vary across patients and hence applicable to several types of tumors. We describe the benefits of SQ3370 (lead candidate of CAPAC) to achieve systemic anti-tumor responses in mice bearing two tumors. SQ3370 consists of a biopolymer, injected in a single lesion, followed by systemic doses of an attenuated protodrug™ of doxorubicin (Dox). SQ3370 was well-tolerated at 5.9-times the maximum dose of conventional Dox, increased survival by 63% and induced a systemic anti-tumor response against injected and non-injected lesions. The sustained anti-tumor response also correlated with immune activation measured at both lesions. SQ3370 could potentially benefit patients with micro-metastatic lesions.
Collapse
Affiliation(s)
- S Srinivasan
- Shasqi, Inc., 665 3 St., Suite 501, San Francisco, CA 94107
| | - N A Yee
- Shasqi, Inc., 665 3 St., Suite 501, San Francisco, CA 94107
| | - K Wu
- University of Albany, 1400 Washington Ave., LS-1136, Albany, NY 12222
| | - M Zakharian
- Shasqi, Inc., 665 3 St., Suite 501, San Francisco, CA 94107
| | - A Mahmoodi
- Shasqi, Inc., 665 3 St., Suite 501, San Francisco, CA 94107
| | - M Royzen
- University of Albany, 1400 Washington Ave., LS-1136, Albany, NY 12222
| | | |
Collapse
|
8
|
Wu K, Yee NA, Srinivasan S, Mahmoodi A, Zakharian M, Mejia Oneto JM, Royzen M. Click activated protodrugs against cancer increase the therapeutic potential of chemotherapy through local capture and activation. Chem Sci 2021; 12:1259-1271. [PMID: 34163888 PMCID: PMC8179178 DOI: 10.1039/d0sc06099b] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A desired goal of targeted cancer treatments is to achieve high tumor specificity with minimal side effects. Despite recent advances, this remains difficult to achieve in practice as most approaches rely on biomarkers or physiological differences between malignant and healthy tissue, and thus benefit only a subset of patients in need of treatment. To address this unmet need, we introduced a Click Activated Protodrugs Against Cancer (CAPAC) platform that enables targeted activation of drugs at a specific site in the body, i.e., a tumor. In contrast to antibodies (mAbs, ADCs) and other targeted approaches, the mechanism of action is based on in vivo click chemistry, and is thus independent of tumor biomarker expression or factors such as enzymatic activity, pH, or oxygen levels. The CAPAC platform consists of a tetrazine-modified sodium hyaluronate-based biopolymer injected at a tumor site, followed by one or more doses of a trans-cyclooctene (TCO)-modified cytotoxic protodrug with attenuated activity administered systemically. The protodrug is captured locally by the biopolymer through an inverse electron-demand Diels–Alder reaction between tetrazine and TCO, followed by conversion to the active drug directly at the tumor site, thereby overcoming the systemic limitations of conventional chemotherapy or the need for specific biomarkers of traditional targeted therapies. Here, TCO-modified protodrugs of four prominent cytotoxics (doxorubicin, paclitaxel, etoposide and gemcitabine) are used, highlighting the modularity of the CAPAC platform. In vitro evaluation of cytotoxicity, solubility, stability and activation rendered the protodrug of doxorubicin, SQP33, as the most promising candidate for in vivo studies. In mice, the maximum tolerated dose (MTD) of SQP33 in combination with locally injected tetrazine-modified biopolymer (SQL70) was determined to be 19.1-times the MTD of conventional doxorubicin. Pharmacokinetics studies in rats show that a single injection of SQL70 efficiently captures multiple SQP33 protodrug doses given cumulatively at 10.8-times the MTD of conventional doxorubicin with greatly reduced systemic toxicity. Finally, combined treatment with SQL70 and SQP33 (together called SQ3370) showed antitumor activity in a syngeneic tumor model in mice. The Click Activated Protodrugs Against Cancer (CAPAC) platform uses click chemistry to activate cytotoxic drugs directly at a target site with minimal toxicity, overcoming limitations of conventional chemotherapy and traditional targeted therapies.![]()
Collapse
Affiliation(s)
- Kui Wu
- University at Albany, SUNY 1400 Washington Ave., LS-1136 Albany NY 12222 USA
| | - Nathan A Yee
- Shasqi, Inc. 665 3rd St., Suite 501 San Francisco CA 94107 USA
| | | | - Amir Mahmoodi
- Shasqi, Inc. 665 3rd St., Suite 501 San Francisco CA 94107 USA
| | | | | | - Maksim Royzen
- University at Albany, SUNY 1400 Washington Ave., LS-1136 Albany NY 12222 USA
| |
Collapse
|
9
|
Schwach V, Slaats RH, Passier R. Human Pluripotent Stem Cell-Derived Cardiomyocytes for Assessment of Anticancer Drug-Induced Cardiotoxicity. Front Cardiovasc Med 2020; 7:50. [PMID: 32322588 PMCID: PMC7156610 DOI: 10.3389/fcvm.2020.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiotoxicity is a major cause of high attrition rates among newly developed drugs. Moreover, anti-cancer treatment-induced cardiotoxicity is one of the leading reasons of mortality in cancer survivors. Cardiotoxicity screening in vitro may improve predictivity of cardiotoxicity by novel drugs, using human pluripotent stem cell (hPSC)-derived-cardiomyocytes. Anthracyclines, including Doxorubicin, are widely used and highly effective chemotherapeutic agents for the treatment of different forms of malignancies. Unfortunately, anthracyclines cause many cardiac complications early or late after therapy. Anthracyclines exhibit their potent anti-cancer effect primarily via induction of DNA damage during the DNA replication phase in proliferative cells. In contrast, studies in animals and hPSC-cardiomyocytes have revealed that cardiotoxic effects particularly arise from (1) the generation of oxidative stress inducing mitochondrial dysfunction, (2) disruption of calcium homeostasis, and (3) changes in transcriptome and proteome, triggering apoptotic cell death. To increase the therapeutic index of chemotherapeutic Doxorubicin therapy several protective strategies have been developed or are under development, such as (1) reducing toxicity through modification of Doxorubicin (analogs), (2) targeted delivery of anthracyclines specifically to the tumor tissue or (3) cardioprotective agents that can be used in combination with Doxorubicin. Despite continuous progress in the field of cardio-oncology, cardiotoxicity is still one of the major complications of anti-cancer therapy. In this review, we focus on current hPSC-cardiomyocyte models for assessing anthracycline-induced cardiotoxicity and strategies for cardioprotection. In addition, we discuss latest developments toward personalized advanced pre-clinical models that are more closely recapitulating the human heart, which are necessary to support in vitro screening platforms with higher predictivity. These advanced models have the potential to reduce the time from bench-to-bedside of novel antineoplastic drugs with reduced cardiotoxicity.
Collapse
Affiliation(s)
- Verena Schwach
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Rolf H Slaats
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
10
|
Delahousse J, Skarbek C, Paci A. Prodrugs as drug delivery system in oncology. Cancer Chemother Pharmacol 2019; 84:937-958. [DOI: 10.1007/s00280-019-03906-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
|
11
|
Peptide Conjugates with Small Molecules Designed to Enhance Efficacy and Safety. Molecules 2019; 24:molecules24101855. [PMID: 31091786 PMCID: PMC6572008 DOI: 10.3390/molecules24101855] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022] Open
Abstract
Peptides constitute molecular diversity with unique molecular mechanisms of action that are proven indispensable in the management of many human diseases, but of only a mere fraction relative to more traditional small molecule-based medicines. The integration of these two therapeutic modalities offers the potential to enhance and broaden pharmacology while minimizing dose-dependent toxicology. This review summarizes numerous advances in drug design, synthesis and development that provide direction for next-generation research endeavors in this field. Medicinal studies in this area have largely focused upon the application of peptides to selectively enhance small molecule cytotoxicity to more effectively treat multiple oncologic diseases. To a lesser and steadily emerging extent peptides are being therapeutically employed to complement and diversify the pharmacology of small molecule drugs in diseases other than just cancer. No matter the disease, the purpose of the molecular integration remains constant and it is to achieve superior therapeutic outcomes with diminished adverse effects. We review linker technology and conjugation chemistries that have enabled integrated and targeted pharmacology with controlled release. Finally, we offer our perspective on opportunities and obstacles in the field.
Collapse
|