1
|
Rajagopal PS, Hassan S, Pritchard CC. Hotspot BRCA1/2 Mutations in Tumors With Microsatellite Instability Suggest Passenger Mutation Status and Evaluation of Therapeutic Options. JCO Precis Oncol 2025; 9:e2500141. [PMID: 40373258 DOI: 10.1200/po-25-00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/17/2025] Open
Abstract
PURPOSE In cancers with both high microsatellite instability (MSI-H) and BRCA1/2 mutations, BRCA1/2 mutations may be incidentally caused by MSI and represent passenger mutations versus drivers of those cancers. Reporting of these mutations without additional clarification may result in poly (ADP-ribose) polymerase (PARP) inhibitor therapy, where there is not likely true benefit. The purpose of this work was to identify BRCA1/2 passenger mutation hotspots that are secondary to MSI-H status rather than truly independent driving mutations. METHODS We analyzed over 100,000 pancancer patient cases in cBioPortal with both BRCA1/2 mutations and MSI-H status to identify passenger mutation hotspots that recur in microsatellite sites. We validated these hotspots as likely reflective of MSI-H status using a data set of nearly 20,000 patient cases from the University of Washington. RESULTS We identified six recurrent frameshift passenger mutation hotspots in BRCA1 (K339fs and K654fs) and BRCA2 (I605fs, W1692fs, N1784fs, and T3033fs). These hotspots represented 17% and 21% of all truncating BRCA1/2 mutations detected in the cBioPortal and University of Washington data sets, respectively, and were seen almost exclusively in MSI-H tumors. These hotspots had a mean variant allele fraction of 17%, supporting their occurrence as passenger mutations. All hotspots are annotated in ClinVar as pathogenic variants, and all but one in catalogue of somatic mutations in cancer as somatic hotspots. Current annotations do not mention MSI. CONCLUSION Our findings emphasize the need for molecular pathology laboratories and clinical variant databases to annotate BRCA1/2 passenger mutation hotspots with more context to interpret their pathogenicity in the setting of concurrent MSI. Identification and annotation of such hotspots will improve how oncology providers guide patients regarding therapeutic options.
Collapse
Affiliation(s)
- Padma Sheila Rajagopal
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Sajida Hassan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
| |
Collapse
|
2
|
Corridore S, Verreault M, Martin H, Delobel T, Carrère C, Idbaih A, Ballesta A. Circumventing glioblastoma resistance to temozolomide through optimal drug combinations designed by systems pharmacology and machine learning. Br J Pharmacol 2025. [PMID: 40229949 DOI: 10.1111/bph.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND AND PURPOSE Glioblastoma (GBM), the most frequent and aggressive brain tumour in adults, is associated with a dismal prognostic despite intensive treatment involving surgery, radiotherapy and temozolomide (TMZ)-based chemotherapy. The initial or acquired resistance of GBM to TMZ appeals for precision medicine approaches to the design of novel efficient combination pharmacotherapies. Such investigation needs to account for the overexpression of the O6-methylguanine-DNA methyl-transferase (MGMT) repair enzyme which is responsible for TMZ resistance in patients. EXPERIMENTAL APPROACH A comprehensive approach combining quantitative systems pharmacology (QSP) models and machine learning (ML) was undertaken to design TMZ-based drug combinations circumventing the initial resistance to the alkylating agent. KEY RESULTS A QSP model representing TMZ cellular pharmacokinetics-pharmacodynamics and dysregulated pathways in GBM was developed and validated using multi-type time- and dose-resolved datasets, available in control or MGMT-overexpressing cells. In silico drug screening and subsequent experimental validation identified a strategy to re-sensitise TMZ-resistant cells consisting in combining TMZ with inhibitors of the base excision repair and of homologous recombination. Using ML, functional signatures of response to such optimal multi-agent therapy were derived to assist decision-making in patients. CONCLUSION AND IMPLICATIONS We successfully demonstrated the relevance of combined QSP and ML to design efficient drug combinations re-sensitising glioblastoma cells initially resistant to TMZ. The developed framework may further serve to identify personalised therapies and administration schedules by extending it to account for additional patient-specific altered pathways and whole-body features.
Collapse
Affiliation(s)
- Sergio Corridore
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
| | - Maïté Verreault
- AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, Paris, France
| | - Hugo Martin
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
- University of Rennes, EHESP, CNRS, Inserm, Arènes - UMR 6051, RSMS - U 1309, Rennes, France
| | - Thibault Delobel
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
| | - Cécile Carrère
- Institut Denis Poisson, Université d'Orléans, CNRS, Orléans, France
| | - Ahmed Idbaih
- AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, Paris, France
| | - Annabelle Ballesta
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
| |
Collapse
|
3
|
Tzang CC, Wu HW, Luo CA, Li YT, Kang YF, Hsieh CM, Lee CY, Hsu TC, Tzang BS. Efficacy and safety of PARP inhibitors in prostate cancer: An umbrella review of systematic reviews and meta-analyses. Crit Rev Oncol Hematol 2025; 207:104609. [PMID: 39761938 DOI: 10.1016/j.critrevonc.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Prostate cancer is a significant cause of cancer-related deaths in men. Poly (ADP-ribose) polymerase inhibitors (PARPi) have been shown to improve progression-free survival, especially in patients with BRCA1/2 mutations and deficiencies in homologous recombination repair (HRR). We conducted systematic reviews and meta-analyses and found that PARPi, combined with androgen receptor inhibitors, significantly improved overall survival (OS) and progression-free survival (PFS) in BRCA1/2-mutant and HRR-deficient patients. PARPi therapies increased the incidence of adverse events (AEs), including fatigue, nausea, anemia, neutropenia, and thrombocytopenia. Among different PARP inhibitors, Olaparib, Talazoparib, and Rucaparib demonstrated the strongest efficacy in improving OS and PFS but were also linked to higher rates of AEs. Combination therapies with PARPi and hormonal treatments proved more effective than monotherapy, especially in genetically targeted subgroups like BRCA1/2-mutant patients. This umbrella review demonstrates that PARPi treatment significantly improves clinical outcomes, particularly in BRCA1/2-mutant and HRR-deficient mCRPC patients.
Collapse
Affiliation(s)
- Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hui-Wen Wu
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chiao-An Luo
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yong-Tang Li
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yuan-Fu Kang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Ming Hsieh
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chen-Yu Lee
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| |
Collapse
|
4
|
Borbiev T, Babcock K, Sinopole K, Chesnut GT, Petrovics G. Ancestry-Specific DNA Damage Repair Gene Mutations and Prostate Cancer. Cancers (Basel) 2025; 17:682. [PMID: 40002276 PMCID: PMC11853348 DOI: 10.3390/cancers17040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
This review is intended to reflect the currently available literature on both clinically significant germline mutations in DNA damage repair (DDR) genes as well as the importance of ancestral diversity in the pathogenesis of prostate cancer (PCa). The second most prevalent cancer worldwide in men is PCa, causing significant morbidity and mortality in its advanced stage. Emerging data highlight the substantial role of germline mutations of DDR genes in PCa pathogenesis, especially in progression to aggressive forms of the disease. Germline genetic testing is recognized as a necessary tool for efficient, individualized patient care. NCCR guidelines recommend inquiring about the family history of PCa and known germline variants and, if indicated, proceeding with germline multigene testing followed by post-test genetic counseling. Depending on the germline mutations in HR repair genes or in MMR genes, specific treatment options may provide clinical benefit. We will discuss specific germline mutations that are involved in PCa progression and prognosis in racially diverse populations.
Collapse
Affiliation(s)
- Talaibek Borbiev
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.B.); (G.T.C.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Kevin Babcock
- Internal Medicine, Alexander T. Augusta Military Medicine Center, Fort Belvoir, VA 22060, USA;
| | - Kayleigh Sinopole
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Gregory T. Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.B.); (G.T.C.)
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.B.); (G.T.C.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| |
Collapse
|
5
|
Schettini F, Sirico M, Loddo M, Williams GH, Hardisty KM, Scorer P, Thatcher R, Rivera P, Milani M, Strina C, Ferrero G, Ungari M, Bottin C, Zanconati F, de Manzini N, Aguggini S, Tancredi R, Fiorio E, Fioravanti A, Scaltriti M, Generali D. Next-generation sequencing-based evaluation of the actionable landscape of genomic alterations in solid tumors: the "MOZART" prospective observational study. Oncologist 2025; 30:oyae206. [PMID: 39177668 PMCID: PMC11783315 DOI: 10.1093/oncolo/oyae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The identification of the most appropriate targeted therapies for advanced cancers is challenging. We performed a molecular profiling of metastatic solid tumors utilizing a comprehensive next-generation sequencing (NGS) assay to determine genomic alterations' type, frequency, actionability, and potential correlations with PD-L1 expression. METHODS A total of 304 adult patients with heavily pretreated metastatic cancers treated between January 2019 and March 2021 were recruited. The CLIA-/UKAS-accredit Oncofocus assay targeting 505 genes was used on newly obtained or archived biopsies. Chi-square, Kruskal-Wallis, and Wilcoxon rank-sum tests were used where appropriate. Results were significant for P < .05. RESULTS A total of 237 tumors (78%) harbored potentially actionable genomic alterations. Tumors were positive for PD-L1 in 68.9% of cases. The median number of mutant genes/tumor was 2.0 (IQR: 1.0-3.0). Only 34.5% were actionable ESCAT Tier I-II with different prevalence according to cancer type. The DNA damage repair (14%), the PI3K/AKT/mTOR (14%), and the RAS/RAF/MAPK (12%) pathways were the most frequently altered. No association was found among PD-L1, ESCAT, age, sex, and tumor mutational status. Overall, 62 patients underwent targeted treatment, with 37.1% obtaining objective responses. The same molecular-driven treatment for different cancer types could be associated with opposite clinical outcomes. CONCLUSIONS We highlight the clinical value of molecular profiling in metastatic solid tumors using comprehensive NGS-based panels to improve treatment algorithms in situations of uncertainty and facilitate clinical trial recruitment. However, interpreting genomic alterations in a tumor type-specific manner is critical.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori,”47014, Meldola, Italy
| | - Marco Loddo
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | | | - Paul Scorer
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | - Pablo Rivera
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Manuela Milani
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Carla Strina
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Giuseppina Ferrero
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Marco Ungari
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Nicolò de Manzini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Sergio Aguggini
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Richard Tancredi
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Elena Fiorio
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, 37134, Verona, Italy
| | | | - Maurizio Scaltriti
- Neurosurgery Unit, ASST Cremona, 26100, Cremona, Italy
- AstraZeneca, Gaithersburg, MD 20876, United States
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| |
Collapse
|
6
|
Schettini F, Nucera S, Pascual T, Martínez-Sáez O, Sánchez-Bayona R, Conte B, Buono G, Lambertini M, Punie K, Cejalvo JM, Arpino G, Vigneri P, Generali D, Ciruelos E, Cortés J, Gennari A, Muñoz M, Vidal Losada MJ, Tolaney SM, Prat A, Villacampa G. Efficacy and safety of antibody-drug conjugates in pretreated HER2-low metastatic breast cancer: A systematic review and network meta-analysis. Cancer Treat Rev 2025; 132:102865. [PMID: 39709655 DOI: 10.1016/j.ctrv.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) trastuzumab-deruxtecan (T-DXd) and sacituzumab-govitecan (SG) provided significant progression-free survival (PFS) and overall survival (OS) improvements over chemotherapy (CT) in pretreated hormone receptor-positive (HR+) and triple-negative (TN)/HER2-low metastatic breast cancer (MBC). However, no direct comparison between the two exists, nor with the more recent datopotamab-deruxtecan (Dato-DXd). METHODS We conducted a network meta-analysis (NMA) to compare efficacy and safety of T-DXd and SG in CT-pretreated HR+ and TN/HER2-low MBC and assess their benefit over standard CT, exploring also a comparison with Dato-DXd. Hazard ratios (HRs) with 95 % confidence intervals (CI) were calculated for PFS/OS. P-score was used for treatment ranking. RESULTS Three RCTs (956 patients) were included in the primary analysis and 5 (1,445) in the exploratory NMA with Dato-DXd. In HR+/HER2-low, T-DXd showed no significant difference in PFS and OS when compared to SG. Similarly, in TN/HER2-low, PFS and OS did not differ significantly between the two ADCs. The P-score analysis favored T-DXd over SG in HR+/HER2-low in PFS (0.90 vs. 0.60) and OS (0.89 vs. 0.60). SG was favored over T-DXd in OS in TN/HER2-low (0.80 vs. 0.69). Similar results were obtained for HR+ MBC when including Dato-Dxd, which showed the worst performance, while T-DXd was the only ADC significantly outperforming CT in OS. The ADCs showed significantly better PFS and OS than CT in HR+/HER2-low and TN/HER2-low (all p < 0.001). SG had higher rates of neutropenia, diarrhea and alopecia vs. T-DXd, which showed more thrombocytopenia, fatigue and nausea. Pneumonitis and cardiotoxicity were typically T-DXd-related, and T-DXd showed more toxicity-related discontinuations. CONCLUSIONS Similar efficacy with T-DXd and SG in HER2-low MBC was observed, regardless of HR status. Safety profile, local drug-approval criteria and guidelines, patients' preferences and overall quality of evidence should ultimately guide therapeutic decision-making. Dato-DXd role remains uncertain.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain; SOLTI Cancer Research Group, Barcelona, Spain.
| | - Sabrina Nucera
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Tomás Pascual
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain; SOLTI Cancer Research Group, Barcelona, Spain
| | - Olga Martínez-Sáez
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain; SOLTI Cancer Research Group, Barcelona, Spain
| | - Rodrigo Sánchez-Bayona
- SOLTI Cancer Research Group, Barcelona, Spain; Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Benedetta Conte
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Division of Medical Oncology, Maggiore University Hospital, Novara, Italy
| | - Giuseppe Buono
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori - IRCCS- "Fondazione G. Pascale", Naples, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Kevin Punie
- Department of Medical Oncology, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium
| | - Juan Miguel Cejalvo
- SOLTI Cancer Research Group, Barcelona, Spain; Department of Oncology, Hospital Clínico de Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Medical Oncology Unit, Istituto Clinico Humanitas, Misterbianco, Catania, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Eva Ciruelos
- SOLTI Cancer Research Group, Barcelona, Spain; Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Javier Cortés
- Oncology Department, International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain; IOB Madrid, Institute of Oncology, Hospital Beata Maria Ana, Madrid, Spain
| | - Alessandra Gennari
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Division of Medical Oncology, Maggiore University Hospital, Novara, Italy
| | - Montserrat Muñoz
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain; SOLTI Cancer Research Group, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Maria J Vidal Losada
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain; SOLTI Cancer Research Group, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston MA, USA
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Institute of Cancer and Blood Diseases, Hospital Clinic of Barcelona, Barcelona, Spain; Reveal Genomics, Barcelona, Spain; Institute of Oncology (IOB)-Quirón, Barcelona, Spain
| | - Guillermo Villacampa
- SOLTI Cancer Research Group, Barcelona, Spain; Statistics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
7
|
Liu S, Deng P, Yu Z, Hong JH, Gao J, Huang Y, Xiao R, Yin J, Zeng X, Sun Y, Wang P, Geng R, Chan JY, Guan P, Yu Q, Teh B, Jiang Q, Xia X, Xiong Y, Chen J, Huo Y, Tan J. CDC7 Inhibition Potentiates Antitumor Efficacy of PARP Inhibitor in Advanced Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403782. [PMID: 39412086 PMCID: PMC11615783 DOI: 10.1002/advs.202403782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/01/2024] [Indexed: 12/06/2024]
Abstract
Poly (ADP-ribose) Polymerase inhibitors (PARPi) have demonstrated remarkable clinical efficacy in treating ovarian cancer (OV) with BRCA1/2 mutations. However, drug resistance inevitably limits their clinical applications and there is an urgent need for improved therapeutic strategies to enhance the clinical utility of PARPi, such as Olaparib. Here, compelling evidence indicates that sensitivity of PARPi is associated with cell cycle dysfunction. Through high-throughput drug screening with a cell cycle kinase inhibitor library, XL413, a potent cell division cycle 7 (CDC7) inhibitor, is identified which can synergistically enhance the anti-tumor efficacy of Olaparib. Mechanistically, the combined administration of XL413 and Olaparib demonstrates considerable DNA damage and DNA replication stress, leading to increased sensitivity to Olaparib. Additionally, a robust type-I interferon response is triggered through the induction of the cGAS/STING signaling pathway. Using murine syngeneic tumor models, the combination treatment further demonstrates enhanced antitumor immunity, resulting in tumor regression. Collectively, this study presents an effective treatment strategy for patients with advanced OV by combining CDC7 inhibitors (CDC7i) and PARPi, offering a promising therapeutic approach for patients with limited response to PARPi.
Collapse
Affiliation(s)
- Shini Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSchool of MedicineSouthern Medical UniversityGuangzhouGuangdong510080P. R. China
| | - Peng Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Biotherapy CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Zhaoliang Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jing Han Hong
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Jiuping Gao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yulin Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Rong Xiao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jiaxin Yin
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Xian Zeng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yichen Sun
- Department of Laboratory MedicineGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180P. R. China
| | - Peili Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ruizi Geng
- Experimental Animal CenterGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Jason Yongsheng Chan
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
| | - Peiyong Guan
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Qiang Yu
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Bin‐Tean Teh
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Qingping Jiang
- Department of PatholgyGuangdong Provincial Key Laboratory of Major Obstetric DiseaseThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510150China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ying Xiong
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yongliang Huo
- Experimental Animal CenterGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Jing Tan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
- Hainan Academy of Medical ScienceHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
8
|
Kashbour M, Alhadeethi A, Awwad S, Yassin M, Amin A, Abed M, Abdelmalik A, Alabdallat YJ. The efficacy of Veliparib in combination with chemotherapy in the treatment of lung cancer: systematic review and meta-analysis. Expert Rev Anticancer Ther 2024; 24:1237-1247. [PMID: 39428643 DOI: 10.1080/14737140.2024.2417770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE This meta-analysis aims to examine the effectiveness of veliparib, a poly ADP-ribose polymerase inhibitor, in combination with chemotherapy in treating bronchogenic carcinoma. METHODS PubMed, Cochrane, Scopus, and Web of Science were searched for eligible randomized controlled trials comparing veliparib plus chemotherapy to standard chemotherapy in adult lung cancer patients, until July 2023. The main outcomes were overall survival (OS) and progression-free survival (PFS). RESULTS This meta-analysis included six studies encompassing 2,136 patients. Veliparib has a slight OS improvement over placebo, HR = 0.91, 95% CI [0.83 to 1.0], p = 0.05. Veliparib offers more OS benefit in the subpopulation of non-small cell lung cancer (NSCLC) than small-cell lung cancer (SCLC), HR = 0.89, 95% CI [0.81,0.99], p = 0.03 and HR = 1.00, 95% CI [0.79, 1.28], p = 0.97, respectively. There was no significant PFS benefit between the two groups, HR = 0.92, 95% CI [0.81-1.01], p = 0.08). CONCLUSION Veliparib has a marginal inclination for overall survival improvement, more so in NSCLC, with an acceptable safety profile. Our results merit the pursuit of better-powered trials to support further the extent of veliparib's effectiveness in lung cancer patients. REGISTRATION PROSPERO (CRD42023453705).
Collapse
Affiliation(s)
- Muataz Kashbour
- Diagnostic Radiology Department, National Cancer Institute, Misrata, Libya
- Medical Research Group of Egypt, Negida Academy, Arlington, Massachusetts, USA
| | - Abdulhameed Alhadeethi
- Medical Research Group of Egypt, Negida Academy, Arlington, Massachusetts, USA
- Faculty of Medicine, Ninevah University, Mosul, Iraq
| | - Sara Awwad
- Medical Research Group of Egypt, Negida Academy, Arlington, Massachusetts, USA
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mazen Yassin
- Medical Research Group of Egypt, Negida Academy, Arlington, Massachusetts, USA
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Ahmed Amin
- Medical Research Group of Egypt, Negida Academy, Arlington, Massachusetts, USA
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed Abed
- Medical Research Group of Egypt, Negida Academy, Arlington, Massachusetts, USA
- Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Abubaker Abdelmalik
- Medical Research Group of Egypt, Negida Academy, Arlington, Massachusetts, USA
- Faculty of Medicine, Misurata University, Misrata, Libya
| | - Yasmeen Jamal Alabdallat
- Medical Research Group of Egypt, Negida Academy, Arlington, Massachusetts, USA
- Faculty of Medicine, Hashemite University, Irbid, Jordan
| |
Collapse
|
9
|
Parola S, Oing C, Rescigno P, Feliciano S, Carlino F, Pompella L, Marretta AL, De Santo I, Viggiani M, Muratore M, Facchini BA, Orefice J, Cioli E, Sparano F, Mallardo D, De Giorgi U, Palmieri G, Ascierto PA, Ottaviano M. PARP inhibitors in testicular germ cell tumors: what we know and what we are looking for. Front Genet 2024; 15:1480417. [PMID: 39678373 PMCID: PMC11638157 DOI: 10.3389/fgene.2024.1480417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Testicular germ cell tumors (TGCTs), the most common malignancies affecting young men, are characterized by high sensitivity to cisplatin-based chemotherapy, which leads to high cure rates even in metastatic disease. However, approximately 30% of patients with metastatic TGCTs relapse after first-line treatment and those who can be defined as platinum-refractory patients face a very dismal prognosis with only limited chemotherapy-based treatment options and an overall survival of few months. Hence, to understand the mechanisms underlying cisplatin resistance is crucial for developing new treatment strategies. This narrative review explores the potential role of PARP inhibitors (PARPis) in overcoming cisplatin resistance in TGCTs, starting from the rationale of their ability to induce DNA damage in cells with homologous recombination repair (HRR). Thus far, PARPis have failed to show meaningful clinical activity in platinum-refractory TGCT patients, either alone or in combination with chemotherapy. However, few responses to PARPis in TGCTs have been detected in patients with BRCA1/2, ATM or CHEK2 mutations, reinforcing the idea that patients should be optimally selected for tailored treatments in the era of personalized medicine. Future preclinical and clinical research is needed to further investigate the molecular mechanisms of cisplatin resistance and to identify novel therapeutic strategies in resistant/refractory TGCTs patients.
Collapse
Affiliation(s)
- Sara Parola
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Christoph Oing
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Pasquale Rescigno
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Salvatore Feliciano
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Francesca Carlino
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Luca Pompella
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | | | - Irene De Santo
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Martina Viggiani
- Medical Oncology Unit, Ospedale San Giuseppe Moscati, ASL Caserta, Aversa, Italy
| | - Margherita Muratore
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Bianca Arianna Facchini
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Jessica Orefice
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cioli
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesca Sparano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Domenico Mallardo
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | - Paolo Antonio Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Margaret Ottaviano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
10
|
Li Y, Xiong X, Liu X, Wu Y, Li X, Liu B, Lin B, Li Y, Xu B. An interpretable deep learning model for detecting BRCA pathogenic variants of breast cancer from hematoxylin and eosin-stained pathological images. PeerJ 2024; 12:e18098. [PMID: 39484212 PMCID: PMC11526788 DOI: 10.7717/peerj.18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 11/03/2024] Open
Abstract
Background Determining the status of breast cancer susceptibility genes (BRCA) is crucial for guiding breast cancer treatment. Nevertheless, the need for BRCA genetic testing among breast cancer patients remains unmet due to high costs and limited resources. This study aimed to develop a Bi-directional Self-Attention Multiple Instance Learning (BiAMIL) algorithm to detect BRCA status from hematoxylin and eosin (H&E) pathological images. Methods A total of 319 histopathological slides from 254 breast cancer patients were included, comprising two dependent cohorts. Following image pre-processing, 633,484 tumor tiles from the training dataset were employed to train the self-developed deep-learning model. The performance of the network was evaluated in the internal and external test sets. Results BiAMIL achieved AUC values of 0.819 (95% CI [0.673-0.965]) in the internal test set, and 0.817 (95% CI [0.712-0.923]) in the external test set. To explore the relationship between BRCA status and interpretable morphological features in pathological images, we utilized Class Activation Mapping (CAM) technique and cluster analysis to investigate the connections between BRCA gene mutation status and tissue and cell features. Significantly, we observed that tumor-infiltrating lymphocytes and the morphological characteristics of tumor cells appeared to be potential features associated with BRCA status. Conclusions An interpretable deep neural network model based on the attention mechanism was developed to predict the BRCA status in breast cancer. Keywords: Breast cancer, BRCA, deep learning, self-attention, interpretability.
Collapse
Affiliation(s)
- Yi Li
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomin Xiong
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Liu
- Bioengineering College of Chongqing University, Chongqing, China
| | - Yihan Wu
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Liu
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Bo Lin
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Xu
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
11
|
Kotecha RR, Doshi SD, Knezevic A, Chaim J, Chen Y, Jacobi R, Zucker M, Reznik E, McHugh D, Shah NJ, Feld E, Aggen DH, Rafelson W, Xiao H, Carlo MI, Feldman DR, Lee CH, Motzer RJ, Voss MH. A Phase 2 Trial of Talazoparib and Avelumab in Genomically Defined Metastatic Kidney Cancer. Eur Urol Oncol 2024; 7:804-811. [PMID: 37945488 PMCID: PMC11074239 DOI: 10.1016/j.euo.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Although different kidney cancers represent a heterogeneous group of malignancies, multiple subtypes including Von Hippel-Lindau (VHL)-altered clear cell renal cell carcinoma (ccRCC), fumarate hydratase (FH)- and succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC), and renal medullary carcinoma (RMC) are affected by genomic instability. Synthetic lethality with poly ADP-ribose polymerase inhibitors (PARPis) has been suggested in preclinical models of these subtypes, and paired PARPis with immune checkpoint blockade (ICB) may achieve additive and/or synergistic effects in patients with previously treated advanced kidney cancers. OBJECTIVE To evaluate combined PARPi + ICB in treatment-refractory metastatic kidney cancer. DESIGN, SETTING, AND PARTICIPANTS We conducted a single-center, investigator-initiated phase 2 trial in two genomically selected advanced kidney cancer cohorts: (1) VHL-altered RCC with at least one prior ICB agent and one vascular endothelial growth factor (VEGF) inhibitor, and (2) FH- or SDH-deficient RCC with at least one prior ICB agent or VEGF inhibitor and RMC with at least one prior line of chemotherapy. INTERVENTION Patients received talazoparib 1 mg daily plus avelumab 800 mg intravenously every 14 d in 28-d cycles. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was objective response rate (ORR) by Immune Response Evaluation Criteria in Solid Tumors at 4 mo, and the secondary endpoints included progression-free survival (PFS), overall survival, and safety. RESULTS AND LIMITATIONS Cohort 1 consisted of ten patients with VHL-altered ccRCC. All patients had previously received ICB. The ORR was 0/9 patients; one patient was not evaluable due to missed doses. In this cohort, seven patients achieved stable disease (SD) as the best response. The median PFS was 3.5 mo (95% confidence interval [CI] 1.0, 3.9 mo). Cohort 2 consisted of eight patients; four had FH-deficient RCC, one had SDH-deficient RCC, and three had RMC. In this cohort, six patients had previously received ICB. The ORR was 0/8 patients; two patients achieved SD as the best response and the median PFS was 1.2 mo (95% CI 0.4, 2.9 mo). The most common treatment-related adverse events of all grades were fatigue (61%), anemia (28%), nausea (22%), and headache (22%). There were seven grade 3-4 and no grade 5 events. CONCLUSIONS The first clinical study of combination PARPi and ICB therapy in advanced kidney cancer did not show clinical benefit in multiple genomically defined metastatic RCC cohorts or RMC. PATIENT SUMMARY We conducted a study to look at the effect of two medications, talazoparib and avelumab, in patients with metastatic kidney cancer who had disease progression on standard treatment. Talazoparib blocks the normal activity of molecules called poly ADP-ribose polymerase, which then prevents tumor cells from repairing themselves and growing, while avelumab helps the immune system recognize and kill cancer cells. We found that the combination of these agents was safe but not effective in specific types of kidney cancer.
Collapse
Affiliation(s)
- Ritesh R Kotecha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Sahil D Doshi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Knezevic
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Chaim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingbei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel Jacobi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Zucker
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deaglan McHugh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neil J Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Emily Feld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David H Aggen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - William Rafelson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Han Xiao
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Darren R Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
12
|
Ng YB, Akincilar SC. Shaping DNA damage responses: Therapeutic potential of targeting telomeric proteins and DNA repair factors in cancer. Curr Opin Pharmacol 2024; 76:102460. [PMID: 38776747 DOI: 10.1016/j.coph.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 05/25/2024]
Abstract
Shelterin proteins regulate genomic stability by preventing inappropriate DNA damage responses (DDRs) at telomeres. Unprotected telomeres lead to persistent DDR causing cell cycle inhibition, growth arrest, and apoptosis. Cancer cells rely on DDR to protect themselves from DNA lesions and exogenous DNA-damaging agents such as chemotherapy and radiotherapy. Therefore, targeting DDR machinery is a promising strategy to increase the sensitivity of cancer cells to existing cancer therapies. However, the success of these DDR inhibitors depends on other mutations, and over time, patients develop resistance to these therapies. This suggests the need for alternative approaches. One promising strategy is co-inhibiting shelterin proteins with DDR molecules, which would offset cellular fitness in DNA repair in a mutation-independent manner. This review highlights the associations and dependencies of the shelterin complex with the DDR proteins and discusses potential co-inhibition strategies that might improve the therapeutic potential of current inhibitors.
Collapse
Affiliation(s)
- Yu Bin Ng
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Semih Can Akincilar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| |
Collapse
|
13
|
Baradács I, Teutsch B, Váradi A, Bilá A, Vincze Á, Hegyi P, Fazekas T, Komoróczy B, Nyirády P, Ács N, Bánhidy F, Lintner B. PARP inhibitor era in ovarian cancer treatment: a systematic review and meta-analysis of randomized controlled trials. J Ovarian Res 2024; 17:53. [PMID: 38409030 PMCID: PMC10895809 DOI: 10.1186/s13048-024-01362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Ovarian cancer is the eighth leading cause of cancer-related death among women, characterized by late diagnosis and a high relapse rate. In randomized controlled trials, we aimed to evaluate the efficacy and safety of PARP inhibitors (PARPi) in treating advanced ovarian cancer. METHODS This review was registered on PROSPERO (CRD42021283150), included all phase II and phase III randomized controlled trials (RCTs) assessing the effect of PARPi on ovarian cancer until the 13th of April, 2022. The main outcomes were progression- free survival (PFS), overall survival (OS), and adverse events (AEs). Pooled hazard ratios (HRs), and risk ratios (RRs) were calculated with 95% confidence intervals (95% CI). The random-effects model was applied in all analyses. RESULTS In the meta-analysis, 16 eligible RCTs were included, with a total of 5,815 patients. In recurrent ovarian cancer, PARPi maintenance therapy showed a significant PFS benefit over placebo in the total population (HR 0.34, CI 0.29-0.40), BRCA mutant (HR 0.24, CI 0.18-0.31), germline BRCA mutant (HR 0.23, CI 0.18-0.30), and BRCA wild-type cases (HR 0.50, CI 0.39-0.65). PARPi monotherapy also improved PFS (HR 0.62, CI 0.51-0.76) compared with chemotherapy in BRCAm patients with recurrent ovarian cancer. The use of PARPi maintenance therapy resulted in an improvement in PFS over placebo in newly-diagnosed cancers in the overall population (HR 0.46, CI 0.30-0.71) and the BRCAm population (HR 0.36, CI 0.29-0.44). Although the risk of severe AEs was increased by PARPi therapy compared to placebo in most settings investigated, these side effects were controllable with dose modification, and treatment discontinuation was required in the minority of cases. CONCLUSIONS PARPis are an effective therapeutic option for newly-diagnosed and recurrent ovarian cancer. Despite a minor increase in the frequency of serious adverse effects, they are generally well tolerated.
Collapse
Affiliation(s)
- István Baradács
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői út 78/A, Budapest, H-1082, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Alex Váradi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Alexandra Bilá
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- School of Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Vincze
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- School of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Fazekas
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Balázs Komoróczy
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői út 78/A, Budapest, H-1082, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Nyirády
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői út 78/A, Budapest, H-1082, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Bánhidy
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői út 78/A, Budapest, H-1082, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Lintner
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői út 78/A, Budapest, H-1082, Hungary.
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
14
|
Song Y, Ran W, Jia H, Yao Q, Li G, Chen Y, Wang X, Xiao Y, Sun M, Lu X, Xing X. Next-generation sequencing-based analysis of homologous recombination repair gene variant in ovarian cancer. Heliyon 2024; 10:e23684. [PMID: 38298632 PMCID: PMC10827683 DOI: 10.1016/j.heliyon.2023.e23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 02/02/2024] Open
Abstract
Background Ovarian cancer is the leading cause of death from gynecological malignancies. Investigating the HRR-related gene status, notably BRCA1/2 in different regions and populations is of great significance for formulating accurate target therapy. Methods We collected 124 ovarian cancer cases from the Affiliated Hospital of.Qingdao University, detected the genomic alteration of 32 genes by NGS, including.19 HRR-related genes, 9 proto-oncogenes and 4 tumor suppressor genes. Clinicopathological characteristics, variants, clinical significance, and correlation with prognosis were analyzed. Results The incidence of HRR-related gene mutation was 59.68 % and no statistical significance was found with multiple clinicopathological characteristics. BRCA1/2 (27.42 %) were the most frequent mutated HRR genes. 23 (18.55 %) cases harbored gBRCA1/2 mutation, with all BRCA1 mutations were pathogenic/likely pathogenic and 2 cases of BRCA2 mutation was variant of uncertain significance. Somatic BRCA1/2 mutations were found in 12 (9.68 %) cases, and sBRCA1/2 had a higher frequency in less common ovarian cancer than high-grade serous carcinoma. HRR-related gene mutation status was associated with better prognosis than HRR wild-type. Conclusions Somatic BRCA1/2 mutation has higher incidence in less common ovarian cancer. HRR gene mutation status is an independent prognosis factor in ovarian cancer. Clarifying the HRR gene status is important for the selection of target therapy as well as the evaluation of prognosis.
Collapse
Affiliation(s)
- Yaolin Song
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Wenwen Ran
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Huiqing Jia
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Guangqi Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Yang Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Xiaonan Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Yujing Xiao
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Mengqi Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Xiao Lu
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| |
Collapse
|
15
|
Wang S, Xu H, Ai J, Yang L. Association of BRCA mutation status with the efficacy of poly (ADP-ribose) polymerase inhibitors in cancer: A systematic review and meta-analysis. Asian J Surg 2023; 46:5473-5474. [PMID: 37541880 DOI: 10.1016/j.asjsur.2023.07.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023] Open
Affiliation(s)
- Sheng Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Xu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianzhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Polyanskaya E, Lebedeva A, Kuznetsova O, Belova E, Kavun A, Ivanov M, Fedyanin M, Tryakin A, Mileyko V, Nosov D. Case Report: Progressive disease of BRCA2-mutant colon adenocarcinoma following talazoparib therapy. Front Oncol 2023; 13:1245547. [PMID: 38023256 PMCID: PMC10662308 DOI: 10.3389/fonc.2023.1245547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is currently one of the most common tumor types diagnosed worldwide. In the early stages, the disease responds well to surgical and chemotherapeutic treatment, but in the later stages when therapeutic options are exhausted, comprehensive genomic profiling can guide further treatment decisions. We present the case of a 46-year-old man of Ashkenazi Jewish ancestry who was diagnosed with KRAS-mutated metastatic colorectal cancer. After surgery and progression on standard FOLFOX/FOLFIRI + bevacizumab therapy, as well as on Trifluridine/Tipiracil, comprehensive genomic profiling was performed with the hope of expanding therapeutic options. Following comprehensive tumor molecular profiling via NGS, a discussion of the case was discussed at the local molecular tumor board in order to determine further treatment strategy. An activating variant of KRAS and PIK3CA, FLT3 and SRC amplification and damaging TP53 and APC variants were discarded by MTB as potential targetable biomarkers. The BRCA2 p.S1415fs*4 founder frameshift variant was of interest and the patient was included in the clinical trial investigating the efficacy of a PARP inhibitor talazoparib. Unfortunately, the disease progression was detected within one month of talazoparib treatment and the patient died during the 8th cycle of FOLFIRI + bevacizumab therapy rechallenge.
Collapse
Affiliation(s)
- Elizaveta Polyanskaya
- Department of Clinical Pharmacology and Chemotherapy #2, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | | | - Olesya Kuznetsova
- Department of Clinical Pharmacology and Chemotherapy #2, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
- RnD, OncoAtlas LLC, Moscow, Russia
| | - Ekaterina Belova
- RnD, OncoAtlas LLC, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | | | - Maxim Ivanov
- RnD, OncoAtlas LLC, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Fedyanin
- Department of Clinical Pharmacology and Chemotherapy #2, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow “Moscow Multidisciplinary Clinical Center “Kommunarka”, Department of Health of the City of Moscow, Moscow, Russia
- Federal State Budgetary Institution “National Medical and Surgical Center Named After N.I. Pirogov”, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey Tryakin
- Department of Clinical Pharmacology and Chemotherapy #2, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | | | - Dmitry Nosov
- Oncology Department of Antitumor Pharmacological Therapy (with Day Hospital), The Central Clinical Hospital of the Administrative Directorate of the President of the Russian Federation, Moscow, Russia
| |
Collapse
|
17
|
Zhao L, Ye S, Jing S, Gao YJ, He T. Targeting TRIP13 for overcoming anticancer drug resistance (Review). Oncol Rep 2023; 50:202. [PMID: 37800638 PMCID: PMC10565899 DOI: 10.3892/or.2023.8639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Cancer is one of the greatest dangers to human wellbeing and survival. A key barrier to effective cancer therapy is development of resistance to anti‑cancer medications. In cancer cells, the AAA+ ATPase family member thyroid hormone receptor interactor 13 (TRIP13) is key in promoting treatment resistance. Nonetheless, knowledge of the molecular processes underlying TRIP13‑based resistance to anticancer therapies is lacking. The present study evaluated the function of TRIP13 expression in anticancer drug resistance and potential methods to overcome this resistance. Additionally, the underlying mechanisms by which TRIP13 promotes resistance to anticancer drugs were explored, including induction of mitotic checkpoint complex surveillance system malfunction, promotion of DNA repair, the enhancement of autophagy and the prevention of immunological clearance. The effects of combination treatment, which include a TRIP13 inhibitor in addition to other inhibitors, were discussed. The present study evaluated the literature on TRIP13 as a possible target and its association with anticancer drug resistance, which may facilitate improvements in current anticancer therapeutic options.
Collapse
Affiliation(s)
- Liwen Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Siyu Ye
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Shengnan Jing
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Tianzhen He
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
18
|
Phan Z, Ford CE, Caldon CE. DNA repair biomarkers to guide usage of combined PARP inhibitors and chemotherapy: A meta-analysis and systematic review. Pharmacol Res 2023; 196:106927. [PMID: 37717683 DOI: 10.1016/j.phrs.2023.106927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE The addition of PARP inhibitors to chemotherapy has been assessed in > 80 clinical trials across multiple malignancies, on the premise that PARP inhibitors will increase chemotherapy effectiveness regardless of whether cancers have underlying disruption of DNA repair pathways. Consequently, the majority of combination therapy trials have been performed on patients without biomarker selection, despite the use of homologous recombination deficiency to dictate use of PARP inhibitors in the maintenance setting. An unresolved question is whether biomarkers are needed to identify patients who respond to combination PARP inhibitors and chemotherapy. METHODS A systematic literature review identified studies using PARP inhibitors in combination with chemotherapy versus chemotherapy alone, where the study included a biomarker of DNA repair function (BRCA1, BRCA2, homologous recombination deficiency test, ATM, ERCC1, SLFN11). Hazard ratios (HR) were pooled in a meta-analysis using generic inverse-variance, and fixed or random effects modelling. Subgroup analyses were conducted on biomarker selection and type of malignancy. RESULTS Nine studies comprising 2547 patients met the inclusion criteria. Progression-free survival (PFS) was significantly better in patients with a DNA repair biomarker (HR: 0.57, 95% CI: 0.48-0.68, p < 0.00001), but there was no benefit in patients who lacked a biomarker (HR: 0.94, 95% CI: 0.82-1.08, p = 0.38). Subgroup analysis showed that BRCA status and SLFN11 biomarkers could predict benefit, and biomarker-driven benefit occurred in ovarian, breast and small cell lung cancers. The addition of PARP inhibitors to chemotherapy was associated with increased grade 3/4 side effects, and particularly neutropenia. CONCLUSIONS Combination therapy only improves PFS in patients with identifiable DNA repair biomarkers. This indicates that PARP inhibitors do not sensitise patients to chemotherapy treatment, except where their cancer has a homologous recombination defect, or an alternative biomarker of altered DNA repair. While effective in patients with DNA repair biomarkers, there is a risk of high-grade haematological side-effects with the use of combination therapy. Thus, the benefit in PFS from combination therapy must be weighed against potential adverse effects, as individual arms of treatment can also confer benefit.
Collapse
Affiliation(s)
- Zoe Phan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Caroline E Ford
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - C Elizabeth Caldon
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Daei Sorkhabi A, Fazlollahi A, Sarkesh A, Aletaha R, Feizi H, Mousavi SE, Nejadghaderi SA, Sullman MJM, Kolahi AA, Safiri S. Efficacy and safety of veliparib plus chemotherapy for the treatment of lung cancer: A systematic review of clinical trials. PLoS One 2023; 18:e0291044. [PMID: 37682974 PMCID: PMC10490931 DOI: 10.1371/journal.pone.0291044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND As a poly-ADP ribose polymerase (PARP) inhibitor, veliparib has been identified as a potential therapeutic agent for lung cancer. The present study aimed to conduct a systematic review of clinical trials investigating the efficacy and safety of veliparib for treating lung cancer. METHODS PubMed, Scopus, the Web of Science, and Google Scholar were systematically searched up to October 30, 2022. Only randomized controlled trials (RCTs) evaluating the efficacy or safety of veliparib in the treatment of lung cancer patients were included. Studies were excluded if they were not RCTs, enrolled healthy participants or patients with conditions other than lung cancer, or investigated therapeutic approaches other than veliparib. The Cochrane risk-of-bias tool was used for quality assessment. RESULTS The seven RCTs (n = 2188) showed that patients treated with a combination of veliparib and chemotherapy had a significantly higher risk of adverse events, when compared to the control arm. There was no statistically significant difference in overall survival (OS) between those treated with veliparib plus chemotherapy and those receiving the standard therapies. Only two trials demonstrated an improvement in progression-free survival (PFS), and only one study found an increase in objective response rate (ORR). Furthermore, adding veliparib to standard chemotherapy showed no benefit in extending the duration of response (DoR) in any of the studies. CONCLUSIONS Only a small number of studies have found veliparib to be effective, in terms of improved OS, PFS, and ORR, while the majority of studies found no benefit for veliparib over standard treatment.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asra Fazlollahi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Feizi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Bukłaho PA, Kiśluk J, Nikliński J. Diagnostics and treatment of ovarian cancer in the era of precision medicine - opportunities and challenges. Front Oncol 2023; 13:1227657. [PMID: 37746296 PMCID: PMC10516548 DOI: 10.3389/fonc.2023.1227657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Due to predictions of increasing incidences and deaths from ovarian cancer, this neoplasm is a challenge for modern health care. The advent of NGS technology has made it possible to understand the molecular characteristics of many cancers, including ovarian cancer. The data obtained in research became the basis for the development of molecularly targeted therapies thus leading to the entry of NGS analysis into the diagnostic process of oncological patients. This review presents targeted therapies currently in preclinical or clinical trials, whose promising results offer hope for their use in clinical practice in the future. As more therapeutic options emerge, it will be necessary to modify molecular diagnostic regimens to select the best treatment for a given patient. New biomarkers are needed to predict the success of planned therapy. An important aspect of public health is molecular testing in women with a familial predisposition to ovarian cancer enabling patients to be included in prevention programs. NGS technology, despite its high throughput, poses many challenges, from the quality of the diagnostic material used for testing to the interpretation of results and classification of sequence variants. The article highlights the role of molecular testing in ongoing research and also its role in the diagnostic and therapeutic process in the era of personalized medicine. The spread of genetic testing in high-risk groups, the introduction of more targeted therapies and also the possibility of agnostic therapies could significantly improve the health situation for many women worldwide.
Collapse
Affiliation(s)
- Patrycja Aleksandra Bukłaho
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
- Doctoral School, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kiśluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
Shao C, Ren Y, Zhou H, Chen C, Dettman EJ, Lee LC, Cristescu R, Gozman A, Jin F, Zhou W. Association Between Homologous Recombination Repair Biomarkers and Survival in Patients With Solid Tumors. JCO Precis Oncol 2023; 7:e2300195. [PMID: 37972338 DOI: 10.1200/po.23.00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Mutations in BRCA1 and/or BRCA2 (BRCAm), other homologous recombination repair genes (HRRm), and homologous recombination deficiency (HRD) lead to an accumulation of genomic alterations that can drive tumorigenesis. The prognostic impact of these HRR pathway defects on overall survival (OS) in patients not receiving poly (ADP-ribose) polymerase inhibitors (PARPi) or immunotherapy is unclear. We evaluated the association of HRR biomarkers with OS in patients with advanced solid tumors receiving therapy excluding PARPi and immunotherapy. METHODS Deidentified data were collected through December 31, 2020, from a real-world clinicogenomic database (CGDB) with data originating from approximately 280 cancer clinics in the United States. Patients age 18 years and older with an advanced/metastatic diagnosis between 2018 and 2019 for 1 of 15 solid tumors and available data in the CGDB were included. The primary analysis evaluated the association between HRR pathway biomarkers and OS, using start of second-line therapy as the index date (to reduce immortal time bias). RESULTS A total of 9,457 patients had available data for BRCA/HRR and 5,792 for HRD status; 4,890 (51.7%) were women and mean (SD) age was 65.9 (11.5) years. For the primary analysis, adjusted hazard ratios for OS were BRCAm (n = 156) versus BRCA wild-type (wt; n = 3,131; 0.83 [95% CI, 0.60 to 1.17]); for HRRm (n = 467) versus HRRwt (n = 282; 0.95 [95% CI, 0.79 to 1.14]); and for HRD-positive (n = 447) versus -negative (n = 1,687; 1.22 [95% CI, 1.02 to 1.47]). Results were similar using start of first-line and start of third-line therapy as index dates. CONCLUSION This large, real-world study found no association between OS and either BRCA or HRR status but identified a possible linkage between HRD positivity and shorter median OS in patients with advanced solid tumors who did not receive PARPi or immunotherapy.
Collapse
|
22
|
Schettini F, De Bonis MV, Strina C, Milani M, Ziglioli N, Aguggini S, Ciliberto I, Azzini C, Barbieri G, Cervoni V, Cappelletti MR, Ferrero G, Ungari M, Locci M, Paris I, Scambia G, Ruocco G, Generali D. Computational reactive-diffusive modeling for stratification and prognosis determination of patients with breast cancer receiving Olaparib. Sci Rep 2023; 13:11951. [PMID: 37488154 PMCID: PMC10366144 DOI: 10.1038/s41598-023-38760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Mathematical models based on partial differential equations (PDEs) can be exploited to handle clinical data with space/time dimensions, e.g. tumor growth challenged by neoadjuvant therapy. A model based on simplified assessment of tumor malignancy and pharmacodynamics efficiency was exercised to discover new metrics of patient prognosis in the OLTRE trial. We tested in a 17-patients cohort affected by early-stage triple negative breast cancer (TNBC) treated with 3 weeks of olaparib, the capability of a PDEs-based reactive-diffusive model of tumor growth to efficiently predict the response to olaparib in terms of SUVmax detected at 18FDG-PET/CT scan, by using specific terms to characterize tumor diffusion and proliferation. Computations were performed with COMSOL Multiphysics. Driving parameters governing the mathematical model were selected with Pearson's correlations. Discrepancies between actual and computed SUVmax values were assessed with Student's t test and Wilcoxon rank sum test. The correlation between post-olaparib true and computed SUVmax was assessed with Pearson's r and Spearman's rho. After defining the proper mathematical assumptions, the nominal drug efficiency (εPD) and tumor malignancy (rc) were computationally evaluated. The former parameter reflected the activity of olaparib on the tumor, while the latter represented the growth rate of metabolic activity as detected by SUVmax. εPD was found to be directly dependent on basal tumor-infiltrating lymphocytes (TILs) and Ki67% and was detectable through proper linear regression functions according to TILs values, while rc was represented by the baseline Ki67-to-TILs ratio. Predicted post-olaparib SUV*max did not significantly differ from original post-olaparib SUVmax in the overall, gBRCA-mutant and gBRCA-wild-type subpopulations (p > 0.05 in all cases), showing strong positive correlation (r = 0.9 and rho = 0.9, p < 0.0001 both). A model of simplified tumor dynamics was exercised to effectively produce an upfront prediction of efficacy of 3-week neoadjuvant olaparib in terms of SUVmax. Prospective evaluation in independent cohorts and correlation of these outcomes with more recognized efficacy endpoints is now warranted for model confirmation and tailoring of escalated/de-escalated therapeutic strategies for early-TNBC patients.
Collapse
Affiliation(s)
- Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, C. Villaroel 170, 08036, Barcelona, Spain.
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
- Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| | - Maria Valeria De Bonis
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Carla Strina
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Manuela Milani
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Nicoletta Ziglioli
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Sergio Aguggini
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Ignazio Ciliberto
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Carlo Azzini
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Giuseppina Barbieri
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Valeria Cervoni
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Maria Rosa Cappelletti
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | | | - Marco Ungari
- UO Anatomia Patologica ASST di Cremona, Cremona, Italy
| | - Mariavittoria Locci
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Ida Paris
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianpaolo Ruocco
- Modeling and Prototyping Laboratory, College of Engineering, University of Basilicata, Potenza, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy.
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy.
| |
Collapse
|
23
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
24
|
Canil G, Orleni M, Posocco B, Gagno S, Bignucolo A, Montico M, Roncato R, Corsetti S, Bartoletti M, Toffoli G. LC-MS/MS Method for the Quantification of PARP Inhibitors Olaparib, Rucaparib and Niraparib in Human Plasma and Dried Blood Spot: Development, Validation and Clinical Validation for Therapeutic Drug Monitoring. Pharmaceutics 2023; 15:pharmaceutics15051524. [PMID: 37242766 DOI: 10.3390/pharmaceutics15051524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) are becoming increasingly meaningful in oncology, and their therapeutic drug monitoring (TDM) might be beneficial for patients. Several bioanalytical methods have been reported for PARPis quantification in human plasma, but advantages might be obtained using dried blood spot (DBS) as a sampling technique. Our aim was to develop and validate a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for olaparib, rucaparib, and niraparib quantification in both human plasma and DBS matrices. Additionally, we aimed to assess the correlation between the drug concentrations measured in these two matrices. DBS from patients was obtained using Hemaxis DB10 for volumetric sampling. Analytes were separated on a Cortecs-T3 column and detected with electrospray ionization (ESI)-MS in positive ionization mode. Validation was performed according to the latest regulatory guidelines, in the range (ng/mL) 140-7000 for olaparib, 100-5000 for rucaparib, and 60-3000 for niraparib, within the hematocrit (Hct) range 29-45%. The Passing-Bablok and Bland-Altman statistical analyses revealed a strong correlation between plasma and DBS for olaparib and niraparib. However, due to the limited amount of data, it was challenging to establish a robust regression analysis for rucaparib. To ensure a more reliable assessment, additional samples are required. The DBS-to-plasma ratio was used as a conversion factor (CF) without considering any patient-related hematological parameters. These results provide a solid basis for the feasibility of PARPis TDM using both plasma and DBS matrices.
Collapse
Affiliation(s)
- Giovanni Canil
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Marco Orleni
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Bianca Posocco
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Marcella Montico
- Clinical Trial Office, CRO Aviano, National Cancer Institute, IRCSS, 33081 Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Serena Corsetti
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Michele Bartoletti
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
25
|
Schettini F, Martínez-Sáez O, Falato C, De Santo I, Conte B, Garcia-Fructuoso I, Gomez-Bravo R, Seguí E, Chic N, Brasó-Maristany F, Paré L, Vidal M, Adamo B, Muñoz M, Pascual T, Ciruelos E, Perou CM, Carey LA, Prat A. Prognostic value of intrinsic subtypes in hormone-receptor-positive metastatic breast cancer: systematic review and meta-analysis. ESMO Open 2023; 8:101214. [PMID: 37075698 PMCID: PMC10373919 DOI: 10.1016/j.esmoop.2023.101214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND In hormone receptor-positive (HoR+) breast cancer (BC), gene expression analysis identifies luminal A (LumA), luminal B (LumB), human epidermal growth factor receptor 2 (HER2)-enriched (HER2-E), basal-like (BL) intrinsic subtypes and a normal-like group. This classification has an established prognostic value in early-stage HoR+ BC. Here, we carried out a trial-level meta-analysis to determine the prognostic ability of subtypes in metastatic BC (MBC). MATERIALS AND METHODS We systematically reviewed all the available prospective phase II/III trials in HoR+ MBC where subtype was assessed. The primary endpoint was progression-free survival (PFS)/time to progression (TTP) of the LumA subtype compared to non-LumA. Secondary endpoints were PFS/TTP of each individual subtype, according to treatment, menopausal and HER2 status and overall survival (OS). The random-effect model was applied, and heterogeneity assessed through Cochran's Q and I2. Threshold for significance was set at P < 0.05. The study was registered in PROSPERO (ID: CRD42021255769). RESULTS Seven studies were included (2536 patients). Non-LumA represented 55.2% and was associated with worse PFS/TTP than LumA [hazard ratio (HR) 1.77, P < 0.001, I2 = 61%], independently of clinical HER2 status [Psubgroup difference (Psub) = 0.16], systemic treatment (Psub = 0.96) and menopausal status (Psub = 0.12). Non-LumA tumors also showed worse OS (HR 2.00, P < 0.001, I2 = 65%), with significantly different outcomes for LumB (PFS/TTP HR 1.46; OS HR 1.41), HER2-E (PFS/TTP HR 2.39; OS HR 2.08) and BL (PFS/TTP HR 2.67; OS HR 3.26), separately (PFS/TTP Psub = 0.01; OS Psub = 0.005). Sensitivity analyses supported the main result. No publication bias was observed. CONCLUSIONS In HoR+ MBC, non-LumA disease is associated with poorer PFS/TTP and OS than LumA, independently of HER2, treatment and menopausal status. Future trials in HoR+ MBC should consider this clinically relevant biological classification.
Collapse
Affiliation(s)
- F Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona; Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - O Martínez-Sáez
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona; Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain; Breast Oncology Program, Dana-Farber Cancer Institute, Boston, USA
| | - C Falato
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona; SOLTI Breast Cancer Research Group, Barcelona, Spain; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - I De Santo
- Medical Oncology Unit, San Carlo Hospital, Potenza, Italy
| | - B Conte
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona
| | - I Garcia-Fructuoso
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona
| | - R Gomez-Bravo
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona
| | - E Seguí
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona; SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - N Chic
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona; Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - F Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona
| | - L Paré
- Reveal Genomics, Barcelona
| | - M Vidal
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona; Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain; SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - B Adamo
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona
| | - M Muñoz
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona; Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain; SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - T Pascual
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona; SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - E Ciruelos
- SOLTI Breast Cancer Research Group, Barcelona, Spain; Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - C M Perou
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill; Departments of Genetics, UNC Chapel Hill, Chapel Hill, USA
| | - L A Carey
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill; Departments of Medicine, UNC Chapel Hill, Chapel Hill, USA
| | - A Prat
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona; Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain; Reveal Genomics, Barcelona; Institute of Oncology (IOB)-Hospital Quirónsalud, Barcelona, Spain.
| |
Collapse
|
26
|
Gao B, Voskoboynik M, Cooper A, Wilkinson K, Hoon S, Hsieh CY, Cai S, Tian YE, Bao J, Ma N, Wang C, Zhang M, Li B, Guo M, Zhou R, Wang X, Xu C, de Souza P. A phase 1 dose-escalation study of the poly(ADP-ribose) polymerase inhibitor senaparib in Australian patients with advanced solid tumors. Cancer 2023; 129:1041-1050. [PMID: 36718624 DOI: 10.1002/cncr.34662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Senaparib is a novel, selective poly(ADP-ribose) polymerase-1/2 inhibitor with strong antitumor activity in preclinical studies. This first-in-human, phase 1, dose-escalation study examined the safety and preliminary efficacy of senaparib in patients with advanced solid tumors. METHODS Patients with advanced solid tumors were enrolled from three centers in Australia, using a conventional 3 + 3 design. Dose-escalation cohorts continued until the maximum tolerated dose or a recommended phase 2 dose was determined. Patients received one dose of oral senaparib and, if no dose-limiting toxicity occurred within 7 days, they received senaparib once daily in 3-week cycles. The primary end points were safety and tolerability. RESULTS Thirty-nine patients were enrolled at 10 dose levels ranging from 2 to 150 mg. No dose-limiting toxicities were observed in any cohort. Most treatment-emergent adverse events were grade 1-2 (91%). Seven patients (17.9%) reported hematologic treatment-emergent adverse events. Treatment-related adverse events occurred in eight patients (20.5%), and the most frequent was nausea (7.7%). Two deaths were reported after the end of study treatment, one of which was considered a complication from senaparib-related bone marrow failure. Pharmacokinetic analysis indicated that senaparib the accumulation index was 1.06-1.67, and absorption saturation was 80-150 mg daily. In 22 patients with evaluable disease, the overall response rate was 13.6%, and the disease control rate was 81.8%. The overall response rate was 33.3% for the BRCA mutation-positive subgroup and 6.3% for the nonmutated subgroup. CONCLUSIONS Senaparib was well tolerated in Australian patients with advanced solid tumors, with encouraging signals of antitumor activity. The recommended phase 2 dose for senaparib was determined to be 100 mg daily. CLINICALTRIALS GOV ID NCT03507543.
Collapse
Affiliation(s)
- Bo Gao
- Department of Medical Oncology, Blacktown Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Mark Voskoboynik
- Medical Oncology, Nucleus Network, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam Cooper
- Western Sydney University Medical School, Campbelltown, New South Wales, Australia
| | - Kate Wilkinson
- Western Sydney University Medical School, Campbelltown, New South Wales, Australia
| | - Siao Hoon
- Department of Medical Oncology, Blacktown Hospital and University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | - Jun Bao
- IMPACT Therapeutics Inc., Shanghai, China
| | - Ning Ma
- IMPACT Therapeutics Inc., Shanghai, China
| | - Chen Wang
- IMPACT Therapeutics Inc., Shanghai, China
| | - Ming Zhang
- IMPACT Therapeutics Inc., Shanghai, China
| | - Baoyue Li
- IMPACT Therapeutics Inc., Shanghai, China
| | | | - Ruiyu Zhou
- IMPACT Therapeutics Inc., Shanghai, China
| | | | - Cong Xu
- IMPACT Therapeutics Inc., Shanghai, China
| | - Paul de Souza
- Western Sydney University Medical School, Campbelltown, New South Wales, Australia
| |
Collapse
|
27
|
Mohmaed Ali MI, Bruin MAC, Dezentjé VO, Beijnen JH, Steeghs N, Huitema ADR. Exposure-Response Analyses of Olaparib in Real-Life Patients with Ovarian Cancer. Pharm Res 2023; 40:1239-1247. [PMID: 36944815 DOI: 10.1007/s11095-023-03497-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Olaparib is given in a fixed dose of twice-daily 300 mg in patients who are diagnosed with ovarian cancer, breast cancer, prostate cancer or pancreas cancer and has a high interpatient variability in pharmacokinetic exposure. The objective of this study was to investigate whether pharmacokinetic exposure of olaparib is related to efficacy and safety in a real-life patient' cohort. METHODS A longitudinal observational study was conducted in patients who received olaparib for metastatic ovarian cancer of whom pharmacokinetic samples were collected. A Kaplan-Meier analyses was used to explore the relationship between olaparib exposure, measured as (calculated) minimum plasma concentrations (Cmin), and efficacy, Univariate and multivariate cox-regression analyses were performed. Also, the Cmin of patients who experienced toxicity was compared with patients who did not experience any toxicity. RESULTS Thirty-five patients were included in the exposure-efficacy analyses, with a median olaparib Cmin of 1514 ng/mL. There was no statistical significant difference in PFS of patients below and above the median Cmin concentration of olaparib, with a hazard ratio of 1.06 (95% confidence interval: 0.46-2.45, p = 0.9)). For seven patients pharmacokinetic samples were available before toxicity occurred, these patients had a higher Cmin of olaparib in comparison with patients who had not experienced any toxicity (n = 33), but it was not statistically significant (p = 0.069). CONCLUSIONS Our study shows that exposure of olaparib is not related to PFS. This suggests that the approved dose of olaparib yields sufficient target inhibition in the majority of patients.
Collapse
Affiliation(s)
- Ma Ida Mohmaed Ali
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Maaike A C Bruin
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vincent O Dezentjé
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmaco-Epidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Rauth S, Ganguly K, Atri P, Parte S, Nimmakayala RK, Varadharaj V, Nallasamy P, Vengoji R, Ogunleye AO, Lakshmanan I, Chirravuri R, Bessho M, Cox JL, Foster JM, Talmon GA, Bessho T, Ganti AK, Batra SK, Ponnusamy MP. Elevated PAF1-RAD52 axis confers chemoresistance to human cancers. Cell Rep 2023; 42:112043. [PMID: 36709426 PMCID: PMC10374878 DOI: 10.1016/j.celrep.2023.112043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/11/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023] Open
Abstract
Cisplatin- and gemcitabine-based chemotherapeutics represent a mainstay of cancer therapy for most solid tumors; however, resistance limits their curative potential. Here, we identify RNA polymerase II-associated factor 1 (PAF1) as a common driver of cisplatin and gemcitabine resistance in human cancers (ovarian, lung, and pancreas). Mechanistically, cisplatin- and gemcitabine-resistant cells show enhanced DNA repair, which is inhibited by PAF1 silencing. We demonstrate an increased interaction of PAF1 with RAD52 in resistant cells. Targeting the PAF1 and RAD52 axis combined with cisplatin or gemcitabine strongly diminishes the survival potential of resistant cells. Overall, this study shows clinical evidence that the expression of PAF1 contributes to chemotherapy resistance and worse clinical outcome for lethal cancers.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Venkatesh Varadharaj
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Mika Bessho
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Tadayoshi Bessho
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| |
Collapse
|
29
|
Targeting the DNA damage response for cancer therapy. Biochem Soc Trans 2023; 51:207-221. [PMID: 36606678 PMCID: PMC9988002 DOI: 10.1042/bst20220681] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
The DNA damage response (DDR) is an elegant system, coordinating DNA repair with cell cycle checkpoints, that evolved to protect living organisms from the otherwise fatal levels of DNA damage inflicted by endogenous and environmental sources. Since many agents used to treat cancer; radiotherapy and cytotoxic chemotherapy, work by damaging DNA the DDR represents a mechanism of resistance. The original rational for the development of drugs to inhibit the DDR was to overcome this mechanism of resistance but clinical studies using this approach have not led to improvements in the therapeutic index. A more exciting approach is to exploit cancer-specific defects in the DDR, that represent vulnerabilities in the tumour and an opportunity to selectively target the tumour. PARP inhibitors (PARPi) selectively kill homologous recombination repair defective (HRD, e.g. through BRCA mutation) cells. This approach has proven successful clinically and there are now six PARPi approved for cancer therapy. Drugs targeting other aspects of the DDR are under pre-clinical and clinical evaluation as monotherapy agents and in combination studies. For this promising approach to cancer therapy to be fully realised reliable biomarkers are needed to identify tumours with the exploitable defect for monotherapy applications. The possibility that some combinations may result in toxicity to normal tissues also needs to be considered. A brief overview of the DDR, the development of inhibitors targeting the DDR and the current clinical status of such drugs is described here.
Collapse
|
30
|
Bioanalytical Methods for Poly(ADP-Ribose) Polymerase Inhibitor Quantification: A Review for Therapeutic Drug Monitoring. Ther Drug Monit 2023; 45:306-317. [PMID: 36728223 PMCID: PMC10168115 DOI: 10.1097/ftd.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of poly(ADP-ribose) polymerase inhibitors (PARPis) is an exploratory practice aimed at improving the quality of treatment through personalized therapy. Currently, there are 4 European Medicines Agency-approved and US Food and Drug Administration-approved PARPis available clinically whose quantification requires validated analytical methods: olaparib, niraparib, rucaparib, and talazoparib. The purpose of this literature review was to highlight the pharmacological features of PARPis that could support their TDM practice and provide a detailed discussion of the available liquid chromatography coupled with tandem mass spectrometry methods for their quantification. METHODS Using several Medical Subject Heading terms, the literature was searched using several research engines, including SciFinder, Web of Science, Google Scholar, and PubMed, to find articles published before August 2022. RESULTS Exposure-efficacy and exposure-safety profiles, drug-drug interactions, and hepatic/renal impairment of PARPis provide the potential rationale to monitor their concentrations through TDM. Several bioanalytical methods for their quantification have been reported and compared, and a great deal of heterogeneity has been found among methods, regarding both their analytical and regulatory aspects. CONCLUSIONS In addition to reducing toxicity and increasing the efficacy of PARPis therapy, TDM could be beneficial to thoroughly investigate the exposure-response relationships of PARPis and to establish pharmacokinetic thresholds for clinical decisions. Based on the comparison of published bioanalytical methods, their transferability and validation both play a key role in method selection. For future use in clinical TDM, we anticipate that bioanalytical methods should address every analytical need more thoroughly and should be validated with standardized guidelines.
Collapse
|
31
|
di Mauro P, Schivardi G, Pedersini R, Laini L, Esposito A, Amoroso V, Laganà M, Grisanti S, Cosentini D, Berruti A. Sacituzumab govitecan and radiotherapy in metastatic, triple-negative, and BRCA-mutant breast cancer patient with active brain metastases: A case report. Front Oncol 2023; 13:1139372. [PMID: 36890829 PMCID: PMC9987211 DOI: 10.3389/fonc.2023.1139372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive cancer subtype, owing to its high metastatic potential: Patients who develop brain metastases (BMs) have a poor prognosis due to the lack of effective systemic treatments. Surgery and radiation therapy are valid options, while pharmacotherapy still relies on systemic chemotherapy, which has limited efficacy. Among the new treatment strategies available, the antibody-drug conjugate (ADC) sacituzumab govitecan has shown an encouraging activity in metastatic TNBC, even in the presence of BMs. Case presentation A 59-year-old woman was diagnosed with early TNBC and underwent surgery and subsequent adjuvant chemotherapy. A germline pathogenic variant in BReast CAncer gene 2 (BRCA2) was revealed after genetic testing. After 11 months from the completion of adjuvant treatment, she had pulmonary and hilar nodal relapse and began first-line chemotherapy with carboplatin and paclitaxel. However, after only 3 months from starting the treatment, she experienced relevant disease progression, due to the appearance of numerous and symptomatic BMs. Sacituzumab govitecan (10 mg/kg) was started as second-line treatment as part of the Expanded Access Program (EAP). She reported symptomatic relief after the first cycle and received whole-brain radiotherapy (WBRT) concomitantly to sacituzumab govitecan treatment. The subsequent CT scan showed an extracranial partial response and a near-to-complete intracranial response; no grade 3 adverse events were reported, even if sacituzumab govitecan was reduced to 7.5 mg/kg due to persistent G2 asthenia. After 10 months from starting sacituzumab govitecan, a systemic disease progression was documented, while intracranial response was maintained. Conclusions This case report supports the potential efficacy and safety of sacituzumab govitecan in the treatment of early recurrent and BRCA-mutant TNBC. Despite the presence of active BMs, our patient had a progression-free survival (PFS) of 10 months in the second-line setting and sacituzumab govitecan was safe when administered together with radiation therapy. Further real-world data are warranted to confirm sacituzumab govitecan efficacy in this patient population.
Collapse
Affiliation(s)
- Pierluigi di Mauro
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Greta Schivardi
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Rebecca Pedersini
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy.,Breast Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Lara Laini
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Andrea Esposito
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Vito Amoroso
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Marta Laganà
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy.,Breast Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| |
Collapse
|
32
|
Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14184474. [PMID: 36139634 PMCID: PMC9496913 DOI: 10.3390/cancers14184474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Poly (adenosine diphosphate ribose) polymerase inhibitors (PARPis) have demonstrated antitumoral activity in several cancers harbouring germline and somatic BRCA1/2 mutations. The widespread use of these agents in clinical practice is restricted by the development of acquired resistance due to the presence of compensatory pathways. A strategy to deal with this is the use of combination therapies with drugs that act synergistically against the tumour. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. However, this strategy is hampered by the poor pharmacokinetic profile and short half-life of BETis. In this work and as a proof of concept, we discuss the potential preclinical benefit provided by the combination of the PARPi olaparib and the BET inhibitor JQ1 encapsulated into nanoparticles for the treatment of BRCAness tumours. Abstract BRCA1/2 protein-deficient or mutated cancers comprise a group of aggressive malignancies. Although PARPis have shown considerably efficacy in their treatment, the widespread use of these agents in clinical practice is restricted by various factors, including the development of acquired resistance due to the presence of compensatory pathways. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. Due to the poor pharmacokinetic profile and short half-life, the first-in-class BETi JQ1 was loaded into newly developed nanocarrier formulations to improve the effectivity of olaparib for the treatment of BRCAness cancers. First, polylactide polymeric nanoparticles were generated by double emulsion. Moreover, liposomes were prepared by ethanol injection and evaporation solvent method. JQ1-loaded drug delivery systems display optimal hydrodynamic radii between 60 and 120 nm, with a very low polydispersity index (PdI), and encapsulation efficiencies of 92 and 16% for lipid- and polymeric-based formulations, respectively. Formulations show high stability and sustained release. We confirmed that all assayed JQ1 formulations improved antiproliferative activity compared to the free JQ1 in models of ovarian and breast cancers. In addition, synergistic interaction between JQ1 and JQ1-loaded nanocarriers and olaparib evidenced the ability of encapsulated JQ1 to enhance antitumoral activity of PARPis.
Collapse
|
33
|
Schettini F, Venturini S, Giuliano M, Lambertini M, Pinato DJ, Elisa Onesti C, De Placido P, Harbeck N, Lüftner D, Denys H, Van Dam P, Arpino G, Zaman K, Mustacchi G, Gligorov J, Awada A, Campone M, Wildiers H, Gennari A, Tjan-Heijnen V, Bartsch R, Cortes J, Paris I, Martín M, De Placido S, Del Mastro L, Jerusalem G, Curigliano G, Prat A, Generali D. Multiple Bayesian Network Meta-Analyses to Establish Therapeutic Algorithms for Metastatic Triple Negative Breast Cancer. Cancer Treat Rev 2022; 111:102468. [DOI: 10.1016/j.ctrv.2022.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/23/2022]
|
34
|
Garufi G, Carbognin L, Schettini F, Seguí E, Di Leone A, Franco A, Paris I, Scambia G, Tortora G, Fabi A. Updated Neoadjuvant Treatment Landscape for Early Triple Negative Breast Cancer: Immunotherapy, Potential Predictive Biomarkers, and Novel Agents. Cancers (Basel) 2022; 14:cancers14174064. [PMID: 36077601 PMCID: PMC9454536 DOI: 10.3390/cancers14174064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In recent years, several agents have been tested in randomized clinical trials in addition to anthracycline and taxane-based neoadjuvant chemotherapy (NACT) in early-stage triple-negative breast cancer (TNBC) to improve pathological complete response rate and, ultimately, survival outcome. Platinum agents, immune checkpoint inhibitors (ICIs), and PARP-inhibitors are the most extensively studied, while established predictors of their efficacy are lacking. Based on the biological features of TNBC, the purpose of this review is to provide an overview of the role of platinum agents, immunotherapy, and novel target therapies in the neoadjuvant setting. Moreover, based on safety issues and financial costs, we provide an overview of potential biomarkers associated with increased likelihood of benefit from the addition of platinum, ICIs, and novel target therapies to NACT. Abstract Triple-negative breast cancer (TNBC) is characterized by the absence of hormone receptor and HER2 expression, and therefore a lack of therapeutic targets. Anthracyclines and taxane-based neoadjuvant chemotherapy have historically been the cornerstone of treatment of early TNBC. However, genomic and transcriptomic analyses have suggested that TNBCs include various subtypes, characterized by peculiar genomic drivers and potential therapeutic targets. Therefore, several efforts have been made to expand the therapeutic landscape of early TNBC, leading to the introduction of platinum and immunomodulatory agents into the neoadjuvant setting. This review provides a comprehensive overview of the currently available evidence regarding platinum agents and immune-checkpoint-inhibitors for the neoadjuvant treatment of TNBC, as well as the novel target therapies that are currently being evaluated in this setting. Taking into account the economic issues and the side effects of the expanding therapeutic options, we focus on the potential efficacy biomarkers of the emerging therapies, in order to select the best therapeutic strategy for each specific patient.
Collapse
Affiliation(s)
- Giovanna Garufi
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
- Correspondence: (G.G.); (A.F.)
| | - Luisa Carbognin
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
- Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Elia Seguí
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
| | - Alba Di Leone
- Breast Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Antonio Franco
- Breast Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Ida Paris
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Giovanni Scambia
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Giampaolo Tortora
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Alessandra Fabi
- Unit of Precision Medicine in Senology, Department of Woman and Child Health and Public Health, Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Roma, Italy
- Correspondence: (G.G.); (A.F.)
| |
Collapse
|
35
|
Murray MF, Khoury MJ, Abul-Husn NS. Addressing the routine failure to clinically identify monogenic cases of common disease. Genome Med 2022; 14:60. [PMID: 35672798 PMCID: PMC9175445 DOI: 10.1186/s13073-022-01062-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Changes in medical practice are needed to improve the diagnosis of monogenic forms of selected common diseases. This article seeks to focus attention on the need for universal genetic testing in common diseases for which the recommended clinical management of patients with specific monogenic forms of disease diverges from standard management and has evidence for improved outcomes.We review evidence from genomic screening of large patient cohorts, which has confirmed that important monogenic case identification failures are commonplace in routine clinical care. These case identification failures constitute diagnostic misattributions, where the care of individuals with monogenic disease defaults to the treatment plan offered to those with polygenic or non-genetic forms of the disease.The number of identifiable and actionable monogenic forms of common diseases is increasing with time. Here, we provide six examples of common diseases for which universal genetic test implementation would drive improved care. We examine the evidence to support genetic testing for common diseases, and discuss barriers to widespread implementation. Finally, we propose recommendations for changes to genetic testing and care delivery aimed at reducing diagnostic misattributions, to serve as a starting point for further evaluation and development of evidence-based guidelines for implementation.
Collapse
Affiliation(s)
- Michael F. Murray
- grid.47100.320000000419368710Yale Center for Genomic Health, Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520 USA
| | - Muin J. Khoury
- grid.416738.f0000 0001 2163 0069Office of Genomics and Precision Public Health, Office of Science, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329 USA
| | - Noura S. Abul-Husn
- grid.59734.3c0000 0001 0670 2351Institute for Genomic Health, Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1041, New York, NY 10029 USA
| |
Collapse
|
36
|
Lou E. Redefining and expanding the sphere of influence of BRCA in breast and colorectal cancers and beyond. Oncotarget 2022; 13:120-121. [PMID: 35047126 PMCID: PMC8759671 DOI: 10.18632/oncotarget.28164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Emil Lou
- Masonic Cancer Center and Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Integrated, Integral, and Exploratory Biomarkers in the Development of Poly(ADP-Ribose) Polymerase Inhibitors. Cancer J 2021; 27:482-490. [PMID: 34904811 DOI: 10.1097/ppo.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT In this article, we highlight biomarkers for poly(ADP-ribose) polymerase inhibitor (PARPi) sensitivity and resistance and discuss their implications for the clinic. We review the predictive role of a range of DNA repair genes, genomic scars, mutational signatures, and functional assays available or in development. The biomarkers used for patient selection in the specific Food and Drug Administration-approved indications for breast, ovarian, prostate, and pancreatic cancer vary across tumor type and likely depend on disease-specific DNA repair deficiencies but also the specifics of the individual clinical trials that were conducted. Mutations in genes involved in homologous recombination and/or replication fork protection are synthetic lethal with PARPi. Cancers with homologous recombination deficiency exhibit high genomic instability, characterized by genome-wide loss of heterozygosity, among other genomic aberrations. Next-generation sequencing can identify multiple patterns of genomic changes including copy number variations, single-nucleotide variations, insertions/deletions, and structural variations rearrangements characteristic of homologous recombination deficiency. Clinical trial evidence supports the use of BRCA mutation testing for patient selection, and for ovarian cancer, there are 3 commercial assays available that additionally incorporate genomic instability for identifying subgroups of patients that derive different magnitudes of benefit from PARPi therapy. Finally, we summarize new strategies for extending the benefit of PARPi therapy toward broader populations of patients through the use of novel biomarkers. Ultimately, design of a composite biomarker test combining multiple mutational signatures or development of a dynamic assay for functional assessments of homologous recombination may help improve the test accuracy for future patient stratification.
Collapse
|
38
|
Singh DD, Parveen A, Yadav DK. Role of PARP in TNBC: Mechanism of Inhibition, Clinical Applications, and Resistance. Biomedicines 2021; 9:biomedicines9111512. [PMID: 34829741 PMCID: PMC8614648 DOI: 10.3390/biomedicines9111512] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer is a combative cancer type with a highly inflated histological grade that leads to poor theragnostic value. Gene, protein, and receptor-specific targets have shown effective clinical outcomes in patients with TNBC. Cells are frequently exposed to DNA-damaging agents. DNA damage is repaired by multiple pathways; accumulations of mutations occur due to damage to one or more pathways and lead to alterations in normal cellular mechanisms, which lead to development of tumors. Advances in target-specific cancer therapies have shown significant momentum; most treatment options cause off-target toxicity and side effects on healthy tissues. PARP (poly(ADP-ribose) polymerase) is a major protein and is involved in DNA repair pathways, base excision repair (BER) mechanisms, homologous recombination (HR), and nonhomologous end-joining (NEJ) deficiency-based repair mechanisms. DNA damage repair deficits cause an increased risk of tumor formation. Inhibitors of PARP favorably kill cancer cells in BRCA-mutations. For a few years, PARPi has shown promising activity as a chemotherapeutic agent in BRCA1- or BRCA2-associated breast cancers, and in combination with chemotherapy in triple-negative breast cancer. This review covers the current results of clinical trials testing and future directions for the field of PARP inhibitor development.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Amna Parveen
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (A.P.); (D.K.Y.); Tel.: +82-32-820-4948 (D.K.Y.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (A.P.); (D.K.Y.); Tel.: +82-32-820-4948 (D.K.Y.)
| |
Collapse
|
39
|
Horton R, Pharoah P, Hayward J, Lucassen A. Care of men with cancer-predisposing BRCA variants. BMJ 2021; 375:n2376. [PMID: 34649841 PMCID: PMC7612259 DOI: 10.1136/bmj.n2376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rachel Horton
- Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Paul Pharoah
- Department of Public Health and Primary Care, Department of Oncology, Cambridge Cancer Centre, University of Cambridge, UK
| | - Judith Hayward
- Yorkshire Regional Genetics Service, Leeds, UK
- Shipley Medical Practice, Affinity Care, Shipley, UK
| | - Anneke Lucassen
- Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Schettini F, Giuliano M, Lambertini M, Bartsch R, Pinato DJ, Onesti CE, Harbeck N, Lüftner D, Rottey S, van Dam PA, Zaman K, Mustacchi G, Gligorov J, Awada A, Campone M, Wildiers H, Gennari A, Tjan-Heijnen VCG, Cortes J, Locci M, Paris I, Del Mastro L, De Placido S, Martín M, Jerusalem G, Venturini S, Curigliano G, Generali D. Anthracyclines Strike Back: Rediscovering Non-Pegylated Liposomal Doxorubicin in Current Therapeutic Scenarios of Breast Cancer. Cancers (Basel) 2021; 13:4421. [PMID: 34503231 PMCID: PMC8430783 DOI: 10.3390/cancers13174421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most active chemotherapies (CT) in breast cancer (BC). However, cardiotoxicity is a risk and peculiar side effect that has been limiting their use in clinical practice, especially after the introduction of taxanes. Non-pegylated liposomal doxorubicin (NPLD) has been developed to optimize the toxicity profile induced by anthracyclines, while maintaining its unquestionable therapeutic index, thanks to its delivering characteristics that increase its diffusion in tumor tissues and reduce it in normal tissues. This feature allows NPLD to be safely administered beyond the standard doxorubicin maximum cumulative dose of 450-480 mg/m2. Following three pivotal first-line phase III trials in HER2-negative metastatic BC (MBC), this drug was finally approved in combination with cyclophosphamide in this specific setting. Given the increasing complexity of the therapeutic scenario of HER2-negative MBC, we have carefully revised the most updated literature on the topic and dissected the potential role of NPLD in the evolving therapeutic algorithms.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Research Group, 08036 Barcelona, Spain;
- Department of Medical Oncology, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (M.G.); (S.D.P.)
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, 16132 Genova, Italy; (M.L.); (L.D.M.)
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine 1, Medical University of Vienna, 1090 Vienna, Austria;
| | - David James Pinato
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
- Department of Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy;
| | - Concetta Elisa Onesti
- Clinical and Oncological Research Department, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Nadia Harbeck
- Breast Center, Department OB&GYN and CCCLMU, LMU University Hospital, 81377 Munich, Germany;
| | - Diana Lüftner
- Department of Hematology, Oncology and Tumor Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Sylvie Rottey
- Department of Medical Oncology, UZ Gent, 9000 Gent, Belgium;
| | - Peter A. van Dam
- Oncology Department, University Hospital Antwerp (UZA), 2650 Edegem, Belgium;
| | - Khalil Zaman
- Oncology Department, Lausanne University Hospital CHUV, 1011 Lausanne, Switzerland;
| | - Giorgio Mustacchi
- Division of Medical Oncology, University of Trieste, 34127 Trieste, Italy;
| | - Joseph Gligorov
- Department of Medical Oncology, Tenon Hospital, Institut Universitaire de Cancérologie AP-HP, Sorbonne University, 75004 Paris, France;
| | - Ahmad Awada
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium;
| | - Mario Campone
- Division of Medical Oncology, Institut de Cancérologie de l’Ouest-Pays de la Loire, 44800 Saint-Herblain, France;
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospital Leuven, 3000 Leuven, Belgium;
| | - Alessandra Gennari
- Department of Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy;
| | - Vivianne C. G. Tjan-Heijnen
- Division of Medical Oncology, Maastricht University Medical Center (MUMC), 6229 Maastricht, The Netherlands;
| | - Javier Cortes
- Oncology Department, IOB Institute of Oncology, Quiron Group, 08023 Madrid, Spain;
- Vall d’Hebron Institute of Oncology (VHIO), Centro Cellex, 08035 Carrer de Natzaret, Spain
| | - Mariavittoria Locci
- Department of Neuroscience, Reproductive Medicine, Odontostomatology, University of Naples Federico II, 80131 Naples, Italy;
| | - Ida Paris
- Department of Woman and Child Health and Public Health, Woman Health Area, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, 16132 Genova, Italy; (M.L.); (L.D.M.)
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (M.G.); (S.D.P.)
| | - Miguel Martín
- Departamento de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón Universidad Complutense, 28007 Madrid, Spain;
| | - Guy Jerusalem
- Division of Medical Oncology, CHU Sart Tilman Liège and University of Liège, 4000 Liège, Belgium;
| | - Sergio Venturini
- Management Department, University of Turin, 10124 Torino, Italy;
| | - Giuseppe Curigliano
- Istituto Europeo di Oncologia, IRCCS ed Università di Milano, 20141 Milano, Italy;
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Viale Concordia 1, 26100 Cremona, Italy
| |
Collapse
|
41
|
Chandrasekaran D, Sobocan M, Blyuss O, Miller RE, Evans O, Crusz SM, Mills-Baldock T, Sun L, Hammond RFL, Gaba F, Jenkins LA, Ahmed M, Kumar A, Jeyarajah A, Lawrence AC, Brockbank E, Phadnis S, Quigley M, El Khouly F, Wuntakal R, Faruqi A, Trevisan G, Casey L, Burghel GJ, Schlecht H, Bulman M, Smith P, Bowers NL, Legood R, Lockley M, Wallace A, Singh N, Evans DG, Manchanda R. Implementation of Multigene Germline and Parallel Somatic Genetic Testing in Epithelial Ovarian Cancer: SIGNPOST Study. Cancers (Basel) 2021; 13:cancers13174344. [PMID: 34503154 PMCID: PMC8431198 DOI: 10.3390/cancers13174344] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
We present findings of a cancer multidisciplinary-team (MDT) coordinated mainstreaming pathway of unselected 5-panel germline BRCA1/BRCA2/RAD51C/RAD51D/BRIP1 and parallel somatic BRCA1/BRCA2 testing in all women with epithelial-OC and highlight the discordance between germline and somatic testing strategies across two cancer centres. Patients were counselled and consented by a cancer MDT member. The uptake of parallel multi-gene germline and somatic testing was 97.7%. Counselling by clinical-nurse-specialist more frequently needed >1 consultation (53.6% (30/56)) compared to a medical (15.0% (21/137)) or surgical oncologist (15.3% (17/110)) (p < 0.001). The median age was 54 (IQR = 51-62) years in germline pathogenic-variant (PV) versus 61 (IQR = 51-71) in BRCA wild-type (p = 0.001). There was no significant difference in distribution of PVs by ethnicity, stage, surgery timing or resection status. A total of 15.5% germline and 7.8% somatic BRCA1/BRCA2 PVs were identified. A total of 2.3% patients had RAD51C/RAD51D/BRIP1 PVs. A total of 11% germline PVs were large-genomic-rearrangements and missed by somatic testing. A total of 20% germline PVs are missed by somatic first BRCA-testing approach and 55.6% germline PVs missed by family history ascertainment. The somatic testing failure rate is higher (23%) for patients undergoing diagnostic biopsies. Our findings favour a prospective parallel somatic and germline panel testing approach as a clinically efficient strategy to maximise variant identification. UK Genomics test-directory criteria should be expanded to include a panel of OC genes.
Collapse
Affiliation(s)
- Dhivya Chandrasekaran
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Monika Sobocan
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Oleg Blyuss
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK;
- Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Rowan E. Miller
- Department of Medical Oncology, Barts Health NHS Trust, London EC1A 7BE, UK; (R.E.M.); (S.M.C.)
| | - Olivia Evans
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
| | - Shanthini M. Crusz
- Department of Medical Oncology, Barts Health NHS Trust, London EC1A 7BE, UK; (R.E.M.); (S.M.C.)
| | - Tina Mills-Baldock
- Department of Medical Oncology, Barking, Havering & Redbridge University Hospitals, Essex RM7 0AG, UK; (T.M.-B.); (M.Q.); (F.E.K.)
| | - Li Sun
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
- Department of Health Services Research, Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK;
| | - Rory F. L. Hammond
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - Faiza Gaba
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
| | - Lucy A. Jenkins
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK; (L.A.J.); (M.A.); (A.K.)
| | - Munaza Ahmed
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK; (L.A.J.); (M.A.); (A.K.)
| | - Ajith Kumar
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK; (L.A.J.); (M.A.); (A.K.)
| | - Arjun Jeyarajah
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Alexandra C. Lawrence
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Elly Brockbank
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Saurabh Phadnis
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Mary Quigley
- Department of Medical Oncology, Barking, Havering & Redbridge University Hospitals, Essex RM7 0AG, UK; (T.M.-B.); (M.Q.); (F.E.K.)
| | - Fatima El Khouly
- Department of Medical Oncology, Barking, Havering & Redbridge University Hospitals, Essex RM7 0AG, UK; (T.M.-B.); (M.Q.); (F.E.K.)
| | - Rekha Wuntakal
- Department of Gynaecology, Barking, Havering & Redbridge University Hospitals, Essex RM7 0AG, UK;
| | - Asma Faruqi
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - Giorgia Trevisan
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - Laura Casey
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - George J. Burghel
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Michael Bulman
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Philip Smith
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Naomi L. Bowers
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Rosa Legood
- Department of Health Services Research, Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK;
| | - Michelle Lockley
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Andrew Wallace
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Naveena Singh
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - D. Gareth Evans
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
- Department of Health Services Research, Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK;
- Correspondence:
| |
Collapse
|
42
|
van Waardenburg RC, Yang ES. Targeting DNA repair pathways to overcome cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:837-841. [PMID: 34532658 PMCID: PMC8443189 DOI: 10.20517/cdr.2021.80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Robert C.A.M. van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Eddy S. Yang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
43
|
Thompson LL, Rutherford KA, Lepage CC, McManus KJ. The SCF Complex Is Essential to Maintain Genome and Chromosome Stability. Int J Mol Sci 2021; 22:8544. [PMID: 34445249 PMCID: PMC8395177 DOI: 10.3390/ijms22168544] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
The SKP1, CUL1, F-box protein (SCF) complex encompasses a group of 69 SCF E3 ubiquitin ligase complexes that primarily modify protein substrates with poly-ubiquitin chains to target them for proteasomal degradation. These SCF complexes are distinguishable by variable F-box proteins, which determine substrate specificity. Although the function(s) of each individual SCF complex remain largely unknown, those that have been characterized regulate a wide array of cellular processes, including gene transcription and the cell cycle. In this regard, the SCF complex regulates transcription factors that modulate cell signaling and ensures timely degradation of primary cell cycle regulators for accurate replication and segregation of genetic material. SCF complex members are aberrantly expressed in a myriad of cancer types, with altered expression or function of the invariable core SCF components expected to have a greater impact on cancer pathogenesis than that of the F-box proteins. Accordingly, this review describes the normal roles that various SCF complexes have in maintaining genome stability before discussing the impact that aberrant SCF complex expression and/or function have on cancer pathogenesis. Further characterization of the SCF complex functions is essential to identify and develop therapeutic approaches to exploit aberrant SCF complex expression and function.
Collapse
Affiliation(s)
- Laura L. Thompson
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kailee A. Rutherford
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Chloe C. Lepage
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kirk J. McManus
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
44
|
Dickson KA, Xie T, Evenhuis C, Ma Y, Marsh DJ. PARP Inhibitors Display Differential Efficacy in Models of BRCA Mutant High-Grade Serous Ovarian Cancer. Int J Mol Sci 2021; 22:8506. [PMID: 34445211 PMCID: PMC8395221 DOI: 10.3390/ijms22168506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Several poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors are now in clinical use for tumours with defects in BReast CAncer genes BRCA1 or BRCA2 that result in deficient homologous recombination repair (HRR). Use of olaparib, niraparib or rucaparib for the treatment of high-grade serous ovarian cancer, including in the maintenance setting, has extended both progression free and overall survival for women with this malignancy. While different PARP inhibitors (PARPis) are mechanistically similar, differences are apparent in their chemical structures, toxicity profiles, PARP trapping abilities and polypharmacological landscapes. We have treated ovarian cancer cell line models of known BRCA status, including the paired cell lines PEO1 and PEO4, and UWB1.289 and UWB1.289+BRCA1, with five PARPis (olaparib, niraparib, rucaparib, talazoparib and veliparib) and observed differences between PARPis in both cell viability and cell survival. A cell line model of acquired resistance to veliparib showed increased resistance to the other four PARPis tested, suggesting that acquired resistance to one PARPi may not be able to be rescued by another. Lastly, as a proof of principle, HRR proficient ovarian cancer cells were sensitised to PARPis by depletion of BRCA1. In the future, guidelines will need to emerge to assist clinicians in matching specific PARPis to specific patients and tumours.
Collapse
Affiliation(s)
- Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; (K.-A.D.); (T.X.); (Y.M.)
| | - Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; (K.-A.D.); (T.X.); (Y.M.)
| | - Christian Evenhuis
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; (K.-A.D.); (T.X.); (Y.M.)
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; (K.-A.D.); (T.X.); (Y.M.)
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
45
|
Palleschi M, Tedaldi G, Sirico M, Virga A, Ulivi P, De Giorgi U. Moving beyond PARP Inhibition: Current State and Future Perspectives in Breast Cancer. Int J Mol Sci 2021; 22:ijms22157884. [PMID: 34360649 PMCID: PMC8346118 DOI: 10.3390/ijms22157884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most frequent and lethal tumor in women and finding the best therapeutic strategy for each patient is an important challenge. PARP inhibitors (PARPis) are the first, clinically approved drugs designed to exploit synthetic lethality in tumors harboring BRCA1/2 mutations. Recent evidence indicates that PARPis have the potential to be used both in monotherapy and combination strategies in breast cancer treatment. In this review, we show the mechanism of action of PARPis and discuss the latest clinical applications in different breast cancer treatment settings, including the use as neoadjuvant and adjuvant approaches. Furthermore, as a class, PARPis show many similarities but also certain critical differences which can have essential clinical implications. Finally, we report the current knowledge about the resistance mechanisms to PARPis. A systematic PubMed search, using the entry terms “PARP inhibitors” and “breast cancer”, was performed to identify all published clinical trials (Phase I-II-III) and ongoing trials (ClinicalTrials.gov), that have been reported and discussed in this review.
Collapse
Affiliation(s)
- Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.P.); (M.S.); (U.D.G.)
| | - Gianluca Tedaldi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.U.)
- Correspondence: ; Tel.: +39-0543-739232; Fax: +39-0543-739221
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.P.); (M.S.); (U.D.G.)
| | - Alessandra Virga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.U.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.U.)
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.P.); (M.S.); (U.D.G.)
| |
Collapse
|
46
|
Par S, Vaides S, VanderVere-Carozza PS, Pawelczak KS, Stewart J, Turchi JJ. OB-Folds and Genome Maintenance: Targeting Protein-DNA Interactions for Cancer Therapy. Cancers (Basel) 2021; 13:3346. [PMID: 34283091 PMCID: PMC8269290 DOI: 10.3390/cancers13133346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Genome stability and maintenance pathways along with their requisite proteins are critical for the accurate duplication of genetic material, mutation avoidance, and suppression of human diseases including cancer. Many of these proteins participate in these pathways by binding directly to DNA, and a subset employ oligonucleotide/oligosaccharide binding folds (OB-fold) to facilitate the protein-DNA interactions. OB-fold motifs allow for sequence independent binding to single-stranded DNA (ssDNA) and can serve to position specific proteins at specific DNA structures and then, via protein-protein interaction motifs, assemble the machinery to catalyze the replication, repair, or recombination of DNA. This review provides an overview of the OB-fold structural organization of some of the most relevant OB-fold containing proteins for oncology and drug discovery. We discuss their individual roles in DNA metabolism, progress toward drugging these motifs and their utility as potential cancer therapeutics. While protein-DNA interactions were initially thought to be undruggable, recent reports of success with molecules targeting OB-fold containing proteins suggest otherwise. The potential for the development of agents targeting OB-folds is in its infancy, but if successful, would expand the opportunities to impinge on genome stability and maintenance pathways for more effective cancer treatment.
Collapse
Affiliation(s)
- Sui Par
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.P.); (S.V.)
| | - Sofia Vaides
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.P.); (S.V.)
| | | | | | - Jason Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - John J. Turchi
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.P.); (S.V.)
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- NERx Biosciences, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
47
|
Schettini F, Corona SP, Giudici F, Strina C, Sirico M, Bernocchi O, Milani M, Ziglioli N, Aguggini S, Azzini C, Barbieri G, Cervoni V, Cappelletti MR, Molteni A, Lazzari MC, Ferrero G, Ungari M, Marasco E, Bruson A, Xumerle L, Zago E, Cerra D, Loddo M, Williams GH, Paris I, Scambia G, Generali D. Clinical, Radiometabolic and Immunologic Effects of Olaparib in Locally Advanced Triple Negative Breast Cancer: The OLTRE Window of Opportunity Trial. Front Oncol 2021; 11:686776. [PMID: 34262869 PMCID: PMC8273330 DOI: 10.3389/fonc.2021.686776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Olaparib is effective in metastatic triple negative breast cancer (TNBC) carrying germline mutations in DNA damage repair (DDR) genes BRCA1/2 (gBRCA-mut). The OLTRE window-of-opportunity trial preliminarily investigated potential pathologic, radiometabolic and immune biomarkers of early-response to olaparib in gBRCA-wild-type (wt) TNBC and, as proof-of-concept in gBRCA-mut HER2-negative BC. METHODS Patients received olaparib for 3 weeks (3w) before standard neoadjuvant chemotherapy and underwent multiple FDG18-PET/CT scan (basal, after olaparib), clinical assessments (basal, every 3w), tumor biopsies and blood samplings (baseline, after olaparib). Clinical and radiometabolic responses were evaluated according to RECIST1.1 and PERCIST criteria. RESULTS 27 patients with gBRCA-wt TNBC and 8 with gBRCA-mut BC (6 TNBC, 2 HR+/HER2-negative) were enrolled. Three (11.1%) patients showed mutations in non-BRCA1/2 DDR genes and 4 (14.8%) in other genes. 3w olaparib induced 16/35 and 15/27 partial clinical and radiometabolic responses, including in 40.7% and 50.0% gBRCA-wt patients. gBRCA-mut tumors presented numerically higher tumor-infiltrating lymphocytes (TILs) levels and PD-L1 positive tumors. Clinical responders experienced a reduction in T-regs/T-eff ratio (p=0.05), B and NK lymphocytes (p=0.003 both), with an average increase in T-helpers rate (p<0.001) and CD4/CD8 ratio (p=0.02). Ki67% and TILs did not vary significantly (p=0.67 and p=0.77). A numerical increase in PD-L1 positive cases after olaparib was observed, though non-significant (p=0.134). No differences were observed according to gBRCA status and type of response. CONCLUSIONS Early-stage TNBC might be a target population for olaparib, irrespective of gBRCA mutations. Future trials should combine TILs, PD-L1 and gBRCA status to better identify candidates for escalated/de-escalated treatment strategies including olaparib.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational genomics and targeted therapies in solid tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Silvia Paola Corona
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Fabiola Giudici
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carla Strina
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Marianna Sirico
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Ottavia Bernocchi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Manuela Milani
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Nicoletta Ziglioli
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Sergio Aguggini
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Carlo Azzini
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Giuseppina Barbieri
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Valeria Cervoni
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Maria Rosa Cappelletti
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Alfredo Molteni
- Unitá Operativa Ematologia e CTMO, Azienda Socio-Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Maria Chiara Lazzari
- Unitá Operativa Ematologia e CTMO, Azienda Socio-Sanitaria Territoriale di Cremona, Cremona, Italy
| | | | - Marco Ungari
- UO Anatomia Patologica ASST di Cremona, Cremona, Italy
| | | | | | | | | | | | - Marco Loddo
- Oncologica UK Ltd, Cambridge, United Kingdom
| | | | - Ida Paris
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Roma, Italy
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Roma, Italy
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| |
Collapse
|