1
|
Piergentili R, Sechi S, De Paola L, Zaami S, Marinelli E. Building a Hand-Curated ceRNET for Endometrial Cancer, Striving for Clinical as Well as Medicolegal Soundness: A Systematic Review. Noncoding RNA 2025; 11:34. [PMID: 40407592 PMCID: PMC12101250 DOI: 10.3390/ncrna11030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/27/2025] [Indexed: 05/26/2025] Open
Abstract
Background/Objectives: Competing endogenous RNAs (ceRNA) are molecules that compete for the binding to a microRNA (miR). Usually, there are two ceRNA, one of which is a protein-coding RNA (mRNA), with the other being a long non-coding RNA (lncRNA). The miR role is to inhibit mRNA expression, either promoting its degradation or impairing its translation. The lncRNA can "sponge" the miR, thus impeding its inhibitory action on the mRNA. In their easier configuration, these three molecules constitute a regulatory axis for protein expression. However, each RNA can interact with multiple targets, creating branched and intersected axes that, all together, constitute what is known as a competing endogenous RNA network (ceRNET). Methods: In this systematic review, we collected all available data from PubMed about experimentally verified (by luciferase assay) regulatory axes in endometrial cancer (EC), excluding works not using this test; Results: This search allowed the selection of 172 bibliographic sources, and manually building a series of ceRNETs of variable complexity showed the known axes and the deduced intersections. The main limitation of this search is the highly stringent selection criteria, possibly leading to an underestimation of the complexity of the networks identified. However, this work allows us not only to hypothesize possible gap fillings but also to set the basis to instruct artificial intelligence, using adequate prompts, to expand the EC ceRNET by comparing it with ceRNETs of other cancers. Moreover, these networks can be used to inform and guide research toward specific, though still unidentified, axes in EC, to complete parts of the network that are only partially described, or even to integrate low complexity subnetworks into larger more complex ones. Filling the gaps among the existing EC ceRNET will allow physicians to hypothesize new therapeutic strategies that may either potentiate or substitute existing ones. Conclusions: These ceRNETs allow us to easily visualize long-distance interactions, thus helping to select the best treatment, depending on the molecular profile of each patient, for personalized medicine. This would yield higher efficiency rates and lower toxicity levels, both of which are extremely relevant factors not only for patients' wellbeing, but also for the legal, regulatory, and ethical aspects of miR-based innovative treatments and personalized medicine as a whole. This systematic review has been registered in PROSPERO (ID: PROSPERO 2025 CRD420251035222).
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Stefano Sechi
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Lina De Paola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (L.D.P.); (S.Z.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (L.D.P.); (S.Z.)
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| |
Collapse
|
2
|
Aleksakhina SN, Ivantsov AO, Imyanitov EN. Agnostic Administration of Targeted Anticancer Drugs: Looking for a Balance between Hype and Caution. Int J Mol Sci 2024; 25:4094. [PMID: 38612902 PMCID: PMC11012409 DOI: 10.3390/ijms25074094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Many tumors have well-defined vulnerabilities, thus potentially allowing highly specific and effective treatment. There is a spectrum of actionable genetic alterations which are shared across various tumor types and, therefore, can be targeted by a given drug irrespective of tumor histology. Several agnostic drug-target matches have already been approved for clinical use, e.g., immune therapy for tumors with microsatellite instability (MSI) and/or high tumor mutation burden (TMB), NTRK1-3 and RET inhibitors for cancers carrying rearrangements in these kinases, and dabrafenib plus trametinib for BRAF V600E mutated malignancies. Multiple lines of evidence suggest that this histology-independent approach is also reasonable for tumors carrying ALK and ROS1 translocations, biallelic BRCA1/2 inactivation and/or homologous recombination deficiency (HRD), strong HER2 amplification/overexpression coupled with the absence of other MAPK pathway-activating mutations, etc. On the other hand, some well-known targets are not agnostic: for example, PD-L1 expression is predictive for the efficacy of PD-L1/PD1 inhibitors only in some but not all cancer types. Unfortunately, the individual probability of finding a druggable target in a given tumor is relatively low, even with the use of comprehensive next-generation sequencing (NGS) assays. Nevertheless, the rapidly growing utilization of NGS will significantly increase the number of patients with highly unusual or exceptionally rare tumor-target combinations. Clinical trials may provide only a framework for treatment attitudes, while the decisions for individual patients usually require case-by-case consideration of the probability of deriving benefit from agnostic versus standard therapy, drug availability, associated costs, and other circumstances. The existing format of data dissemination may not be optimal for agnostic cancer medicine, as conventional scientific journals are understandably biased towards the publication of positive findings and usually discourage the submission of case reports. Despite all the limitations and concerns, histology-independent drug-target matching is certainly feasible and, therefore, will be increasingly utilized in the future.
Collapse
Affiliation(s)
- Svetlana N. Aleksakhina
- Department of Tumor Growth Biology, N. N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
| | - Alexander O. Ivantsov
- Department of Tumor Growth Biology, N. N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N. N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
4
|
Gao J, Jiang H, Chen P, Zhang R, Liu N. Photosensitizer-based small molecule theranostic agents for tumor-targeted monitoring and phototherapy. Bioorg Chem 2023; 136:106554. [PMID: 37094481 DOI: 10.1016/j.bioorg.2023.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
Small molecule theranostic agents for tumor treatment exhibited triadic properties in tumor targeting, imaging, and therapy, which have attracted increasing attention as a potential complement for, or improved to, classical small molecule antitumor drugs. Photosensitizer have dual functions of imaging and phototherapy, and have been widely used in the construction of small molecule theranostic agents over the last decade. In this review, we summarized representative agents that have been studied in the field of small molecule theranostic agents based on photosensitizer in the last decade, and highlighted their characteristics and application in tumor-targeted monitoring and phototherapy. The challenges and future perspectives of photosensitizers in building small molecule theranostic agents for diagnosis and therapy of tumors were also discussed.
Collapse
Affiliation(s)
- Jiake Gao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Horgan D, Mia R, Erhabor T, Hamdi Y, Dandara C, Lal JA, Fokom Domgue J, Ewumi O, Nyawira T, Meyer S, Kondji D, Francisco NM, Ikeda S, Chuah C, De Guzman R, Paul A, Reddy Nallamalla K, Park WY, Tripathi V, Tripathi R, Johns A, Singh MP, Phipps ME, Dube F, Whittaker K, Mukherji D, Rasheed HMA, Kozaric M, Pinto JA, Doral Stefani S, Augustovski F, Aponte Rueda ME, Fujita Alarcon R, Barrera-Saldana HA. Fighting Cancer around the World: A Framework for Action. Healthcare (Basel) 2022; 10:2125. [PMID: 36360466 PMCID: PMC9690702 DOI: 10.3390/healthcare10112125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 09/05/2023] Open
Abstract
Tackling cancer is a major challenge right on the global level. Europe is only the tip of an iceberg of cancer around the world. Prosperous developed countries share the same problems besetting Europe-and the countries and regions with fewer resources and less propitious conditions are in many cases struggling often heroically against a growing tide of disease. This paper offers a view on these geographically wider, but essentially similar, challenges, and on the prospects for and barriers to better results in this ceaseless battle. A series of panels have been organized by the European Alliance for Personalised Medicine (EAPM) to identify different aspects of cancer care around the globe. There is significant diversity in key issues such as NGS, RWE, molecular diagnostics, and reimbursement in different regions. In all, it leads to disparities in access and diagnostics, patients' engagement, and efforts for a better understanding of cancer.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium;
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; (J.A.L.); (V.T.)
| | - Rizwana Mia
- Grants, Innovation & Product Development, South African Medical Research Council, Francie Van Zijl Drive, Parow Valley, Cape Town 7505, South Africa;
| | - Tosan Erhabor
- Medical Laboratory Science Council of Nigeria (MLSCN), Durumi, Abuja 900110, Nigeria;
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Observatory, Cape Town 7925, South Africa;
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; (J.A.L.); (V.T.)
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, GROW School of Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Joel Fokom Domgue
- Departments of Epidemiology, and Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA;
- Department of Obstetrics and Gynecology, Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde VF7W+4M9, Cameroon
| | - Oladimeji Ewumi
- Freelance Health Care, Life Sciences, Medical Artificial Intelligence Content Writer, Lagos 100253, Nigeria;
| | - Teresia Nyawira
- National Commission for Science, Technology and Innovation in Kenya (NACOSTI), Nairobi 00100, Kenya;
| | | | - Dominique Kondji
- Health & Development Communication, Building Capacities for Better Health in Africa, Yaounde P.O. Box 2032, Cameroon;
| | - Ngiambudulu M. Francisco
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda 3635, Angola;
| | - Sadakatsu Ikeda
- Department of Precision Cancer Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Chai Chuah
- Singularity University, P.O. Box 165, Gold Coast, QLD 4227, Australia;
| | - Roselle De Guzman
- Oncology and Pain Management Section, Manila Central University–Filemon D. Tanchoco Medical Foundation Hospital, Caloocan 1400, Philippines;
| | - Anupriya Paul
- Department of Mathematics and Statistics, Faculty of Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India;
| | | | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Centre, Sungkyunkwan University, Seoul 06351, Korea;
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; (J.A.L.); (V.T.)
| | - Ravikant Tripathi
- Ministry of Labor, Health Department Government of India, New Delhi 110001, India;
| | - Amber Johns
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia;
| | - Mohan P. Singh
- Centre of Biotechnology, University of Allahabad, Allahabad 211002, India;
| | - Maude E. Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia;
| | - France Dube
- Astra Zeneca, 1800 Concord Pike, Wilmington, DE 19803, USA;
| | | | - Deborah Mukherji
- Global Health Institute, American University of Beirut, Beirut VFXP+7QF, Lebanon;
- Department of Hematology/Oncology, American University of Beirut Medical Centre, Beirut P.O. Box 11-0236, Lebanon
| | | | - Marta Kozaric
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium;
| | - Joseph A. Pinto
- Centre for Basic and Translational Research, Auna Ideas, Lima 15036, Peru;
| | | | - Federico Augustovski
- Health Technology Assessment and Health Economics, Department of the Institute for Clinical Effectiveness and Health Policy (IECS-CONICET), Buenos Aires C1056ABH, Argentina;
| | | | - Ricardo Fujita Alarcon
- Centro de Genética y Biología Molecular, Universidad de San Martín de Porres, Lima 15024, Peru;
| | - Hugo A. Barrera-Saldana
- Innbiogem SC/Vitagenesis SA at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEIDI) of CONACyT Vitaxentrum Group, Monterrey 64630, Mexico;
- Schools of Medicine and Biology, Autonomous University of Nuevo Leon, Monterrey 66451, Mexico
| |
Collapse
|
6
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|